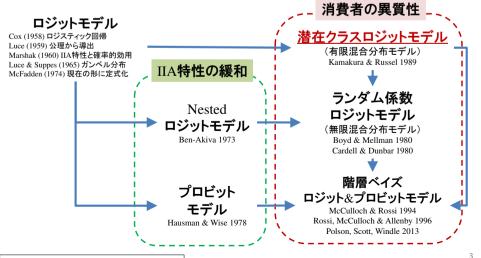
マーケティング・リサーチ特論 ~潜在クラスロジットモデル~

2024年度1学期: 水曜3限

担当教員: 石垣 司

ブランド選択モデルの流れ

本講義で紹介する多項ブランド選択モデル



現代的なマーケティングの時代背景

消費価値観の変化に準じてマーケティングも進化

画一的価値観の市場 (1950-70年代の日本)

価値観の分化した市場

価値観の多様化した市場 (2000年-現在の日本)

(1980-90年代の日本)

十人一色の時代 大量消費 機能に価値 マス・マーケティング

マスからの脱却 ライフスタイルの共有に価値 セグメンテーション・マーケティング

十人十色の時代 個人の異なる価値、価値共創 one to oneマーケティング

効用: $U_{iti} = f(\mathbf{b}, \mathbf{x}_{iti}) + e_{iti}$ 効用: $U_{iti} = f(\mathbf{b}_s, \mathbf{x}_{iti}) + e_{iti}$

効用: $U_{iti} = f(\mathbf{b}_i, \mathbf{x}_{iti}) + e_{iti}$

潜在クラスモデルとは?

観測データを少数のセグメントに分類・判別するための 統計的モデリング法の総称

- 有限混合分布モデル
- 混合正規分布モデル (GMM: Gaussian Mixture Model)
- EM アルゴリズムによる推定

マーケティング・リサーチでは?

- 潜在クラスモデルはセグメンテーションの概念と相性がよい
- 選択行動に関する消費者セグメントをデータから自動的に見 つけ出す
- 潜在クラスロジットモデル 有限混合分布モデルと多項ロジットモデルを統合した統計モデル 消費者の異質性を取り入れた離散選択モデル

参照文献:兵藤·章2000, 土田2010, 髙橋2013等

有限混合分布モデル

複数の異なるセグメントからデータが発生している状態を統計的にモデリング

- セグメント: $s = 1, \dots, S$
- セグメント数 S の目安: 1 < S ≪ "サンプルサイズ"</p>

データ x_i を発生する確率密度関数

$$p(x_i|\boldsymbol{\theta}) = \sum_{s=1}^{S} \pi_s f(x_i|\boldsymbol{\theta}_s), \boldsymbol{\theta} = \{\pi_1, \dots, \pi_s, \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_s\}$$

- セグメント s 毎に異なるパラメータ $\{\pi_s, \theta_s\}$ をもつ
- パラメータの制約 $\pi_s \ge 0$, $\sum_{s=1}^{S} \pi_s = 1$

関数 f のモデリングで多様な分布を表現する

GMMのセグメント所属確率

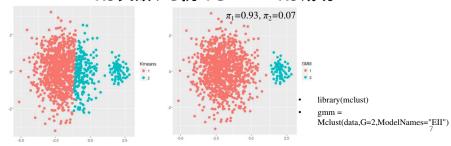
各データ x_i がセグメント s へ所属する確率

- 推定されたパラメータを利用して算出

$$Pr(i_s = s | \boldsymbol{x}_i) = p_{is} = \frac{\pi_s N(\boldsymbol{x}_i | \boldsymbol{\theta}_s)}{\sum_{k=1}^{S} \pi_k N(\boldsymbol{x}_i | \boldsymbol{\theta}_k)}$$

クラスタリングの例: Imbalanced data

- k-means では失敗する例でもGMMでは成功



混合正規分布モデル(GMM)

関数 f を正規分布(多変量正規分布)でモデリング

- S 個の正規分布の重み付き組み合わせで一つの分布を形成

$$p(x_i|m{\Theta}) = \sum_{s=1}^S \pi_s N(x_i|m{\Theta}_s)$$
 混合正規分布 $(m{\Theta}_s = \{\mu_s, \sigma_s^2\})$ $(m{\Theta}_s = \{\mu_s, \sigma$

GMMのパラメータ推定

GMMの尤度最大化

と分散共分散行列 $\theta_s = \{\mu_s, \Sigma_s\}$

- 対数尤度: $\log L(\{x_i\}) = \sum_{i=1}^N \log \sum_{s=1}^S \pi_s N(x_i | \mu_s, \Sigma_s)$
- GMMの尤度最大化は不良設定問題

原因: 対数尤度関数の中のs に関する和の計算 \Rightarrow ラグランジュ未定乗数法では陽な解は得られない (各パラメータの推定値はパラメータ $\{\pi_s\}$ の値に依存する)

多変量混合正規分布のラグランジュ未定乗数法の解

$$\mu_{k} = \left\{ \sum_{i=1}^{N} \left(\frac{\pi_{k} N(x_{i} | \theta_{k})}{\sum_{s=1}^{S} \pi_{s} N(x_{i} | \theta_{s})} \right) \right\}^{-1} \sum_{i=1}^{N} \left(\frac{\pi_{k} N(x_{i} | \theta_{k})}{\sum_{s=1}^{S} \pi_{s} N(x_{i} | \theta_{s})} \mathbf{x}_{i} \right)$$

$$\Sigma_{k} = \left\{ \sum_{i=1}^{N} \left(\frac{\pi_{k} N(x_{i} | \theta_{k})}{\sum_{s=1}^{S} \pi_{s} N(x_{i} | \theta_{s})} \right) \right\}^{-1} \sum_{i=1}^{N} \left(\frac{\pi_{k} N(x_{i} | \theta_{k})}{\sum_{s=1}^{S} \pi_{s} N(x_{i} | \theta_{s})} (\mathbf{x}_{i} - \mathbf{\mu}_{k}) (\mathbf{x}_{i} - \mathbf{\mu}_{k})^{T} \right)$$

$$\pi_{k} = N^{-1} \sum_{i=1}^{N} \left(\frac{\pi_{k} N(x_{i} | \theta_{k})}{\sum_{s=1}^{S} \pi_{s} N(x_{i} | \theta_{s})} \right)$$

EMアルゴリズム

潜在変数を含む統計モデルの最尤推定法

- 反復計算。各反復で必ず尤度が増加
- 汎用性が高く、多様な応用成果あり

#メモ 潜在変数を含む統計モデルのパラメー

- 局所最適解には収束する(全体最適解に収束する保証は無い)

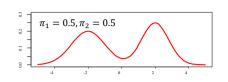
GMM**のための**EMアルゴリズム

- 1. パラメータの初期値 $\theta^{(0)} = \{\mu_{\nu}^{(0)}, \Sigma_{\nu}^{(0)}, \pi_{\nu}^{(0)}\}$ を与える(t=0)
- 2. E-step: $p_{ik}^{(t)} = \frac{\pi_k^{(t)} N(x_i | \mu_k^{(t)}, \Sigma_k^{(t)})}{\sum_{s=1}^{S} \pi_k^{(t)} N(x_i | \mu_k^{(t)}, \Sigma_k^{(t)})}$ **の計算**
- 3. M-step: $p_{ik}^{(t)}$ を用いて $\boldsymbol{\theta}^{(t+1)} = \{\boldsymbol{\mu}_k^{(t+1)}, \boldsymbol{\Sigma}_k^{(t+1)}, \boldsymbol{\pi}_k^{(t+1)}\}$ を更新
- 4. 収束していたら終了。していなければ、E-step に戻る

有限混合分布から発生するデータの解釈

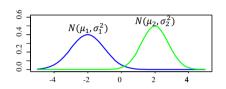
解釈1

- 多峰性の複雑な分布から 各データ x_i が発生している



解釈2

- 各データ x; は正規分布群の 中の一つから発生していて、 その所属確率は {π。} と尤度 に依存する



マーケティング・リサーチでは?

- マーケティング・セグメンテーションの概念との整合性から、 解釈2で理解する場合が多い

潜在クラスロジットモデル #1

S 個の多項ロジットモデルの有限混合分布

- 各セグメント s 毎に異なる反応係数 b。を設定し、セグメント間 での異なる選択行動を表現できる離散選択モデル
- 各セグメント s の反応係数 $b_{sn}=0$ について検定ができる 機械学習的な分類・判別・クラスタリング等では検定は行えない

キャンペーン

ブランドB

ブランドC

【抽出できる情報の例】

セグメントAはブランドAが200円でB・Cが180円の時のブランドAの選択確率30% セグメントBはブランドAが200円でB・Cが180円の時のブランドAの選択確率75%

潜在クラスロジットモデル #2

消費者iがセグメントsに所属するときの選択肢iの効用の確定項

$$V_{itj|s} = b_{sj0} + b_{s1}x_{itj1} +, \cdots, +b_{sP}x_{itjP}$$

消費者 i の時刻 t での選択肢 j の選択確率

$$\Pr(Y_{it} = j) = \sum_{s=1}^{S} \pi_s \frac{\exp(V_{itj|s})}{\sum_{l=1}^{J} \exp(V_{itl|s})}$$

消費者 i のセグメント s への所属確率

- 消費者 i が時刻 t で選択肢 j を選択したとき $y_{iti}=1$, それ以外 $y_{iti}=0$
- 消費者iがsに所属のときの尤度関数: $L_{i|s} = \prod_t^T \prod_j^J \left(\frac{\exp(V_{itj|s})}{\sum_{j=1}^J \exp(V_{itns})} \right)^{yitj}$
- 所属確率: $\Pr(i_S = S) = \frac{\pi_S L_{i|S}}{\sum_{\nu=1}^{S} \pi_k L_{i|k}}$

Rでの分析例 #1

"flexmix" パッケージ

- 有限混合分布をEMアルゴリズムで解くパッケージ

再掲: ケチャップの購買履歴データの分析

fain DC, Vilcassim NJ, Chintagunta PK (1994). "A Random-Coefficients Logit Brand-Choice Model Applied to Panel Data." Journal of Business & Economic Statistics, 12(3), 317-328.

ブランド: Heinz 28, Heinz 32, Heinz 41, Hunt's 32
 Heinz 28, 32 & 41 は同じブランドでサイズのみが異なる
 米国ミズーリ州スプリングフィールドの300世帯で2年間に観測された

2.798 ケチャップの購買履歴(スキャンパネルデータ)

- 説明変数:

価格(prices of all brands in the product category)

ディスプレイ(special displays of brands in the store)

チラシ(newspaper feature advertisements)

Heinz: https://www.heinz.com/products?condimentType%5B0%5D=ketchup

13

Rでの分析例 #2

セグメント数 2 での潜在クラスロジットモデルの R コードの例

```
library(mlogit)
library(flexmix)
data("Catsup", package = "mlogit")
Catsup$t = seq len(nrow(Catsup))
vnames = c("display", "feature", "price")
Cdata = reshape(Catsup,idvar = c("id", "t"), times = c("heinz41", "heinz32", "heinz28", "hunts32"),
     timevar = "brand", varying = matrix(colnames(Catsup)[2:13], nrow = 3, byrow = TRUE),
     v.names = vnames, direction = "long")
Cdata$choice = with(Cdata, choice == brand)
Cdata = Cdata[, c("id", "choice", "t", vnames, "brand")]
Cdata$brand <- relevel(factor(Cdata$brand), "heinz32")
set.seed(1234)
m2 = flexmix(choice ~ display + feature + price + brand | id, model = FLXMRcondlogit(strata = ~ t), data = Cdata,
k = 2
Summary(m2)
parameters(m2)
m2 results = refit(m2) #係数の検定結果を返す処理だが、計算時間がかかるので注意
summary(m2_results)
plot(m2_results)
```

14

Rでの分析例 #3

潜在クラスモデルの推定の特徴

- 推定結果はアルゴリズムの初期値に依存する
- セグメント数 S は分析者が与える必要がある

情報量規準によるセグメント数の決定

各セグメント数で異なる初期値で10回推定した結果の各指標の平均値

セグメント数	1	2	3	4	5	6	7	8	9
対数尤度	-2517	-2252	-2129	-2066	-2041	-2030	-2025	-2019	-2019
AIC	5047	4531	4298	4187	4150	4140	4137	4134	4136
BIC	5091	4626	4445	4385	4399	4430	4458	4486	4487

- 理論的にはセグメント数の増加で尤度も単調増加する
- 以下、BIC が最適なセグメント数 4 の結果を見ていく

#メモ ここで AIC ではなく BIC を採用する理由。 セグメント数 8 よりも 4 の方が解釈しやすそうだから というただの主観。 ただし、AIC と BIC は指標としての意味が異なる点には注意

Rでの分析例 #3

セグメント数 S=4 での分析結果

- セグメント間の係数の比較からセグメントの特徴を理解

\$Comp.1						\$Comp.2					
	Estimate	Std. Error	z value	Pr (> z)			Estimate	Std. Error	z value	Pr (> z)	
display	1.77215	0.20501	8.6441	< 2.2e-16	***	display	0.42737	0.25497	1.6761	0.09371	
feature	0.81248	0.26600	3.0545	0.002255	**	feature	1.43071	0.28160	5.0806	3.763e-07	*1
price	-1.40988	0.12901	-10.9286	< 2.2e-16	***	price	-2.54933	0.19501	-13.0726	< 2.2e-16	*
brandheinz28	-0.50997	0.15108	-3.3754	0.000737	***	brandheinz28	3.55475	0.31007	11.4645	< 2.2e-16	*
brandheinz41	-1.32032	0.22269	-5.9289	3.05e-09	***	brandheinz41	1.71078	0.32377	5.2840	1.264e-07	*
brandhunts32	-3.90526	0.29083	-13.4280	< 2.2e-16	***	brandhunts32	-0.89603	0.18404	-4.8687	1.123e-06	*
\$Comp.3						\$Comp.4					
	Estimat	e Std. Error	z value	Pr (> z)			Estimate	Std. Error	z value	Pr (> z)	
display	1.01951	6 0.357155	2.8545	0.004310	**	display	0.49503	0.34705	1.4264	0.1537528	
feature	1.60452	0.394020	4.0722	4.657e-05	***	feature	1.10957	0.32921	3.3704	0.0007507	*
price	-0.05434	0.219566	-0.2475	0.804526		price	-2.29902	0.21348	-10.7692	< 2.2e-16	*
brandheinz28	2.17285	3 0.390777	5.5603	2.692e-08	***	brandheinz28	0.82388	0.27402	3.0067	0.0026414	*
brandheinz41	1.33505	0.416480	3.2056	0.001348	**	brandheinz41	0.25972	0.43072	0.6030	0.5465111	
brandhunts32	-0.72252	0.469274	-1.5397	0.123640		brandhunts32	0.38920	0.18463	2.1080	0.0350291	*
Comp.1 0.398		st>0 ratio 9004 0.584							_		
		8484 0.365		これ	.以降	をのスライドで	では各も	2クメント	の		
Comp.2 0.307				→ ···			· · · ·		- •		
Comp.3 0.134		4092 0.312		外擔	ほサイ	ſズ順にセグ	メント 社	₹ 号を振り	/但す		
Comp.4 0.161	1560	7040 0.222							-		

'log Lik.' -2066.434 (df=27) AIC: 4186.868 BIC: 4384.588

Rでの分析例 #3

セグメント数 S=4 での分析結果

	所属比	Display	Feature	Price	Heinz28	Heinz41	Hunt's 32
セグメント1	40 %	1.77 *	0.81 *	-1.41 *	-0.51 *	-1.32 *	-3.91 *
セグメント2	31 %	0.42	1.43 *	-2.55 *	3.56 *	1.71 *	-0.90 *
セグメント3	16 %	0.50	1.11 *	-2.30 *	0.82 *	0.25	0.34 *
セグメント4	13 %	1.02 *	1.61 *	-0.05	2.17 *	1.34 *	-0.72

セグメント1: 最も大きいセグメント。3種類すべてのマーケティング変数が有意に効果的。Heinz 32 のブランド価値が高い

セグメント2: 2番目に大きいセグメント。チラシと値下げに有意に反応。 Heinz 28 のブランド価値が高い

セグメント3: チラシと値下げに有意に反応。32oz で比較した場合,Heinz よりも Hunt's ブランドのブランド価値が高い唯一のセグメント

セグメント4: チラシと値下げに有意に反応。値下げの効果が薄い可能性 のある唯一のセグメント

17