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Abstract

As an important domain of information technology development, artificial intelligence
(AI) has garnered significant popularity in the financial sector. While AI offers nu-
merous advantages, investigating potential risks associated with the widespread use of
AI has become a critical point for researchers. We examine the impact of AI technolo-
gies on systemic risk within China’s financial industry. Our findings suggest that AI
helps mitigate the increase of systemic risk. However, the impact of AI differs across
different financial sectors and is more pronounced during crisis periods. Our study
also suggests that AI can decrease systemic risk by enhancing the human capital of
financial firms. Moreover, the theoretical framework presented in this paper provides
insights into the notion that imprudent allocation of AI-related investment could po-
tentially contribute to an increase in systemic risk.
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1 Introduction

Unconsciously, we are already approaching an era filled with advanced technology

and machine learning, which we call the “Artificial Intelligence (AI)1 revolution”. By the

mid-1980s, numerous enterprises began embarking on AI projects within their respective

business domains. Since then, the application of AI has emerged as one of the most exten-

sively researched subjects in economics. As AI technologies enable labor productivity to

achieve a significant leap, its influence has been explored across various economic topics,

such as labor productivity, wage inequality, unemployment, innovation, energy consump-

tion, business risks, and economic growth (Qian et al., 2022).

Over the past few decades, the Chinese government has demonstrated a keen awareness

of the significance of AI technologies, building a strong base to sustain its AI economy

and contributing significantly to the global development landscape. According to Zhang

et al. (2022), China’s AI sector received nearly 20% of the global private investment in

2021, securing substantial funding for AI start-ups. In this context, the financial sector

has emerged as a prominent domain for AI adoption. This shift towards AI in finance is

evidenced by the increased online search interest indicated by Google Trends data, with

a noticeable spike around 2004 and 2005 (Cao, 2020). To facilitate the AI advancement

in the financial industry over the past decade, both the Chinese government and financial

enterprises have significantly increased their investments in research and development

(R&D) and AI-specific R&D funds (see Figure 1). However, the introduction of AI in

China’s financial industry occurred nearly three decades later than in developed countries,

with the official introduction of the concept of financial technology by the Central Bank of

China in 2017. As such, the application of AI in China’s financial market is at an initial

phase, warranting further research and exploration.

[Figure 1]

With the proliferation of AI applications in the financial industry, it is imperative to

1AI is defined as the capacity of a machine to replicate and display behaviors after thinking like humans
(Philippe et al., 2019). It covers the application of machine learning, deep learning, decision-making, and
other programming, thereby releasing humans from rudimentary jobs or routine physical labor. In the 1940s
and 1950s, AI was first discussed by John McCarthy and other academics at the Dartmouth Conference.
It experienced a boom in the 1970s, a shortage of funding between the mid-1970s and 1980s, and finally
thrived again in the 1980s.

2



recognize the advantages bestowed by AI and acknowledge potential risks and crises that

may arise from its widespread utilization. Previous research has extensively examined the

risks inherent in integrating AI into the financial industry, encompassing credit, political,

and security risks (Ellul and Yerramilli, 2013; Gu et al., 2019). Nevertheless, past empirical

literature has rarely investigated the correlation between AI and systemic risk in the

financial sector. Therefore, we explore the impact of AI technologies on financial systemic

risk (FSR)—which emerges from the interconnectedness of financial institutions and forms

the foundation of risk contagion (Acemoglu et al., 2012)—and its heterogeneity across

various financial sectors and economic environments.2

The rest of this paper is organized as follows. Section 2 outlines the literature ex-

amining the relationship between AI and FSR in the financial industry. Drawing upon

relevant theories between AI application and FSR, Section 3 illustrates the theoretical

foundation for this study. Section 4 presents the measurement methodology and data de-

scription. Section 5 reports the empirical model, benchmark regression, endogenous test,

and robustness analysis. Finally, Section 6 summarizes the key findings and offers policy

recommendations based on the study’s outcomes.

2 Literature Review

The literature on AI in finance can be broadly categorized into the following areas:

financial system mechanisms modeling, agency-based finance, wise investment, financial

market analysis and forecast, smart credit loan and risk management, and customer ser-

vices (Mizuta, 2022; Noonpakdee, 2020). AI streamlines financial services procedures by

implementing smart chatbots, financial intelligent terminal machines, Internet banking

systems, and credit rating technologies. These AI technologies facilitate customer reten-

tion, enhance operational efficiency, and improve risk management for financial institutions

(Qi and Xiao, 2018). Furthermore, AI has assumed an increasingly critical role in finan-

cial systems, reshaping the regulatory landscape and unveiling a range of possibilities to

2FSR is defined as a potential crisis that can bring about the total failure of the entire financial system
in regional, national, or even global markets. It is characterized by its contagious and non-diversifiable
nature, meaning that it cannot be eliminated or mitigated through individual actions or risk diversification
strategies (Kou et al., 2019).
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enhance the accessibility of financial services beyond our present capabilities (Giudici,

2018). The benefits of AI technologies include streamlining document review processes,

shortening data mining and processing times, optimizing department structures to reduce

operational costs and capital expenditures, and fostering collaboration among financial

institutions (Temelkov, 2018). Regarding risk management, Chaudhry et al. (2022) argue

that financial institutions integrating AI into their operations tend better to meet risk

management requirements and control related costs. This is supported by Giudici (2018),

who argues that AI can mitigate reputation and market violation risks, enhance fraud

detection performance, and contribute to asset protection and financial market stability.

The Chinese government has continuously placed special focus on FSR since the out-

break of the 2008 financial crisis. FSR is not solely attributed to external factors such

as war, natural disasters, and political or legal factors but is also significantly influenced

and amplified by the interconnectedness among financial institutions (Billio et al., 2012;

Zhang et al., 2021). Wang et al. (2014) conducted a comprehensive analysis utilizing the

Conditional Value at Risk (CoVaR) approach to examine key determinants of FSR and

the risk spillover of individual enterprises contributing to FSR in China. Their findings

reveal that banks—compared to other financial institutions—play a more significant role

in contributing to FSR. Furthermore, these institutions’ size and leverage ratio determine

the extent of buffer they can provide during crisis periods. Lan et al. (2020) assess the dy-

namics of FSR in China during the COVID-19 pandemic using a dynamic CoVaR model.

They found a significant increase in FSR during this period, with the securities industry

experiencing higher volatility in FSR than other sectors.

AI technologies have been effectively integrated into the financial system, aiding gov-

ernments and financial institutions in monitoring and preventing systemic crises. In China,

AI adoption in the financial industry has permeated into various sectors, such as on-

line payment services (e.g., Yu’e Bao and WeChat Pay), and has expanded microloan

accessibility to a broader population. Kou et al. (2019) utilize AI to analyze the out-

break and transmission mechanisms of FSR, simulate the effects of regulations on FSR

by creating visualized financial systems based on actual bank transaction data, and iden-

tify the key factors contributing to the formation of FSR. Petrone et al. (2022) propose
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a dynamic financial network incorporating AI technologies. Their framework facilitates

learning optimal bailout actions and clarifying the potential contagion effects of systemic

crises. Chaudhry et al. (2022) examine the connection between financial technology and

the volatility of FSR. They indicate that financial firms with technological characteris-

tics possess a strong buffer to FSR volatility and decrease the probability of experiencing

adverse events.

In contrast, several scholars have expressed concerns regarding the potential risks as-

sociated with the widespread application of AI (Erik Brynjolfsson, 2019; Philippe et al.,

2019). For instance, establishing digital monopolies by financial giants could potentially

exclude newly established firms. Consequently, this could increase complexity within the

global financial system and serve as an emerging causation for systemic risk (Fernández,

2019). Likewise, AI can lead to increased interconnections among companies, resulting

in a more intertwined and potentially unstable structure, thus contributing to the rise of

FSR. Implementing AI systems can give rise to risks such as data disclosure, system in-

stability, security breaches, and other emerging risks, which jeopardize economic stability

and amplify systemic risks within the financial industry (Azarenkova et al., 2018).

These studies remind us that introducing AI technologies transforms the overall in-

dustrial ecosystem, distinguishing it from other machine technologies that merely enhance

productivity. Consequently, the application of AI in the financial system is a subject of

controversy. On the one hand, by integrating with financial operations, AI surpasses hu-

man capabilities and assists in simplifying processes, reducing costs, and enhancing risk

control. On the other hand, it also poses vulnerabilities to the existing financial structure

and potential information leakage. To the best of our knowledge, AI technologies’ impact

on the financial system’s robustness remains uncertain because of the lack of research,

and discussions in the existing literature regarding the relationship between AI and FSR

primarily revolve around theoretical and literature analysis. Therefore, it is crucial to

commence the investigation of AI’s impact on FSR.
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3 Theoretical Framework

Our analytical framework is based on the two-sector model (Wagner, 2010), which has

three basic assumptions. First, the financial system comprises only two banks, initially

holding the same type of traditional financial assets.3 With the emergence of financial

innovation assets (e.g., AI products and financial AI systems), these institutions allocate

funds from traditional financial assets towards acquiring financial innovation assets or

maintaining the initial status without making any changes. The second assumption is

related to the default or bankruptcy behavior of institutions. The extreme tail event

that both financial institutions default or go bankrupt is the result of the joint action of

individual and systemic risk in pursuing profit maximization. Third, investors are rational

and risk-averse. Investors withdraw their funds immediately once the value of assets drops

below their invested capital.

Consider the status of two financial institutions before acquiring financial innovation

assets. They hold one unit of funds and invest all into identical traditional financial assets

with the value of x. x changes with the business conditions according to a distribution

function ϕ(·) and is subject to [0, p], where p refers to the total scale of funds. For this

unit of funds, a portion (d) is collected from depositors as debts, and the remaining

(1− d) from shareholders as capital. When x is less than d, financial institutions cannot

borrow funds from the depositors and announce bankruptcy or insolvency. Then, the

financial institution would be required to liquidate the asset. If two financial institutions

are insolvent together, FSR occurs. However, when only one financial company is insolvent,

the bankrupt financial institution’s asset could be sold to the solvent one, and a systemic

crisis is averted.

Now, we consider that each financial institution diversifies and invests in the activity

not previously engaged in. For instance, financial institutions invest in financial innova-

tion assets (y) with a proportion of wi (wi ∈ [0, 1]). wi = 0 means the bank’s asset is not

diversified, and wi = 1/2 refers to the asset equally distributed between traditional and

3The term “traditional financial assets” in this context is specifically used to distinguish it from financial
innovation assets. It encompasses equity, bonds, and other conventional financial instruments unrelated
to digital or AI technology-based assets.
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innovation assets (fully diversified). Specifically, w1 and w2 represent wi of financial in-

stitutions 1 and 2, respectively, and they are mutually independent and determined solely

by each financial firm. Then, the total asset values (vi) of financial institutions 1 and 2

are expressed as follows:

v1(x, y) = (1− w1)x+ w1y

v2(x, y) = (1− w2)x+ w2y

(1)

Based on Equation (1), we can calculate the boundary conditions required for each

financial institution to avoid bankruptcy. Recall that a financial institution encounters

bankruptcy once the value vi is lower than d.

v1(x, y) (1− w1)x+ w1y ≥ d

v2(x, y) = (1− w2)x+ w2y ≥ d

(2)

The minimum asset values yi that avoid insolvency are:

y1(x) =
d

w1
− 1− w1

w1
x1

y2(x) =
d

w2
− 1− w2

w2
x2

(3)

Therefore, financial institution 1 will announce bankruptcy once y < y1(x). Financial

institution 2 faces insolvency if y < y2(x). Figure 2 portrays the threshold values of assets

for two partially hedged financial institutions (0 ≤ wi ≤ 1).4

[Figure 2]

Taking financial institution 1 as an example, it fails when y < y1(x), as stated. The

individual risk of financial institution 1 (R1) can be expressed as:

R1 =

∫ x1(0)

0

(∫ y1(x)

0
ϕ(x)ϕ(y)dy

)
dx (4)

Similarly, the individual risk of financial institution 2 (R2) will be:

4This figure is plotted under the condition that w2 ≥ w1.
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R2 =

∫ x2(0)

0

(∫ y2(x)

0
ϕ(x)ϕ(y)dy

)
dx (5)

The insolvency of both financial institutions leads to systemic risk, and the expressions

for systemic risk (RS) are as follows:

RS =

∫ d

0

(∫ y2(x)

0
ϕ(x)ϕ(y)dy

)
dx+

∫ x1(0)

d

(∫ y1(x)

0
ϕ(x)ϕ(y)dy

)
dx (w2 ≥ w1)

RS =

∫ d

0

(∫ y1(x)

0
ϕ(x)ϕ(y)dy

)
dx+

∫ x2(0)

d

(∫ y2(x)

0
ϕ(x)ϕ(y)dy

)
dx (w2 ≤ w1)

(6)

Considering the minimum asset value, y1(x) is negative when x1(0) =
d

1−w1
, and ϕ(x)

and ϕ(y) follow the uniform distribution, that is, ϕ(x) = ϕ(y) = 1/p. Using Equation (6),

we obtain:

R1 =
d4

24p2w2
1(1− w1)2

R2 =
d4

24p2w2
2(1− w2)2

(7)

RS =
d4

24p2

[
1

w2
1 (1− w1)

2 − 1 + 3w2
1 − 2w1

w2
1

+
1 + 3w2

2 − 2w2

w2
2

]
(w2 ≥ w1)

RS =
d4

24p2

[
1

w2
2 (1− w2)

2 − 1 + 3w2
2 − 2w2

w2
2

+
1 + 3w2

1 − 2w1

w2
1

]
(w2 ≤ w1)

(8)

Equation (8) suggests that RS strongly correlates with the proportion of financial in-

novation assets and is positively related to the scale of funds from depositors and investors.

The impact of financial innovation, such as AI and machine learning, on systemic risk is

complex and cannot be simply classified as promoting or inhibiting effects. To further ob-

serve the relationship between FSR and AI across different stages, we use some parameter

values and draw the function of Equations (7) and (8).

Assuming that we have one unit of funds invested in different assets (p = 1) and the

proportion of the deposit is 0.2 (d = 0.2), the proportion of financial innovation assets
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(wi) ranges between 0.1 and 0.9.5 Figure 3 displays the individual risk of a single financial

institution, while Figure 4 depicts the relationship between w1, w2, and RS . According

to the numerical simulation, it is evident that diversifying funds and investing in new

types of assets (particularly financial technology and AI-related assets) effectively reduce

individual risk. Moreover, the risk is minimized when funds are fully diversified into two

parts (wi = 0.5). Regarding FSR, an increase in w1 and w2 initially reduces risk, but RS

increases once the proportion of financial innovation assets becomes sufficiently large. In

the figures, the maximum value of RS lies with the corresponding values of w1 = 0.10 and

w2 = 0.90, or w1 = 0.90 and w2 = 0.10. The minimum value of RS corresponds with

w1 = w2 = 0.50.

[Figure 3] & [Figure 4]

It should be emphasized that the figure of RS in the case of w1 = 0.10 and w2 = 0.90

is higher than that of w1 = 0.10 and w2 = 0.10. This implies that the risk associated with

two firms holding entirely different types of financial assets does not necessarily decline

compared to the scenario where both firms hold identical types of assets. This conclusion

aligns with the findings of Wagner (2010) and Liang et al. (2020), who argue that intensified

diversification is accompanied by higher systemic risk. The numerical simulation of the

two-sector model indicates that engaging in new types of businesses, such as investing in

innovative financial assets and AI systems, may introduce new risks to the financial system

and trigger the transmission of individual risks throughout the whole sector due to the

unfamiliarity with new types of business and incomplete regulations.

We can also see from Equations (7) and (8) that a higher value of p and a lower

value of d are associated with a decrease in both individual and systemic risks. Financial

institutions with larger total financial assets possess a greater capacity to withstand risks,

consequently contributing less to overall financial risk. In addition, institutions with a

higher proportion of current liabilities in their financial structure touch the bankruptcy

bottom threshold more easily ahead of other institutions, thereby triggering systemic

financial crises.
5We avoid expanding the range close to [0, 1] because as the values of wi approach 0 or 1, the value of

individual and financial systemic risk will become infinitely large, making it inconvenient for us to observe
changes.
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Wagner’s two-sector model and the theory of diversified investment are important

theories in finance concerning systematic risk and portfolio optimization. These models

and discussions on systemic risk and diversification apply to interbank scenarios and have

practical relevance for financial institutions beyond banks (Wagner, 2010). The securities

and insurance industries face market volatility and the complexity of various investment

tools, where risk diversification is crucial. Wagner’s model and diversified investment

theory can be used to determine the investment portfolio, minimizing systemic risk and

increasing returns. For both individual and institutional investors, the two-sector model

and implications of diversification on FSR more accurately consider the correlation and

risk between different asset classes, helping investors construct more balanced and effective

investment portfolios (Ibragimov et al., 2011; Wagner, 2011). Moreover, even non-financial

enterprises confront challenges in fund management and risk regulation. By introducing

Wagner’s theory into corporate financial decision-making, Dungey et al. (2022) found that

a company’s size, credit, and other aspects are closely related to the two dimensions of

FSR.

Another theoretical framework relevant to this study is the Circumventive Innovation

Theory (CIT), which has greatly influenced numerous researchers in the financial industry

(Kane, 1984). CIT suggests that one of the motivations for financial institutions to engage

in financial innovation is to circumvent regulation. When there are enough profit opportu-

nities outside of regulatory control, financial institutions promote innovation, thus bypass-

ing current regulatory restrictions and achieving greater benefits. Rapid AI advancement

has facilitated cost reduction and increased enterprise profit generation, enabling them to

operate with fewer rules and reporting obligations. Note that this progress has outpaced

the development of regulatory frameworks. Without updated legislation, the accumula-

tion of potential risks has intensified, amplifying systemic risk. For instance, introducing

AI-based automated credit review systems has lowered the loan acquisition criteria for

small and medium enterprises (SMEs) and individuals, expanding the lending business

and broadening firms’ client acquisition channels. Nevertheless, this development has also

heightened the risk of default among individuals. In another case, the algorithmic mecha-

nisms employed in the prevalent AI-driven investment services within the financial industry
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have raised concerns. These AI technologies often utilize similar or identical algorithms for

clients with varying risk tolerances. If errors exist within the underlying algorithms, they

can propagate a “domino effect” of risk contagion, triggering interconnected adverse con-

sequences and exacerbating systemic risk (Shah, 2014; Alexander, 2006). CIT applies to

both banking and non-banking sectors—supporting business innovation and expansion—

and offers valuable insights into product innovation, policy monitoring adjustments, and

overall firm performance (Funk and Hirschman, 2014; Kane, 2010). These theoretical

perspectives provide a comprehensive understanding of the risks associated with financial

institutions and their activities.

4 Methodology

4.1 A Measurement of AI

The financial AI index in China can be divided into three categories. First, the digital

inclusive financial index developed by Peking University is widely adopted by researchers

as the standard to reflect the development of financial technology in China (Sun and Tang,

2022). However, this index is compiled using user-level data from Alipay, China’s leading

digital payment platform. Most customers using this application are individual customers,

which may not represent financial institutions and other enterprises. Second, Pin and

Yue (2015) has constructed a financial AI index based on the statistics of news terms

recorded by Google or Baidu search engine on keywords, such as “artificial intelligence,”

“financial technology,” and “big data and machine learning”. The third approach involves

constructing the AI index with relatively objective indicators. Some researchers employ

metrics such as the number of industrial robots (Qian et al., 2022), the number of AI

patents (Yang, 2022), or the AI adoption rate gathered from corporate surveys as indicators

to portray the utilization of AI technologies across various industries and enterprises.6

Given the suitability of the data set to our research objectives, we follow the idea of

the third approach and utilize established indices and indicators to construct our financial

AI index for each financial institution. Specifically, we use the China Fintech Innovation

6Please see the work done by the International Business Machines Corporation
(IBM):https://www.ibm.com/watson/resources/ai-adoption.
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Index (CFII) developed by the China Center of Fintech Research (CCFR) at the Central

University of Finance and Economics as our firm-level AI index. The CFII serves as the

basis for measuring the financial innovation capability of individual financial enterprises.

The quantitative assessment of CFII in Chinese financial enterprises is primarily conducted

at four levels: the foundation of financial technology endowment, development of financial

technology business, awareness of financial technology, and its core capabilities. Among

the detailed indicators, the assessment of AI development encompasses the proportion of

enterprise investment in research and development or acquisition of AI-related products

and systems, number of different AI products, investment in virtual branches and online

business, quantity of AI-related patents, and feedback from the company’s managers on

AI products. A detailed scoring system is applied based on how much each financial

institution utilizes AI.

To capture the actual level of AI application and address any missing values, we supple-

ment the data set with additional indicators such as the number of R&D personnel within

financial institutions, new patent applications for financial products, and proportion of

R&D expenditure in total operating expenditure. By incorporating these innovation-

related financial indicators, we strengthen the data set and enhance its ability to reflect

the utilization of AI within financial enterprises. Moreover, this method enables us to

obtain firm-level data for the AI index, providing a micro perspective on AI adoption and

facilitating the exploration of interconnections between institutions for further analysis.

4.2 A Measurement of Financial Systemic Risk

This section presents the dynamic time-series CoVaR-Copula approach for calculating

FSR. The copula family consists of diverse types, broadly classified into elliptical copulas

(such as Gaussian and Student’s t) and Archimedean copulas (including Clayton, Gum-

bel, and SJC)(see Table 1). In the literature related to the financial market, elliptical

copulas are commonly utilized, while Archimedean copulas are more effective in capturing

asymmetric lower and upper tail dependence. The selection of the most suitable copula

model among various options is based on the Akaike information criterion (AIC), which

is widely used in previous studies (Zhang et al., 2021; Karimalis and Nomikos, 2018).
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[Table 1]

Here, the estimation of FSR is based on the calculation of ∆CoVaR, and the measure-

ment procedures are outlined as follows. First, we estimate the VaR7 for each financial

institution using time series data and marginal distribution models. Given the accuracy

of marginal distribution calculations and the characteristics of our data, we adopt the

AR(1)-GARCH(1,1) model8 to estimate the volatility of the financial asset portfolio and

the marginal distributions of each financial institution. This model choice strikes a balance

between estimation efficiency and accuracy. Follow the work of Glosten et al. (1993), we

estimate:

Rt = µ+∅Rt−1 + ξt

ξt = σt · zt

σ2
t = ω1 + α1ξ

2
t−1 + β1σ

2
t−1

(9)

R refers to the market return for financial institutions. µ,∅, ω1, α1, and β1 are the esti-

mated parameters, σ2
t is the conditional variance, and ξt ∼ i.i.d.N (0, 1). Moreover, we

consider Pr(Rt ≤ VaR) = α, where α represents the desired confidence level. This can be

further expressed as: Pr
(
zt ≤ VaR−µt

σt

)
= α. By solving this equation, the VaR value can

be obtained using the following equation.

VaRα,t = µt + σtz
−1
ν,η(α) (10)

where zν,η represents the skewed Student’s t distribution with ν and η as parameters. The

values of µt and σt represent each financial institution’s mean and standard deviation at

time t.

Second, we transfer the expression of CoVaR to coordinate with the copula function.

7Value at Risk (VaR) was extensively employed as a prevalent approach for identifying systemic risk in
previous studies. It calculates the potential monetary losses incurred within a specified confidence level.
This approach is improved by a more comprehensive measure, conditional Value at Risk (CoVaR)(Tobias
and Brunnermeier, 2016). By considering the conditional nature of risk, CoVaR provides insights into the
potential contagion effects and systemic vulnerabilities that can arise within the financial sector.

8Hansen and Lunde (2005) compared the performance of 330 ARCH models in describing conditional
variance and found that the AR(1)-GARCH(1,1) demonstrated superior performance compared to other
models in analyzing exchange rate volatility.
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The CoVaR method is implemented as follows. Considering Ri,t as the return for finan-

cial institution i at time t, and Rm,t as the return for the overall financial market, the

CoVaR can be defined as the β-quantile of the distribution of Rm,t based on the following

conditional probability:

Pr
(
Rm,t ≤ CoVaR

m|i
β,t | Ri,t ≤ VaRi

α,t

)
= β (11)

where α and β represent the confidence level, typically set by financial regulators at 1%

or 5%. Formulating Equation (11) as an unconditional bivariate distribution, we have:

Pr
(
Rm,t ≤ CoVaR

m|i
β,t | Ri,t ≤ VaRi

α,t

)
= αβ (12)

The third step involves incorporating the copula equation into the expression. Equation

(12) is rewritten in terms of the joint marginal distribution function of Rm,t and Ri,t as

follows:

CRm,t,Ri,t

(
CoVaR

m|i
β,t ,VaR

i
α,t

)
= αβ = c(u, v) (13)

where CRi,t and CRm,t represent the marginal densities of Ri,t and Rm,t, respectively.

The function c(u, v) denotes the copula function from the selected copula family and can

generally be expressed as c(u, v) = ∂2C(u,v)
∂u∂v .

Finally, we use the maximum likelihood method to solve for the parameters of the

marginal distributions and estimate ∆CoVaR.We incorporate the time-varying parameters

calculated previously into the copula functions at each time t. By solving the equation

u = CRm,t

(
CoVaR

m|i
β,t

)
, we can obtain the final estimation of FSR represented by the

∆CoVaR measure (Equation (14)):

∆CoVaR
m|i
β,t =

(
CoVaR

m|i
β,t −CoVaR

m|i,α=0.5
β,t

)
/CoVaR

m|i,α=0.5
β,t (14)

By combining the copula function with the dynamic CoVaR approach, the calculation

offers several notable advantages. First, the dynamic time-series CoVaR-Copula approach

surpasses the traditional CoVaR approach by considering the impact of risk spillover ef-

fects between institutions and incorporating the interference of residual terms from the
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GARCH model into the analysis. This approach’s integration of copula functions demon-

strates its superiority in capturing the independence and correlation between financial

institutions and systems. Second, incorporating copula functions offers greater flexibil-

ity in estimating marginal and dependence structures, mitigating potential specification

deviations during risk measurement calculations. Notably, the copula function effectively

addresses issues related to tail independence, symmetry, and asymmetric tail dependence,

which are associated with the CoVaR method. This flexibility enables a precise depiction of

the dependence structure. Third, the Copula-CoVaR approach surmounts the limitations

of connecting two non-normal distributions and describing the dependence structure solely

through linear correlation coefficients inherent in the traditional CoVaR approach. The

copula function provides a robust framework for capturing the complex dependence pat-

terns between variables, allowing for accurate systemic risk analysis. Lastly, the dynamic

nature of the time series CoVaR-Copula approach is particularly valuable in capturing the

evolving interconnections among financial institutions, especially during crisis scenarios.

The traditional static models may lead to deviations or even invalidity of the calculated

results in such dynamic situations. The dynamic time series CoVaR-Copula approach

yields more precise and reliable estimation results by accounting for changes over time.

We gathered monthly closing stock prices for 83 financial companies from the Shang-

hai Stock Exchanges, Shenzhen Stock Exchanges, and National Equities Exchange and

Quotations (NEEQ)9, along with the CSI 300 Index.10 The data set covers the period

from January 2017 to December 2020. Subsequently, we compute the returns for each

stock, wherein each company’s return is designated as Ri,t, and the return of the CSI 300

Index is denoted as the market return Rm,t. These values are subsequently employed in

the calculation of ∆CoVaR.

9National Equities Exchange and Quotations (NEEQ) is the third national securities trading venue
established with the approval of the Chinese government. It is primarily designed for companies with
relatively smaller market capitalization than those listed on the main board. Some high-quality stocks
listed on the NEEQ have gradually been transferred to the Beijing Stock Exchange.

10The CSI 300 Index is a constituent stock index compiled from 300 A-shares with large market capi-
talization and good liquidity selected from the Shanghai and Shenzhen stock markets. It is weighted by
market capitalization and effectively reflects the state and fluctuations of the Chinese stock market.
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4.3 Control Variables

Real Estate Climate Index (RECI) is derived from the national real estate industry,

with real estate development investment serving as the underlying benchmark. It offers

insights into the national real estate market and is a reference for development and invest-

ment decisions. RECI is crucial in influencing FSR from a macroeconomic standpoint

(Wu et al., 2021). We employ a monthly RECI to capture investor sentiments and provide

an outlook on the future economy.

Money Supply (M2) is an intermediate target for a country’s monetary policy. It

refers to currency in circulation and is regulated by governments and financial authorities

to manage inflation or deflation. A higher growth rate of M2 can increase inflationary

pressures, particularly during economic booms. Such inflationary pressures escalate sys-

temic risks within the financial industry (Xu et al., 2018). We use the monthly growth

rate of M2.

Consumer Price Index (CPI) is a key indicator of domestic inflation. A significant

increase in the CPI suggests the presence of inflation, which becomes an economically

destabilizing factor and contributes to the heightened systemic risk within the overall

market. Following the approach of Wu et al. (2021), we use the growth rate of the CPI in

the analysis.

Gross Domestic Product (GDP ) indicates a country’s economic performance and over-

all economic environment. A moderate increase in GDP signifies a stable and positive

economic growth trajectory. A more stable macroeconomic environment tends to mitigate

the likelihood of generating systemic risks (Chu et al., 2020). This study applies the GDP

growth rate as a control variable.

Scale of financial institutions (SIZE) is important in risk management (Shleifer and

Vishny, 2010). Large companies typically have more liquid assets and a more stable asset

structure to withstand external risks. In this study, the size of financial institutions is

represented by the logarithm of total assets.

Debt Ratio (DR) is the total debt ratio to total assets. It reflects the level of debt

repayment capacity of a bank. A lower debt ratio indicates that financial institutions
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allocate more reserves to mitigate and withstand the risks associated with bad debts, thus

enhancing their resilience against losses from non-performing loans. In other words, a

lower debt ratio is generally associated with lower levels of FSR.

Return on Assets (ROA) is a financial metric that measures a company’s profitabil-

ity by calculating the after-tax net profit relative to its total assets. Companies with

higher profitability often possess advantages in organizational structure, business decision-

making, and risk control. However, a financial institution with higher profits may also en-

gage in high-risk activities, potentially increasing systemic risks under adverse conditions.

Cash to Asset Ratio (CTA), obtained by dividing cash by current assets, measures

short-term solvency. A financial institution with a higher cash-to-asset ratio is better

equipped to respond to credit risks and potential crises. It has a stronger capacity to

withstand risk and is less likely to be affected by risk spillover from other financial insti-

tutions, thus reducing the possibility of systemic risk (Lee et al., 2020).

5 Empirical Results

5.1 Descriptive Statistics

We analyze the correlation between AI and FSR within the Chinese financial sector

from January 2018 to December 2020.11 Our data are sourced from the CSMAR database,

the China Statistical Yearbook, financial reports posted by listed companies on the stock

exchange website, the website of the National Bureau of Statistics of China, and the

Financial Technology Research Center of the Central University of Finance and Economics.

Any abnormal or extreme values are excluded by applying the winsorization technique at

the 1% and 99% quantiles to ensure data integrity. We gathered data from 83 financial

companies in China and expanded them into monthly data, comprising 2988 observations.

Table 2 presents the descriptive statistics of the data set. Following winsorization at the

11We focus on the period from 2018 to 2020 for two primary reasons. First, our access to data is limited
to the information provided by the China Financial Science and Technology Research Center at the Central
University of Finance and Economics and the China Stock Market and Accounting Research (CSMAR)
database. Our data analysis heavily relies on their published data sets, making it challenging to extend
the study to a longer period. Second, the field of financial technology in China had a late start—beginning
in the year 2017—compared to other developed countries. As a result, it is difficult for us to collect data
from earlier periods.
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1% and 99% levels, the average Variance Expansion Factor Value (VIF) for all variables

is less than 2, indicating no significant collinearity among the explanatory variables. The

average FSR value is 0.117, with a standard deviation of 0.048. The FSR values range

from 0 to 0.564, indicating substantial volatility in FSR during the sample period.

[Table 2]

5.2 Benchmark Regression Results

To explore the impact of AI on FSR, we construct the following panel data regression

model:

FSRit = α+ βAIit+γXit + εit (15)

where FSRit refers to the financial systemic risks (∆CoVaR) for each financial institution

i at time t. AIit represents the financial AI index, and α, β, and γ are coefficients. Xit

are control variables related to both macroeconomic and firm-level financial factors, and

εit is a random disturbance term.

Figure 5 illustrates the FSR of banks, securities companies, insurance companies, and

other financial institutions (e.g., Private Equity (PE) & Venture Capital (VC) firms, finan-

cial consulting firms, and financial information services companies). Notably, the banking

industry’s FSR experienced a decline, whereas securities companies, insurance companies,

and other financial institutions witnessed a slight increase. Furthermore, the figure high-

lights that, in general, the FSR in the insurance and banking industries is lower than in

securities and other financial companies. The yellow and red lines exhibit more pronounced

fluctuations, indicating that securities companies and PE/VC firms are more susceptible

to external impacts and crises, leading to more volatile changes in FSR. Additionally, ab-

normal fluctuations in the overall FSR can be observed from early 2019, attributable to

the sustained impact of the stock market crash in April 2015. Another significant swing

occurred in January 2020 due to the outbreak of the COVID-19 pandemic.

[Figure 5]

Table 3 presents estimation results from the fixed effects regression models, and Fig-
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ures 6 and 7 depict the relationship between FSR and AI. The results indicate that AI

technologies play a significant role in restraining the growth of FSR, as evidenced by pass-

ing the significance test at the 1% level. Specifically, for every 1% increase in AI, FSR in

China decreases by 5.6%. Models (2) and (3) are additional individual fixed effects mod-

els, but the sample has been divided into two periods: the crisis and non-crisis periods.

The Chinese financial market experienced significant turbulence starting in March 2019,

mainly due to the lingering impact of the severe stock crash in 2015 along with other major

events.12 Regression results from both periods reveal that AI continues to significantly

suppress the growth of FSR, indicating its enduring impact on systemic risk reduction.

[Figure 6], [Figure 7] & [Table 3]

There may be several reasons accounting for this phenomenon. First, AI improves

efficiency by automating tasks and reducing errors, allowing employees to focus on more

valuable work. Second, AI enables intelligent monitoring, helping financial institutions

detect and prevent risks such as expired loans, suspicious transactions, and cyber threats.

The results also indicate that the impact of explanatory variables on FSR is different

during the crisis and non-crisis periods. The variables related to the company’s liquidity—

such as the ROA and the cash-to-asset ratio—are significant at the 1% and 5% levels,

respectively, during the non-crisis period but become insignificant during the crisis period.

This indicates that financial institutions in China can manage the proportion of profits

and cash to total assets and keep them relatively stable even though their total assets

fluctuate with market systemic risks.

Models (4) and (5) examine the impact of AI on FSR in different types of institu-

tions. The results consistently show that implementing AI reduces systemic risk across

various financial sectors. Notably, the RECI affects systemic risk only in the non-banking

industry, while banks’ debt ratio is more closely related to systemic risk than in other

financial companies. The different business scopes and priorities of these institutions can

explain this. Banks benefit from machine learning technology for precise deposit-taking

12On March 21, 2019, Beijing Bank’s announcement of establishing a foreign-owned joint-venture bank
with ING Bank N.V., one of the largest banks in Holland, attracted widespread attention from financial
practitioners and had a considerable impact on the stock market at that time. The intense fluctuations in
the Chinese stock market subsided around March 2020.
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and credit risk management, while securities and investment companies focus on build-

ing investment trend models and providing intelligent investment advisory services using

knowledge graphs. Additionally, non-bank companies are more involved in real estate

projects, leading to a stronger connection between RECI and systemic risk in this sector.

5.3 Robustness Tests

To address the potential endogeneity issues caused by interdependent economic vari-

ables, omitted variables, and sample selection bias, this study uses Two-Stage Least

Squares (2SLS) regression and system generalized method of moments (GMM). System

GMM is a widely used econometric estimation method in panel data analysis. This method

extends the standard GMM by incorporating both the levels and first differences of the

variables in the model simultaneously, effectively addressing the endogeneity issue. Fur-

thermore, System GMM utilizes lagged dependent variables as instruments, enhancing the

identification of model parameters and yielding more efficient estimation. Incorporating

these features provides a robust framework for estimating panel data models and helps

mitigate endogeneity concerns.

For the method of 2SLS, the regression models are as follows:

AIit = α1 + β1IVit + γ1Xit + εit (16)

FSRit = α2 + β2ÂIit + γ2Xit + µit (17)

where AIit represents the AI index, and ÂIit denotes the fitted value. The remaining sym-

bols have the same definitions as mentioned earlier. The relationship between FSR and

AI adoption has received limited attention in previous research, resulting in a scarcity of

effective instrumental variables for reference. We choose the ratio of research expenditures

to total expenses within financial institutions as the instrument variable. Financial insti-

tutions in China currently acquire AI systems through foreign purchases or by developing

them internally with the help of in-house technicians. The expenses allocated to support

AI development are classified as “research expenditure” in the financial statements. A

higher proportion of research expenditure indicates a greater likelihood of AI development
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within the financial institution. The allocation of research funds for technology develop-

ment and system construction is determined by management’s decision-making, which can

be considered an exogenous factor with no direct relationship to FSR. Therefore, we assert

that the ratio of research expenditures to total expenses qualifies as a suitable instrumental

variable for this study.

Table 3 shows the 2SLS regression results in the columns of Models (6) and (7). We

can see from the results that the impact of AI on FSR is still significant even though

the endogenous problems have been eliminated. Model (6) shows that the higher the

proportion of research expenditure, the higher the AI adoption rate will be for financial

institutions. Furthermore, following Andrews et al. (2019), we conduct several tests on

instrumental variables. The results indicate that IV has passed the robustness test for

weak instruments, reflecting that our selection for IV is effective.

The results under System GMM are presented in Models (8) and (9). Model (8)

displays the estimated results of System GMM without incorporating control variables.

Model (9) presents the results of System GMM with control variables. The coefficients

of AI in both models remain negative and significant, indicating that AI technologies

effectively reduce FSR. The results are consistent with the findings of the benchmark

regression. Several tests are conducted to assess the validity of IVs. The autocorrelation

of the disturbance term is examined using AR(1) and AR(2) statistics, while the exogeneity

of the IVs is assessed using the Hansen test. The P-value of the AR(1) and AR(2) indicates

the presence of first-order autocorrelation and the absence of second-order autocorrelation.

Meanwhile, the P-value of the Hansen test is greater than 0.1, suggesting the effectiveness

of the IVs applied in System GMM.

We also implement the robustness test by replacing the measurement method of the

dependent variable and core explanatory variable while controlling for the interference of

crisis periods. For the indicator of FSR, Festic et al. (2011) adopt the Non-performing

Loan (NPL) rate13 to reflect the contribution of financial institutions in systemic risk.

However, Li et al. (2020) choose the Z-score value14 as the indicator of potential risk.

13The NPL rate is calculated as the non-performing loans to total gross loans.
14For the calculation of the Z-score, we follow Altman et al. (1994), and the expression is Z = 1.2X1 +

1.4X2 + 3.3X3 + 0.6X4 + 0.999X5, where X1=working capital/total assets, X2=retained earnings/total
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Therefore, financial institutions’ Z-value and NPL ratio are selected as substitute variables

for FSR. Moreover, we introduce an alternative core explanatory variable: the number of

AI systems adopted by the listed financial institutions. This variable, denoted as AI2,

encompasses various forms of AI systems’ generation, including outsourcing, independent

research and development, and collaborative development. The results for the robustness

test are shown in Table 4. Models (10) and (11) replace FSR with Z-score and NPL

ratio, respectively, while Model (12) changes the AI index to the number of AI systems

adopted by each company. Even though the core explanatory variables impact systemic

risk in varying degrees after replacing the variables, their impact on FSR remains the

same. Therefore, we confirm our models’ robustness and AI’s significant role in FSR.

[Table 4]

5.4 Heterogeneity Analysis

We add the interaction terms of size and AI (AI × SIZE), dummy variables of the

special period and AI (AI×Crisisperiod, where crisis periods equal one, otherwise zero),

and dummy variables of business nature and AI (AI× industry) to explore the mediating

effect of the scale, particular market environment and business nature on the role of AI in

FSR. All the results are presented in Table 4.

Model (13) demonstrates the statistically significant impact of the interaction term

AI × SIZE at the 1% significance level, suggesting that the influence of AI on systemic

risk varies depending on the size of financial institutions. Specifically, larger financial

institutions exhibit a stronger relationship between AI adoption and the reduction of FSR.

This can be ascribed to larger institutions often having greater systemic importance and

engaging in higher-risk activities. They are more susceptible to liquidity issues and market

failures during crises, leading to higher systemic risk levels. These larger institutions can

effectively mitigate systemic risk and enhance stability by adopting AI systems. This

result is consistent with Gennaioli et al. (2013) and Wu et al. (2021).

assets, X3=earnings before interest and tax/total assets, X4=market value of equity/book value of total
debt, and X5=revenue/total assets. When the Z-value exceeds 2.9, the enterprise is considered safe with
a low risk of bankruptcy; otherwise, it indicates a high credit risk and instability.
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Model (14) examines the effect of AI on FSR in different economic conditions. The

positive coefficient of AI × Crisisperiod suggests that the role of AI in influencing FSR

becomes more pronounced during unfavorable market conditions. This finding implies

that higher AI adoption rates may limit the flexibility of companies’ business operations

during crises, thereby exacerbating their contribution to FSR within financial institutions.

Model (15) reveals the role of business nature on the relationship between AI and FSR.

The coefficient is at the highest significance level for banks and insurance companies,

suggesting that the impact of AI adoption on mitigating FSR is more pronounced in the

banking and insurance industries compared to other types of financial institutions. As

for securities companies, the effect of AI in suppressing FSR is not stronger than in other

financial service companies.

5.5 Mechanism Test

The rapid development of AI has influenced workforce composition and organizational

structure inside the firm. With increasing demands on new technology for human capital,

AI as an advanced technology is positively associated with productivity and employment

(Yang, 2022). Adopting robots in industries has improved labor and total factor pro-

ductivity while reducing job opportunities for low-skilled workers (Graetz and Michaels,

2018). Wang et al. (2021) examine the impact of skill-biased technological change on

employment and wages in 33 industries in China. The results indicate that technological

advancements, such as AI and machine learning, have a significant positive effect on the

wages and employment in positions that require mastery of core technologies and minimal

labor but no perceptible impact on the wages and employment of workers with moderate

technical skills who are not at the cutting edge. Ballestar et al. (2020) also find links

between applying digital techniques, productivity, and employment rates.

In the relationship between human capital and FSR, Schneider et al. (2023) point out

that the demand for highly skilled talent in the banking industry is typically associated

with lower systemic risk and profitability. Marek et al. (2020) study the effects of the

COVID-19 pandemic on human capital and indicate that the pandemic has led to the

optimization of workloads and the simplification of non-essential processes, which has fur-
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ther promoted financial inclusion and resulted in increased FSR. For instance, during the

COVID-19 outbreak, banks’ capacity to provide cash withdrawals was limited, and more

employees were distributed to support online services. This change in the employment

structure, the widespread use of financial AI and digital products, and the demand for

capital inflow have led banks to accept customers with poor credit ratings. As a result,

systemic risks increased under this series of mechanisms.

As the transformed employment structure is closely related to the risks in society as a

whole and considering the effect of labor substitution brought by the massive application

of the financial AI system, whether human capital can be treated as a mediator between

AI and FSR will be explored in this section. Accordingly, we propose the hypothesis:

AI depresses the increase of financial systemic risk by enhancing the human capital of

financial institutions.

We explore the existence of the mediation effect by conducting the Sobel-Goodman

Mediation Test to verify the results (Table 5). Models (16) and (17) present the regres-

sion analyses between FSR and AI and human capital and AI, respectively. Model (18)

demonstrates the mechanism tests that utilize EDU as the mediator. The mediation test

shows a high significance level, indicating that AI technologies reduce FSR by raising the

average education level of financial institution employees. Furthermore, the coefficients for

LnAI and EDU are statistically significant, suggesting no complete mediation of human

capital in the relationship between AI and FSR. In other words, even after controlling for

the mediating variable’s influence, AI’s direct effect on FSR still persists, confirming our

hypothesis.

[Table 5]

This finding aligns with the conclusions drawn by previous studies (Wang et al., 2021;

Innocenti and Golin, 2022). These studies posit that the advent of AI technologies serves as

an impetus for individuals to seek higher education, leading to an increase in the proportion

of high-skilled labor; this shift in labor market composition is positively associated with

a reduction in systemic risk. In contrast to Qian et al. (2022), which primarily focuses

on the mediating effect of AI on green economic growth, we innovatively establish a link
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between AI and systemic risk through the mediating effect of human capital. By examining

this mediating relationship, the present research contributes to the existing literature and

extends our understanding of the implications of AI in the context of systemic risk.

6 Conclusions

We investigate the impact of AI on systemic risk in the financial industry, and this

paper contributes practical significance to the current literature and offers a unique review

of the adoption of AI technologies. While previous studies have predominantly focused

on the impact and application of AI on productivity, firm performance, and employment

structure, we provide a novel review of the non-diversifiable risk associated with widespread

AI adoption to fill this knowledge gap. Meanwhile, recognizing that past studies were

primarily conducted based on theoretical derivation, industrial surveys, and case studies,

we support the previous studies with an empirical analysis based on a firm-level AI index,

offering a comprehensive and quantitative understanding of the relationship between AI

and FSR.

The results reveal several important findings. First, the systemic risk in China’s bank-

ing and insurance sectors is lower than in securities and other financial companies. More-

over, FSR decreases in the bank sector while increasing in securities, insurance, and other

financial institutions. The analysis also indicates extreme events significantly elevate FSR

during the corresponding period. This highlights that FSR tends to increase under such

extreme circumstances while exhibiting relatively lower fluctuations in more stable eco-

nomic environments. Second, we show that adopting AI technologies and systems in the

financial industry helps mitigate the escalation of FSR. The robustness tests conducted

further confirm the validity and reliability of this result. However, when considering the

influence of AI on FSR across different financial sectors, the results show distinct patterns.

More specifically, the application of AI in the banking and insurance industries exhibits

greater effectiveness in reducing FSR compared to other types of financial institutions.

Conversely, the impact of AI on FSR in the securities industry does not appear to be

stronger than in PE/VC and other financial agent companies. Third, using the mediating
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effect model, this study concludes that AI can reduce FSR by improving the human capital

of financial firms. However, even after controlling for the mediating variable’s influence,

AI’s direct effect on FSR persists.

Despite the initial findings indicating that the current utilization of AI technologies in

China’s financial industry effectively helps decrease systemic risk, it is crucial to exercise

caution due to the relatively low development and adoption of AI systems and related

products. The two-sector model employed in this study is a reminder that the excessive

introduction of financial AI in the future may still pose the potential chance of increasing

FSR. This highlights the demand for a balanced approach in integrating AI technology to

maximize benefits while minimizing potential adverse effects on systemic stability. Further

research and monitoring are necessary to assess the long-term implications of widespread

AI implementation and its impact on the entire financial industry.
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Figure 1: AI related R&D expenditure of financial institutions and government

Note: The data are obtained from CSMAR database (https://cn.gtadata.com/).

Figure 2: Financial innovation and default or bankruptcy of financial institutions
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Figure 3: Individual risk of financial institution

Figure 4: Systemic risk of financial system
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Figure 5: Systemic risk of the financial industry in China (2018-2020)

Figure 6: Systemic risk of the financial industry and AI in China (2018-2020)
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Figure 7: FSR and AI under Crisis and non-Crisis period in China (2018-2020)

Note: We adopt return on assets (ROA) as a weight to create this figure. Each bubble’s size corresponds

to the companies’ profitability, with larger bubbles representing higher profit rates. We can see from the

figure that a negative relationship exists between AI and FSR during both periods.
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Table 2: Descriptive statistics

Variable Obs Mean P50 S.D Min Max Skewness Kurtosis Vif

FSR 2988 0.117 0.116 0.048 -0.218 0.346 0.363 4.219 —
AI 2988 81.44 80.58 6.920 58.39 100.0 0.092 3.224 1.48
RECI 2988 100.9 101.1 1.049 97.44 102.0 -1.468 5.081 1.85
M2 2988 0.682 0.653 0.724 -0.664 2.467 0.371 2.821 1.09
CPI 2988 0.002 0.001 0.036 -0.136 0.165 0.960 17.31 1.04
GDP 2988 0.057 0.063 0.013 0.023 0.069 -0.012 3.159 1.50
SIZE 2988 26.15 25.82 2.354 20.62 31.14 0.087 2.620 4.46
DR 2988 0.753 0.777 0.196 0.014 0.943 -1.675 5.734 3.48
ROA 2988 0.010 0.007 0.016 0.044 0.241 6.982 7.992 1.33
CTA 2988 0.151 0.125 0.114 0.010 0.609 0.623 2.787 1.29
time 2988 18.50 18.50 10.39 1 36 0 1.798 —
id 2988 42.69 43 24.34 1 83 -0.0200 1.794 —

Note: FSR refers to the financial systemic risk; AI is the artificial intelligence; RECI represents the
Real State Climate Index; M2 is the money supply; CPI is the growth rate of the Consumer Price Index;
GDP represents the growth rate of GDP; SIZE is the logarithm of total asset; DR refers to the debt
ratio; ROA and CTA represent the return on asset and cash to asset ratio respectively.
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Table 5: Mechanism test

Model(16) Model(17) Model(18)

VARIABLES FSR EDU FSR
LnAI -4.672*** 2.039*** -4.635***

(0.114) (0.045) (0.168)
EDU 0.185***

(0.051)
cons 21.710*** -6.517*** 20.387***

(0.499) (0.196) (0.659)
CountryFE Yes Yes Yes
YearFE Yes Yes Yes
Sobel-Goodman Mediation Tests 0.640***

(0.340)
Observations 2988.00 2760.00 2760.00
R-squared 0.2322 0.4425 0.8578

Notes: (1)Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1; (2) LnAI refers the logarithm of AI
index; (3) EDU is the human capital of a financial institution, represented by the per-capita education level of the
total employees in each firm; (4) Sobel-Goodman Mediation Test is developed to test the mediating effect among
variables. The P-value of the Sobel test is smaller than 0.01, indicating human capital is an effective mediator; (5)
There are only 2760 observations available for Model (17) and Model (18) due to missing variables in the human
capital data. As a result, the data set was reduced in size for these two models.
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