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Abstract

This paper examines the nonparametric identifiability of production functions, con-

sidering firm heterogeneity beyond Hicks-neutral technology terms. We propose a finite

mixture model to account for unobserved heterogeneity in production technology and

productivity growth processes. Our analysis demonstrates that the production func-

tion for each latent type can be nonparametrically identified using four periods of

panel data, relying on assumptions similar to those employed in existing literature on

production function and panel data identification. By analyzing Japanese plant-level

panel data, we uncover significant disparities in estimated input elasticities and pro-

ductivity growth processes among latent types within narrowly defined industries. We

further show that neglecting unobserved heterogeneity in input elasticities may lead to

substantial and systematic bias in the estimation of productivity growth.
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1 Introduction

Estimating a firm’s production function and productivity is a critical topic in empirical

economics.1 Despite its importance, the standard production function estimation procedures

impose an implausible assumption that production functions are common across firms except

for separable Hicks-neutral productivity terms (Olley and Pakes, 1996; Levinsohn and Petrin,

2003; Wooldridge, 2009; Ackerberg et al., 2015; Gandhi et al., 2020). In the presence of

identification issues due to the simultaneity problem (Marschak and Andrews, 1944), the

literature on identifying production functions that incorporate unobserved heterogeneity

beyond the Hicks-neutral productivity term is scarce but a rapidly growing research area

(Li and Sasaki, 2017; Doraszelski and Jaumandreu, 2018; Balat et al., 2019; Zhang, 2019;

Demirer, 2020; Chen et al., 2021; Raval, 2023).

This paper establishes the nonparametric identification of production functions from

panel data when production functions and productivity growth processes are heterogeneous

across firms in unobserved time-varying ways. We consider a finite mixture specification in

which there are J distinct time-varying production technologies, and each firm belongs to

one of the J latent types. Econometricians do not observe the latent type of firms. Without

making any functional form assumption on production technology and productivity growth

processes, we establish nonparametric identification of J distinct production functions, pro-

ductivity processes, and a population proportion of each type under assumptions similar to

those used in the existing production function and panel data identification literature. We

also address potential measurement errors in labor inputs because of unobserved working

hours and labor quality.

Building on our nonparametric identification result and considering computational ease,

we propose an estimation procedure for the production function with random coefficients.

Under the assumption of Gaussian error terms, we develop a penalized maximum likelihood

estimator for a finite mixture model of random coefficient production functions, where the

form of the likelihood function is motivated by our identification argument. The EM algo-

rithm is employed to simplify the computational complexity of maximizing the log-likelihood

function of the mixture model.

As an empirical application, we investigate the extent of production technology hetero-

1Understanding how the input is related to the output is a fundamental issue in empirical industrial
organization (see, for example, Ackerberg et al., 2007) while a measure of total factor productivity is necessary
to examine the effect of trade policy on productivity and to analyze the role of resource allocation on
aggregate productivity (e.g., Pavcnik, 2002; Kasahara and Rodrigue, 2008; Kasahara and Lapham, 2013;
Hsieh and Klenow, 2009). Production function estimation is also important for markup estimation (Hall,
1988; De Loecker and Warzynski, 2012; Raval, 2023).
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geneity across plants using panel data from Japanese manufacturing plants between 1986

and 2010. We show that the ratios of intermediate cost to sales and intermediate cost to

variable cost—averaging from 1986 to 2010 at the plant level—are substantially different

across plants within narrowly defined industries. For example, the 90th-10th percentile dif-

ferences in the intermediate cost shares in variable costs for concrete products and electric

audio equipment are large, at 0.27 and 0.67, respectively.2 Differences in input levels can-

not explain these heterogeneities; that is, a considerable cross-plant variation in the ratio of

intermediate cost to sales or variable costs remains after controlling for observable inputs,

presenting evidence for persistent and substantial heterogeneity in production technologies

across plants.

By employing a finite mixture of random coefficients production functions, we also find

substantial differences in estimated input elasticities across latent types within narrowly

defined industries. To understand the consequences of neglecting unobserved heterogene-

ity in input elasticities on productivity growth measurement, we adopt a specification with

unobserved heterogeneity as the true model and calculate the bias in productivity growth

measurement when using a misspecified production function model that omits unobserved

heterogeneity. Our findings indicate that ignoring unobserved heterogeneity in input elastic-

ities can result in substantial and systematic bias in estimated productivity growth, contin-

gent on the heterogeneous parameter estimates and the direction of productivity changes.

Additionally, our analysis reveals a significantly stronger correlation between estimated pro-

ductivity and investment among high capital-intensive latent type firms compared to low

capital-intensive type firms, implying that unobserved disparities in input elasticities are

vital in plant-level investment decisions.

As first discussed by Marschak and Andrews (1944), ordinary least squares estimation of

production functions is subject to simultaneity bias when firms make input decisions based

on their productivity level (Griliches and Mairesse, 1998). To address the simultaneity

issue, Olley and Pakes (1996) and Levinsohn and Petrin (2003) develop control function

approaches, which have been widely applied in empirical studies (see also Wooldridge, 2009;

Ackerberg et al., 2015). Despite their popularity, the control function approach has faced

potential identification issues as highlighted in the literature. Bond and Sderbom (2005)

and Ackerberg et al. (2015) discuss identification issues due to collinearity under two flexible

inputs (i.e., material and labor) in Cobb-Douglas specification. Furthermore, Gandhi et al.

(2020, hereafter GNR) contend that if the firm’s decision follows a Markovian strategy,

the moment restriction utilized in the control function approach fails to provide sufficient

2Zhang (2019) finds considerable heterogeneity in the labor share in sales across firms in the Chinese steel
industry.
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restriction to identify flexible input elasticities due to a lack of instrumental power.

GNR exploit the first-order condition for flexible input under profit maximization and

establish the identification of production functions without making any functional form as-

sumptions. However, their result presumes that production technology is identical across

plants, except for the Hicks-neutral productivity term. This paper extends the nonparamet-

ric identification approach of GNR to accommodate settings where production technologies

exhibit unobserved heterogeneity across plants.

Several papers employ the first-order condition as a restriction to identify heterogenous

elasticities of flexible inputs under functional form assumptions (Van Biesebroeck, 2003; Li

and Sasaki, 2017; Doraszelski and Jaumandreu, 2018; Balat et al., 2019; Zhang, 2019).3 Do-

raszelski and Jaumandreu (2018) develop a framework to identify plant-level time-varying

labor-augmenting productivity in addition to Hicks-neutral productivity under the constant

elasticity of substitution (CES) production function, allowing for two-dimensional hetero-

geneity. Zhang (2019) proposes an estimation method based on the CES production function

that accounts for heterogeneity in capital, labor, and material-augmenting efficiency across

firms. Li and Sasaki (2017) use the flexible input cost ratio to construct a control variable

for latent technology to identify flexible inputs’ elasticities while imposing the timing as-

sumption suggested by Ackerberg et al. (2015) to identify the labor and capital coefficients

under the Cobb-Douglas specification. Balat et al. (2019) also consider the Cobb-Douglas

production function with heterogeneity in the efficiency of using skilled and unskilled labor.

Demirer (2020) extends the framework of Doraszelski and Jaumandreu (2018) by relaxing

the parametric assumption of the CES production function but assumes that the labor-

augmenting technology is the only additional source of individual-level heterogeneity other

than the Hicks neutral productivity. Raval (2023) demonstrates the importance of accom-

modating non-neutral productivity differences across firms when estimating markups using

flexible inputs. Dewitte et al. (2022) illustrate the significance of accounting for unobserved

heterogeneity in productivity growth processes when analyzing export premia and the con-

tributions of exporting firms to aggregate productivity.

These papers identify firm-specific input elasticities, factor-augmenting technologies, or

productivity growth processes but impose parametric assumptions or limit the sources of

heterogeneity. Our paper complements these studies by establishing nonparametric iden-

tification of heterogenous production functions and productivity growth processes without

imposing any functional form assumptions or limiting sources of unobserved heterogeneity.

Cheng et al. (2021) extend the k-means clustering approach of Bonhomme and Manresa

3As Solow (1957) first illustrates, the flexible input elasticities are identified with their input revenue
share under the Cobb-Douglas production functions.
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(2015) to multi-dimensional clustering in random coefficient production functions in a non-

linear GMM framework, building upon the dynamic panel approach (Arellano and Bond,

1991; Blundell and Bond, 1998, 2000). Cheng et al. (2021) consider an asymptotic setting

when the time dimension T → ∞ while our identification is based on T being fixed. Our

identification result with fixed T is useful in empirical applications where firm-level panel

datasets have limited time dimensions.

Our paper also contributes to the literature on identifying dynamic panel data models

with unobserved heterogeneity by relaxing the existing identification conditions. Specifically,

Proposition 3 demonstrates that the mixing probabilities and the type-specific time-varying

probability distributions across latent types can be identified from panel data with four

periods under the Markov assumption and other regularity conditions. This result improves

upon the findings of Kasahara and Shimotsu (2009), who established the identification of

dynamic panel data models under the Markov assumption but imposed the stationarity and

required panel data with six periods.4 Hu and Shum (2012) consider a non-stationary case

and establish the identification of a continuous mixture dynamic panel data model using a

panel dataset with five time periods. However, their result is limited, as they only establish

the identification of type-specific distributions for the third to fifth periods, leaving the

identification for the first two periods unresolved. In contrast, we identify the type-specific

distributions across all four periods from panel data of length four.

A key condition for our identification analysis is that the observed variable must follow a

first-order Markov process within the subpopulation specified by latent type. Proposition 2

demonstrates that this Markov assumption is satisfied under our structural model assump-

tions, including the Markovian investment strategy (Assumption 3(b)) and the monotonicity

of flexible input demands for productivity and wage shocks (Assumption 4(b)), both of which

are standard assumptions in the production function literature (e.g., Olley and Pakes, 1996;

Levinsohn and Petrin, 2003). Another identifying condition is a rank condition in Assump-

tion 7 which requires that the changes in the value of the observed vector, zt, must induce

sufficiently different changes in the value of the type specific conditional density function of

zt given the past value zt−1 across latent types. As illustrated in the Cobb-Douglas example

in Appendix B.1, this condition is satisfied when input elasticities are sufficiently different

across latent types.

The remainder of this paper is organized as follows. Section 2 presents evidence of het-

4Higgins and Jochmans (2021) point out that the type-specific distribution is identified only up to an
arbitrary ordering of the latent types that differs across different points in Kasahara and Shimotsu (2009).
Our argument for identifying a common order of the latent types is based on that of Higgins and Jochmans
(2021).
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erogeneity in production technologies across plants, using panel data from Japanese man-

ufacturing plants. Section 3 introduces the setup for our production function models and

discusses the assumptions. Section 4 provides the main identification results, while Section

5 develops an estimator for the production function using a finite mixture model. In Sec-

tion 6, we present empirical results based on the Japanese manufacturing plants. Section 7

concludes the paper.

2 Evidence for production technology heterogeneity

In order to underscore the significance of accounting for unobserved heterogeneity in pro-

duction functions, we first present a set of stylized facts that clearly indicate the presence

of heterogeneity beyond Hicks-neutral technology components in production functions. Our

analysis employs panel data derived from Japanese manufacturing facilities, spanning the

years 1986 to 2010. A comprehensive discussion of the dataset can be found in Section 6.1.

For illustration, consider a plant with the Cobb-Douglas production technology:

log Yit = β0 + βim logMit + βi` logLit + βik logKit + ωit,

where Yit, Mit, Lit, and Kit denote the output, intermediate input, labor, and capital of plant

i in year t, respectively, while ωit represents the total factor productivity (TFP) that follows

a first-order Markov process. The superscript i in βim, βi`, and βik signifies the variation in

output elasticities of inputs across different plants.

We assume that firms consider their output and input prices as given, and that the inter-

mediate input and labor are flexibly selected after ωit has been fully observed. Consequently,

a plant’s profit maximization implies the following relationships:

βim =
PM,tMit

PY,tYit
and

βim
βim + βi`

=
PM,tMit

PM,tMit +WtLit
, (1)

where PY,t, PM,t, and Wt represent the prices of output, intermediate input, and labor,

respectively.

In most existing empirical studies, production functions are estimated under the assump-

tion that the coefficients βim, βi`, and βik do not vary across plants. This assumption can be

tested in light of (1) by examining whether the intermediate input share,
PM,tMit

PY,tYit
, and the

ratio of intermediate cost to variable cost (i.e., the sum of intermediate and labor costs),
PM,tMit

PM,tMit+WtLit
, remain constant across plants. To investigate this, we calculate the plant-level

averages over the maximum 25-year period, during which a plant remained in the market
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between 1986 and 2010, as follows:

(
PM,tMit

PY,tYit

)
i

=
1

25

2010∑
t=1986

PM,tMit

PY,tYit
and

(
PM,tMit

PM,tMit +WtLit

)
i

=
1

25

2010∑
t=1986

PM,tMit

PM,tMit +WtLit
.

Subsequently, we analyze the extent of variation across plants within a narrowly defined

industry.

Figure 1a and Figure 1b display histograms illustrating plant-level averages of interme-

diate input shares,
(
PM,tMit

PY,tYit

)
i
, for all plants within the concrete products and electric audio

equipment industries, respectively. Both figures exhibit substantial variation in intermediate

shares. The disparity between the 90th and 10th percentiles reaches up to 0.28 for concrete

products, an industry typically regarded as having homogeneous technology.

The variation in intermediate shares between plants might be indicative of differences in

markups; however, the ratio of intermediate costs to total variable costs is less susceptible to

markup discrepancies. Figures 2a and 2b depict histograms of plant-level averages of the ratio

of intermediate costs to total variable costs,
(

PM,tMit

PM,tMit+WtLit

)
i
, for the concrete products and

electric audio equipment industries, respectively. The significant variation in intermediate

cost shares implies that heterogeneous markups are not the primary explanation for the

observed variation in intermediate input shares presented in Figures 1a and 1b.

By comparing the degree of dispersion in input shares within the 2-digit industry clas-

sification with that within the 3-digit or 4-digit industry classification, we can examine the

extent to which classifying industries at a more refined level helps control for heterogeneity

in production technology.
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Figure 2: Histogram of
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Figures 3a, 3b, and 3c contrast histograms of plant-level averages of intermediate input

shares for ceramics and clay (2-digit), cement products (3-digit), and concrete products (4-

digit) industries. These figures suggest that while dispersion decreases somewhat from the

2-digit to the 4-digit level, the degree of heterogeneity remains notably high even at the

4-digit industry classification. Likewise, Figures 4a, 4b, and 4c reveal that the dispersion of

material shares does not decline considerably when transitioning from electric parts, devices,

and circuits (2-digit) to electric devices (3-digit) and subsequently to electric audio equipment

(4-digit).

As illustrated in Table 1, the 90th-10th percentile difference in intermediate input shares

decreases from 0.38 (2-digit) to 0.28 (4-digit) for the ceramics and clay industry. In contrast,

the 90th-10th percentile difference for the electric parts industry changes only marginally

from 2-digit to 4-digit, ranging from 0.61 to 0.62. Similar patterns are observed for the

plant-level averages of intermediate cost shares in variable costs. The 90th-10th percentile

differences in intermediate cost shares for concrete products (4-digit) and electric audio

equipment (4-digit) are substantial, measuring 0.27 and 0.67, respectively. Therefore, clas-

sifying industries at a more refined level does not substantially reduce the heterogeneity in

output elasticities with respect to intermediate and labor inputs.

Analogous patterns are observed across various industries. Table 2 displays the average

differences between the 90th and 10th percentiles for all industries, classified at the 2-digit,

3-digit, and 4-digit levels, with their corresponding standard deviations presented in paren-

theses. The findings reveal that dispersion decreases only marginally when refining industry

classification from the 2-digit to the 4-digit levels. In general, substantial dispersion persists
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Table 1: The 90th-10th Percentile Difference of Intermediate and Labor Cost Shares for
Concrete Product and Electric Audio

No. of 90-10 diff 90-10 diff in

Industry Code : Name Obs. in
(
PMit

PYit

)
i

(
PMit

PMit+WLit

)
i

22: Ceramics and Clay 53,042 0.38 0.38
222: Cement Product 22,834 0.35 0.32
2223: Concrete Product 14,463 0.28 0.27
28: Electric Parts/Devise/Circuit 30,814 0.61 0.66
281: Electric Device 19,901 0.62 0.66
2814: Electric Audio Equipment 11,325 0.62 0.67

Table 2: The 90th-10th Percentile Difference of Intermediate Input Shares

Industry No. of Ave. 90-10 diff Ave. 90-10 diff Ave. No.

Classifications Industries in
(
PMit

PYit

)
i

in
(

PMit

PMit+WLit

)
i

of Obs.

2-digit 24 0.46 0.44 49,512
(0.08) (0.11)

3-digit 149 0.42 0.39 7,975
(0.10) (0.13)

4-digit 479 0.38 0.35 2,481
(0.11) (0.14)

Notes: Standard deviations across industries are shown in parentheses.

Table 3: The 90th-10th percentile ratio of Permanent Component of Intermediate Input
Shares

Industry No. of Ave. 90-10 diff Ave. 90-10 diff Ave. No.

Classifications Industries in ξ̂i for PMit

PYit
in ξ̂i for PMit

PMit+WLit
of Obs.

2-digit 24 0.30 0.16 49,512
(0.05) (0.02)

3-digit 149 0.28 0.14 7,975
(0.05) (0.03)

4-digit 479 0.26 0.13 2,481
(0.06) (0.04)

Notes: Standard deviations across industries are shown in parentheses.
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Figure 3: Histogram of
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even at the 4-digit classification level, indicating that output elasticities of variable inputs

exhibit variation across plants, even when adopting a more detailed industry classification.

The implications in (1) are valid exclusively under the Cobb-Douglas production function.

For a more generalized production function, the elasticities of output for inputs are dependent

on the levels of material, labor, and capital inputs, even without heterogeneity in production

technology. Consequently, we investigate whether the intermediate input cost-to-output

value ratio remains similar across firms, even after adjusting for variations in capital, labor,

and intermediate inputs. To achieve this, we regress
PM,tMit

PY,tYit
or

PM,tMit

PM,tMit+WtLit
on second-

order polynomials of the natural logarithm of materials, the number of workers, and capital,

resulting in residuals denoted by eit. Subsequently, we compute the plant-level average

ξ̂i := (1/25)
∑2010

t=1986 eit to assess production technology heterogeneity, conditional on inputs.

Table 3 presents the averages of the 90th-10th percentile differences in ξ̂i for
PM,tMit

PY,tYit

or
PM,tMit

PM,tMit+WtLit
across all industries, classified at the 2-digit, 3-digit, and 4-digit levels.

The findings reveal considerable variation in production technology after accounting for

observable inputs, even at the 4-digit industry classification. This provides further evidence
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supporting the existence of heterogeneity in production technology.

3 The Model

We consolidate the notation as follows. Let := stand for ”equal by definition”. Bold letters

denote vectors or matrices. For a continuous random variable X, a calligraphic letter X
denotes its support, while its probability density function is represented by gX(x) for x ∈ X .

Output, capital, intermediate inputs, labor input in effective units of labor, and total

wage bills are denoted by (Yit, Kit,Mit, Lit, Bit) ∈ Y ×K×M×L×B ⊂ R5
++, respectively,

where Y , K,M, L, and B are the supports of the corresponding variables. We assume that

(Yit, Kit,Mit, Lit, Bit) are continuously distributed with strictly positive density on connected

supports. We combine capital, intermediate, and labor inputs into a vector as X it :=

(Kit,Mit, Lit)
′ ∈ X := K ×M×L.

We allow firms’ production technologies to differ beyond Hick’s neutral productivity

shocks. Specifically, we use a finite mixture specification to capture the unobserved hetero-

geneity in firms’ production technologies as well as the process through which Hick’s neutral

productivity shocks evolve. We assume that there are J unobserved types. Define the la-

tent random variable Di ∈ {1, 2, ..., J} representing the type of firm i such that Di = j if

the production technology of firm i is of the j-th type. In the following, the superscript j

indicates that the functions are specific to technology type j, while the subscript t indicates

that the functions are specific to period t.

For the j-th type of production technology at time t, the output is related to inputs as

follows:

Yit = eωit+εitF j
t (X it) with εit

iid∼ gjεt(·), (2)

where εit is an idiosyncratic productivity shock with its density function gjεt(·), and ωit follows

an exogenous first-order stationary Markov process given by:

ωit = hjt(ωit−1) + ηit, with ηit
iid∼ gjηt(·), (3)

where ηit is an innovation to the productivity process. As indicated by the subscript t in

F j
t (·), hjt(·), gjεt(·), and gjηt(·), production functions and productivity processes differ not

only between latent types but also across periods. For example, this reflects type-specific

aggregate shocks or type-specific biased technological changes.

We assume that labor input in effective units of labor, Lit, is not directly observable
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because firms differ in their labor quality and working hours, while we only observe the

number of workers. Instead, Lit is related to the number of workers, denoted by L̃it, as

Lit = eψ
j
t L̃it. (4)

Equation (4) imposes a specific structure on how labor input in effective units of labor is

related to the observed number of workers, where ψjt represents latent worker quality and

working hours specific to type j. With this specification, measurement errors in observed

labor input (i.e., the number of workers) are captured by the latent type-specific value of ψjt .

The total wage bills, Bit, are related to the labor input in effective units as follows:

Bit = evit+ζitPL,tLit, (5)

where PL,t represents the market wage. The random variable vit is a transitory wage shock

known to firm i at the time of choosing intermediate and labor inputs, while ζit is an

idiosyncratic wage shock not included in the information set when firm i selects these two

inputs. Thus, ζit ∈ I it, but vit /∈ I it.

We assume that firms make flexible choices regarding both Mit and Lit after observing

their serially correlated productivity shock, ωit, but before observing εit. In contrast, Kit

is predetermined at the end of the previous period, prior to the observation of the serially

correlated productivity shock ωit. Denote the information available to a firm for making

decisions on Mit and Lit by I it.

We present the model assumptions. For continuous random variables Zit and Wit, we

denote the probability density function and expectation conditional on Di = j as gjZt(zt) :=

gZt|D=j(zt|Di = j) and Ej[Zit] := E[Zit|Di = j], respectively. Additionally, we denote the

probability density function of Zit conditional on Di = j and Wit = wt as gjZt|Wt
(zt|wt). The

unconditional probability density function of Zit is denoted by gZt(zt).

Assumption 1. (a) Each firm belongs to one of the J types, where the population probability

of belonging to type j is given by πj = Pr(Di = j), and J is known to econometricians. (b)

A firm knows its type, i.e., Di ∈ I it.

Assumption 2. (a) (vit, ωit) ∈ I it. (b) (εit, ζit) 6∈ I it. (c) For the j-th type, ηit and vit

are mean-zero i.i.d. continuous random variables on R with its probability density functions

gjηt(·) and gjvt(·), respectively, while (εit, ζit) is a mean-zero i.i.d. continuous random variable

on R2 with the joint probability density function gjεt,ζt(·, ·). (d) The unconditional mean of

ωit is zero, i.e., Ej
t [ωit] = 0 for every t.

12



Assumption 3. (a) Kit ∈ I it but Kit 6∈ I it−1. (b) the conditional density function of Kit

given I t−1 is type specific and only depends on Kit−1 and ωit−1, i.e., gKt|It−1,D(Kit|I i,t−1, Di =

j) = gjKt|Kit−1,ωt−1
(Kit|Kit−1, ωit−1).

Assumption 4. (a) Mit and Lit are chosen at time t by maximizing expected profit condi-

tional on I it as

(Mit, Lit) = (Mj
t(Kit, ωit, vit),Ljt(Kit, ωit, vit))

:= argmax
(M,L)∈M×L

PY,tE
j[eεit ]eωitF j

t (Kit, L,M)− PM,tM − Ej[eζit ]evitPL,tL, (6)

where (Mj
t(Kit, ωit, vit),Ljt(Kit, ωit, vit)) is a type-specific deterministic function of (Kit, ωit, vit).

(b) For any given Kit ∈ K, (Mj
t(Kit, ωit, vit),Ljt(Kit, ωit, vit)) is invertible with respect to

(ωit, vit) with probability one. (c) For any given Kit ∈ K, the function F t
t (Kit, Lit,Mit) is

continuously differentiable and strictly concave in (Lit,Mit).

Assumption 5. (a) A firm is a price taker. (b) The intermediate input price PM,t, the output

price PY,t, and the market wage PL,t at time t are common across firms. (c) (PM,t, PY,t, PL,t) ∈
I it and (PM,t, PY,t) is known to an econometrician.

Assumption 6. Labor input in effective unit of labour Lit is not directly observable but Lit

is related to the observed number of workers as in (4) with
∑J

j=1 π
jeψ

j
t = 1

Under Assumptions 1-6, the information set at the time of choosing Mit and Lit is given by

I it = {Di, ωit, vit, Kit, PM,t, PY,t, PL,t,V it−1,V it−2, ...} with V it = {ζit, εit, ωit, vit, Kit, PM,t, PY,t, PL,t}.
Assumption 1(a) presumes that the number of types is known. Kasahara and Shimotsu

(2009) and Kasahara and Shimotsu (2014) discuss nonparametric identification of a lower

bound for the number of types. Kasahara and Shimotsu (2019) and Hao and Kasahara

(2022) develop a likelihood-based testing procedure for the number of types in multivariate

and panel data normal mixture models. Assumption 1(b) assumes that a firm is aware of

its type.

Assumption 2(a)(b) asserts that (ωit, vit) is known when Lit and Mit are chosen, while

(εit, ζit) is not known when Lit and Mit are chosen. The presence of the wage shock vit in (5)

provides an additional source of variation for Lit beyond ωit and Kit; as a result, Lit and Mit

are not collinear, avoiding the identification problem discussed by Bond and Sderbom (2005)

and Ackerberg et al. (2015). Assumption 2(c) introduces notation for the probability density

function of ηit, vit, εit, and ζit, allowing for correlation between εit and ζit. Assumption 2(d)

is a normalization assumption to identify the location of F j
t .
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Assumption 3(a) presumes that Kit is determined at time t−1, implying that (ηit, ωit, vit)

is not known when Kit is chosen. Assumption 3(b) can be explicitly derived from a dynamic

model of investment decisions with convex/non-convex adjustment costs under the first-order

Markov productivity process (3).

Assumption 4(a) introduces the demand function for Mit and Lit, derived from the static

profit maximization problem whenMit and Lit are flexibly chosen in each period. Assumption

4(b) holds when there is a one-to-one relationship between (Mit, Lit) and (ωit, vit), except for

a set of measure zero conditional on the value of Kit, and is satisfied in the case of a Cobb-

Douglas function. Under Assumption 4(c), the first-order condition for the maximization

problem (6) characterizes the optimal choice for Lit and Mit.

Assumption 5(a) posits that the firm has no market power. Under Assumption 5(b),

the intermediate input price PM,t cannot be used for instrumenting Mit. When intermedi-

ate prices are exogenous and heterogeneous across firms, the production function could be

identified using the intermediate input prices as instruments (Doraszelski and Jaumandreu,

2018). In Assumption 5(c), an alternative approach assumes that a firm is subject to an

idiosyncratic price shock ξit such that, for example, PY,it = exp(ξit)PY,t with ξit 6∈ I it, then

ξit plays a similar role to εit. We may assume that (PM,t, PY,t) is not known to the econome-

trician by treating PM,t/PY,t as parameters to be estimated; in such a case, we can identify

the production function up to scale.

Appendix B.2 discusses an alternative assumption to Assumption 5 when a firm produces

differentiated products and faces a demand function with constant price elasticity.

Assumption 6 suggests that the quality of workers or the average working hours per

worker differ across types and periods, as captured by the parameter ψjt , which leads to

the systematic difference in the average wage of workers latent types. The assumption that∑J
j=1 π

jeψ
j
t = 1 serves as a normalization for identification.

4 Nonparametric identification

Assume that we have panel data for firms i = 1, ..., n over periods t = 1, ..., T consisting

of output, capital, intermediate inputs, the number of workers, and total wage bills, de-

noted by (Yit, Bit, Kit,Mit, L̃it) ∈ Y ×B×K×M×L̃, respectively. For brevity, define X̃ :=

(Kit,Mit, L̃it) ∈ X̃ := K×M×L̃. Each firm’s observation {Yit, Bit, X̃ it}Tt=1 is randomly sam-

pled from a population distribution with a density function given by g{Yt,Bt,X̃t}Tt=1
({Yt, Bt, X̃ t}Tt=1).

Let gεt(ε) :=
∫
R gεt,ζt(ε, ζ)dζ and gζt(ζ) :=

∫
R gεt,ζt(ε, ζ)dε be the probability density func-

tions of ε and ζ, respectively. Under Assumptions 1, 2, 3(a), 4(a), and 5, the first order
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conditions with respect to Mit and Lit for maximizing the expected static profit in Assump-

tion 4(a) are given by:

PY,tF
j
M,t(X it)E

j
t [e

ε]eωit = PM,t, PY,tF
j
L,t(X it)E

j
t [e

ε]eωit = Ej
t [e

ζ ]evitPL,t, (7)

where F j
M,t(X) :=

∂F jt (X)

∂M
, F j

L,t(X) :=
∂F jt (X)

∂L
, Ej

t [e
ε] :=

∫
eεdgjεt(ε)dε, and Ej

t [e
ζ ] :=

∫
eζdgjζt(ζ)dζ.

Rearranging equations (2), (3), (5), and (7) gives a system of equations:

lnYit = lnF j
t (X it) + ωit + εit with ωit = hj(ωit−1) + ηit,

lnSmit = ln
(
ΓjM,t(X it)E

j
t [e

ε]
)
− εit,

lnS`it − lnSmit = ln

(
ΓjL,t(X it)

ΓjM,t(X it)E
j
t [e

ζ ]

)
+ ζit,

lnPM,tMit = ln

(
PL,tL̃itΓ

j
M,t(X it)E

j
t [e

ζ ]

ΓjL,t(X it)

)
+ ψjt + vit,

(8)

where

Smit :=
PM,tMit

PY,tYit
, S`it :=

Bit

PY,tYit
, ΓjM,t(X it) :=

F j
M,t(X it)Mit

F j
t (X it)

, and ΓjL,t(X it) :=
F j
L,t(X it)Lit

F j
t (X it)

.

For notational brevity, we drop the subscript i in the rest of this section. Because

Yt =
PM,tMt

Smt PY,t
and Bt =

S`tPM,tMt

Smt
, there exists a one-to-one relationship between (Yt, Bt) and

(Smt , S
`
t ) given X̃ t under Assumption 5. Therefore, denoting St = (Smt , S

`
t ) ∈ S, we consider

{St, X̃ t}Tt=1 in place of {Yt, Bt, X̃ t}Tt=1 as our data.

Let Zt := (St, X̃ t) ∈ Z := S × X̃ . We assume that the population density function,

denoted by gZ1,...,ZT ({zt}Tt=1), is directly identified from the data. We are interested in

identifying the model structure

θ :=
{
πj, {gjvt(·), g

j
εt,ζt

(·), ,ΓjM,t(·),Γ
j
L,t(·), PL,t, ψ

j
t}Tt=1, {F

j
t (·)}Tt=2, {h

j
t(·), gjηt(·)}

T
t=3

}J
j=1

from the population density function gZ1,...,ZT
({zt}Tt=1) given a set of restrictions in (8) under

Assumptions 1-6.

We first establish the nonparametric identification of model structure θ when J = 1 as

follows.

Proposition 1. Suppose that J = 1 and Assumption 1-6 holds with T ≥ 3. Then, θ is

uniquely determined from the population density function gZ1,...,ZT
({zt}Tt=1).
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Remark 1. Proposition 1 extends the identification result of GNR to the setting where Lit

is contemporaneously determined rather than predetermined.

When J ≥ 2, the probability density function of {Zt}Tt=1 follows an J-term mixture

distribution

gZ1,...,ZT ({zt}Tt=1) =
J∑
j=1

πjgjZ1
(z1)

T∏
t=2

gjZt|Zt−1,...,Z1
(zt|zt−1, ...,z1). (9)

The number of type J is defined to be the smallest integer J such that the density function

of {Zt}Tt=1 admits the representation (9).

Proposition 2. Suppose that Assumptions 1-6 hold. Then, the probability density function

of {Zt}Tt=1 defined in (9) can be written as

gZ1,...,ZT ({zt}Tt=1) =
J∑
j=1

πjgjZ1
(z1)

T∏
t=2

gjZt|Zt−1
(zt|zt−1) (10)

=
J∑
j=1

πj

(
gj
S1|X̃1

(s1|x̃1)
T∏
t=2

gj
St|X̃t

(st|x̃t)

)
×

(
gj
X̃1

(x̃1)
T∏
t=2

gj
X̃t|X̃t−1

(x̃t|x̃t−1)

)
,

(11)

where gj
St|X̃t

(st|x̃t) is the type j’s conditional probability density function of St given X̃ t =

x̃t, g
j

X̃1
(x̃1) is the type j’s marginal probability density function of X̃1, gjZ1

(z1) = gj
X̃1

(x̃1)gj
S1|X̃1

(st|x̃1),

and gjZt|Zt−1
(zt|zt−1) = gj

St|X̃t
(st|x̃t)gj

X̃t|X̃t−1
(x̃t|x̃t−1).

Therefore, under the stated model assumption, {Zt}Tt=1 follows a first order Markov pro-

cess within subpopulation specified by type. The result of Proposition 2 allows us to establish

the nonparametric identification of {πj, gjZ1
(z1), gjZ2|Z1

(z2|z1), ..., gjZT |ZT−1,...,Z1
(zT |zT−1)}Jj=1

by extending the argument in Kasahara and Shimotsu (2009), Carroll et al. (2010), and Hu

and Shum (2012).

We now establish identification when T = 4. Define

Lz3 :=


1 · · · 1

λ1
4(b1|z3) · · · λJ4 (b1|z3)

...
. . .

...

λ1
4(bJ−1|z3) · · · λJ4 (bJ−1|z3)

 , L̄z2 :=


λ̄1

2(a1, z2) · · · λ̄J2 (a1, z2)
...

. . . . . .

λ̄1
2(aJ , z2) · · · λ̄J2 (aJ , z2)

 , and

Dz3|z2 := diag
(
λ1

3(z3|z2), ..., λJ3 (z3|z2)
)
,

(12)
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where λ̄j2(a, z2) := πjgjZ2|Z1
(z2|a)gjZ1

(a), λj3(z3|z2) := gjZ3|Z2
(z3|z2), and λj4(b|z3) := gjZ4|Z3

(b|z3).

Assumption 7. There exists a value z∗3 that satisfies the following condition: for every

z3 ∈ Z3, we can find (z̄2, ž2, z̄3) ∈ Z2×Z2×Z3, (a1, ...,aJ) ∈ ZJ1 and (b1, ..., bJ−1) ∈ ZJ−1
4

such that (a) Lz∗3 , Lz3, Lz̄3, L̄ž2, and L̄z̄2 are non-singular, and (b) all the diagonal elements

of Dz3,z3 := Dz3|ž2D
−1
z̄3|ž2Dz̄3|z̄2D

−1
z3|z̄2 take distinct values. Furthermore, (c) for every

(z2, z3) ∈ Z2 ×Z3, gjZ3|Z2
(z3|z2) > 0 for j = 1, ..., J .

Proposition 3. Suppose that Assumptions 1-7 hold and T ≥ 4. Then,

{πj, gjZ1
(z1), gjZ2|Z1

(z2|z1), ..., gjZT |ZT−1
(zT |zT−1)}Jj=1 is uniquely determined from gZ1,...,ZT ({zt}Tt=1)

up to a common permutation of the latent types.

Remark 2. Under the additional assumption of stationarity, i.e., the conditional density

function gjZt|Zt−1
(zt|zt−1) does not depend on t for t = 2, ..., T , Kasahara and Shimotsu

(2009) establish the nonparametric identification of the model (11) when T = 6 while Hu

and Shum (2012) show that T = 4 suffices for identification.

Remark 3. Considering serially correlated continuous unobserved variables {X∗t }Tt=1, Hu

and Shum (2012) analyze the nonparametric identification of the model

gZ1,...,ZT ({zt}Tt=1) =

∫
gZ1|X∗1 (z1, x

∗
1)

T∏
t=2

gZt,X∗t |Zt−1,X∗t−1
(zt, x

∗
t |zt−1, x

∗
t−1)d({x∗t}Tt=1).

Given panel data {Zt}Tt=1 with T = 5, Theorem 1 and Corollary 1 of Hu and Shum (2012)

state that, under their Assumptions 1-4, gZ3,X∗3
(z3, x

∗
3), gZ4,X∗4 |Z3,X∗3

(z4, x
∗
4|z3, x

∗
3), and

gZ5,X∗5 |Z4,X∗4
(z5, x

∗
5|z4, x

∗
4) are nonparametrically identified, but the identification of gZ1,X∗1

(z1, x
∗
1),

gZ2,X∗2 |Z1,X∗1
(z2, x

∗
2|z1, x

∗
1), and gZ3,X∗3 |Z2,X∗2

(z3, x
∗
3|z2, x

∗
2) remains unresolved. Our Proposi-

tion 3 shows a new identification result that, for a model in which unobserved heterogeneity is

discrete and finite, we can nonparametrically identify the type-specific distribution of {Zt}Tt=1,

including the first two periods of the data, from T = 4 periods of panel data without imposing

stationarity.

Remark 4. In the identification argument of Kasahara and Shimotsu (2009), the type-

specific distribution is identified only up to an arbitrary ordering of the latent types that

differs across different evaluation points in {z1, ...,zT}. Our proof of Proposition 3 on the

identification of the common order of the latent types is based on Higgins and Jochmans

(2021).

Remark 5. Assumption 7(a) assumes the rank condition of matrices Lz∗3 , Lz3, Lz̄3, L̄ž2,

and L̄z̄2 defined in (12), of which elements are constructed by evaluating gjZ4|Z3
(z4|z3) and
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πjgjZ2|Z1
(z2|z1)gjZ1

(z1) at different points. These conditions are similar to the assumption

stated in Proposition 1 of Kasahara and Shimotsu (2009), implying that all columns in these

matrices must be linearly independent. For example, because each column of Lz3 repre-

sents the type-specific conditional density function of z4 across different values of z4 given

z3, the changes in the value of z4 must induce sufficiently different changes in the val-

ues of conditional density function across types. One needs to find only one set of values

(ž2, z̄2, z̄3) ∈ Z2
2 × Z3 and one set of J − 1 and J points of Z1 and Z4 to construct non-

singular Lz∗3 , Lz3, Lz̄3, L̄ž2, and L̄z̄2 for each z3 ∈ Z3 and these rank conditions are

not stringent when Zt has continuous support. The identification of gjZ4|Z3
(z4|z3) and

πjgjZ2|Z1
(z2|z1)gjZ1

(z1) at all other points of Z4, Z2, and Z1 follows without any further

requirement on the rank condition.

Once the type-specific distribution of {Zt}Tt=1 is identified, we can use the argument in

the proof of Proposition 1 to prove nonparametric identification for the model structure of

each type.

Proposition 4. Suppose that Assumptions 1-7 hold and T ≥ 4. Then, θ is uniquely deter-

mined from gZ1,...,ZT ({zt}Tt=1).

Therefore, type-specific production functions, as well as the distribution of unobserved

variables, can be identified nonparametrically. In the estimation, we focus on the case where

the type-specific production functions are Cobb-Douglas.

Example 1 (Random Coefficients Model). Consider a Cobb-Douglas production function

with time-varying random coefficients:

f̃ jt (X̃ t) = βj0,t + βjk,t lnKt + βjm,t lnMt + βj`,t(ψ
j
t + ln L̃t), (13)

where f̃ jt (X̃ t) := lnF j
t (Kt, e

ψjt L̃t,Mt) while the intermediate and labor cost share equations

are given by

lnSmt = ln(βjm,t) + lnEj
t [e

ε]− εt, lnS`t − lnSmt = ln(βj`,t/β
j
m,t)− ln

(
Ej
t [e

ζ ]
)

+ ζt,

lnMit − ln L̃it = ln(PL,t/PM,t) + ln
(
βjm,t/β

j
`,t

)
+ ln

(
Ej
t [e

ζ ]
)

+ ψjt + vit,

Under Assumptions 1-7, θ = {πj, {gjvt(·), β
j
m,t, β

j
`,t, g

j
εt,ζt

(·), ψjt}4
t=1, {β

j
0,t, β

j
k,t}4

t=2, {h
j
t(·), gjηt(·)}

4
t=3}

for j = 1, ..., J is nonparametrically identified from the panel data {St, X̃ t}4
t=1.

In Appendix B.1, we discuss the sufficient conditions under which Assumption 7 holds

when the production function is Cobb-Douglas as in Example 1.
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5 Estimation of production function with finite mix-

ture random coefficients models

In this section, we present a finite mixture model of the random coefficient Cobb-Douglas

production function, based on our nonparametric identification analysis and with considera-

tion for computational efficiency. We develop a penalized maximum likelihood estimator for

this model.

Let us denote the logarithmic values of (Yit, Kit,Mit, L̃it, S
m
it , S

`
it, Bit) using the corre-

sponding lowercase letters, such that (yit, kit,mit, ˜̀
it, s

m
it , s

`
it, bit), where yit := log Yit, and so

on. Define sit := (smit , s
`
it) and x̃it := (kit,mit, ˜̀

it). For estimation purposes, we assume that

the data generation follows the parametric assumptions outlined below.

Assumption 8. (a) T is fixed at T ≥ 4 and N →∞. (b) Equation (2) holds with

Yit = F j
t (Kit,Mit, e

ψjt L̃it)e
ωit+εit with F j

t (Kit,Mit, e
ψjt L̃it) = exp((βj0,t+β

j
`ψ

j
t )+β

j
kkit+β

j
mmit+β

j
`
˜̀
it).

(14)

(c) (εit, ζit)
>|Di = j

d∼ N (0,Σεζ) with Σεζ =

(
(σjε )

2 ρjεζσ
j
εσ

j
ζ

ρjεζσ
j
εσ

j
ζ (σjζ)

2

)
, gjη(η) = φ(η/σjη)/σ

j
η,

and gjv(v) = φ(v/σjv)/σ
j
v, where φ(t) = exp(−t2/2)/

√
2π. Furthermore, we assume hjt(ωit) =

ρjωωit in (3) so that

ωit = ρjωωit−1 + ηit. (15)

(d) Conditional on being type j, kit given (kit−1, ωit−1) is normally distributed with mean

ρjk0 + ρjkkkit−1 + ρjkωωit−1 and variance (σjk)
2 while the distribution of (ki1, ωi1) follows a

bivariate normal distribution with mean µj1 and variance Σj
1.

Assumption 8(a) posits that the length of panel data is short, while Assumption 8(b)

enforces the Cobb-Douglas functional form assumption. Assumptions 8(c) and 8(d) impose

Gaussian distribution assumptions under Assumptions 2 and 3, where ωit follows a first-order

autoregressive (AR(1)) process.

In equation (14), since lnLit = ψjt + ˜̀
it, the intercept term encompasses both βj0,t and

βj`ψ
j
t . The latter term captures the variation in worker quality across types. The normality

assumption in Assumptions 8(c) and 8(d) could potentially be relaxed; for instance, by

employing the maximum smoothed likelihood estimator of finite mixture models proposed by

Levine et al. (2011), in which the type-specific distribution of εit and ζit is nonparametrically

specified. Additionally, Kasahara and Shimotsu (2015) develop a likelihood-based procedure

to test the number of components in normal mixture regression models.
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Suppose we have a random sample of n independent observations {{Sit, X̃ it}Tt=1}ni=1 from

the J-component mixture model
∑J

j=1 π
jgj
{St,X̃t}Tt=1

({st, x̃t}Tt=1) that satisfies Assumptions

1-8. We propose a penalized maximum likelihood estimator (PMLE) that directly maxi-

mizes the log-likelihood function of a finite mixture model of production functions. The

likelihood function is a parametric version of (11). To address the issue of unbounded likeli-

hood for a normal mixture model (c.f., Hartigan, 1985), we introduce a penalty term to the

log-likelihood function. The maximum likelihood estimator, which leverages distributional

information, is consistent even when T is small, provided T ≥ 4. Given the nonpara-

metric identification result established in Proposition 3, if the parametric assumptions are

invalid and the parametric model is misspecified, the parametric maximum likelihood esti-

mator converges in probability to the pseudo-true value of the parameter that minimizes the

Kullback-Leibler Information Criterion between the density of the parametric model and the

true population density (White, 1982).

Our estimation procedure is based on the two-stage identification proof from Proposition

3. To address the computational complexity of maximizing the log-likelihood function for

the finite mixture model, the EM algorithm is employed.

Under Assumptions 3-6, 8, the first order conditions for the expected profit maximization

imply that

smit = ln βjm + 0.5(σjε )
2 − εit, s`it − smit = ln(βj`/β

j
m)− 0.5(σjζ)

2 + ζit, (16)

mit − ˜̀
it = αt + ln(βjm/β

j
` ) + 0.5(σjζ)

2 + ψj + vit, (17)

where αt := ln(PL,t/PM,t) and (17) follows from (16), vit = bit − (ψj + ˜̀
t + lnPL,t + ζit), and

s`it − smit = bit − (lnPM,t +mit).

Collect the model parameter θ into π, θ1 and θ2 as

θ := (π′,θ′1,θ
′
2)′ with θ1 = (α′, (θ1

1)′, ..., (θJ1 )′)′ and θ2 = ((θ1
2)′, ..., (θJ2 )′)′,

where θj1 = (βjm, β
j
` , ψ

j, (σjε )
2, (σjζ)

2, (σjv)
2)′ and θj2 = (βj2, ..., β

j
T , β

j
k, (µ

j
1)′, vech(Σj

1)′, ρjk0, ρ
j
kk,

ρjkω, (σ
j
k)

2, ρjω, (σ
j
η)

2)′ for j = 1, ..., J , and α = (α1, ...., αT )′.

Denote θj := ((θj1)′, (θj2)′)′. Then, under Assumption 8, we may write the probability
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density function of {sit, x̃it}Tt=1 for type j as

gj({sit, x̃it}Tt=1;θ) =
T∏
t=1

gjt (sit, ˜̀
it −mit;θ

j
1, αt)︸ ︷︷ ︸

:=L1i(θ
j
1,α)

× gj1(x̃it|˜̀i1 −mi1;θj)
T∏
t=2

gjt (x̃it|˜̀it −mit, x̃it−1;θj)︸ ︷︷ ︸
:=L2i(θ

j
1,θ

j
2)

,

(18)

where the exact expression for L1i(θ
j
1,α) and L2i(θ

j
2,θ

j
1) is derived below.

To deal with the issue of unbounded log-likelihood function of a normal mixture model

(Hartigan, 1985; Hao and Kasahara, 2022), we estimate the model parameter θ by a penalized

likelihood method proposed by Chen and Tan (2009). Let (σ̂2
ε,0, σ̂

2
ζ,0, σ̂

2
v,0, σ̂

2
k,0, σ̂

2
η,0, Σ̂1,0) be

the estimator of (σ2
ε , σ

2
ζ , σ

2
v , σ̂

2
k, σ̂

2
η, Σ̂1) for the one-component model with J = 1. Then, we

consider the following penalized maximum likelihood estimator (PMLE):

θ̂ = argmax
θ∈Θ

n∑
i=1

Qi(θ) +
J∑
j=1

 ∑
s∈{v,k,η}

pn((σjs)
2; (σ̂s,0)2) + pn(Σj

εζ ; Σ̂εζ,0) + pn(Σj
1; Σ̂1,0)

 ,

(19)

where

Qi(θ) := log

(
J∑
j=1

πjLi(θ
j,α)

)
with Li(θ

j,α) := L1i(θ
j
1,α)L2i(θ

j
1,θ

j
2)

and

pn((σjs)
2; σ̂2

s,0) = −n−1
{
σ̂2
s,0/(σ

j
s)

2 − log(σ̂2
s,0/(σ

j
s)

2)
}
, and (20)

pn(Σj; Σ̂0) = −n−1
{

tr(Σ̂0(Σj)−1)− log(det((Σ̂0(Σj)−1))
}
. (21)

The expression for L1i(θ
j
1,α) and L2i(θ

j
1,θ

j
2) are derived below.

To reduce the computational burden of finding the penalized maximum likelihood esti-

mator, we follow a three-stage procedure.

In the first stage, from equations (16)-(17), we can express εit, ζit, and vit as a function

of sit, ˜̀
it −mit, θ

j
1, and αt as

ε∗(sit;θ
j
1) := −smit + ln βjm + 0.5(σjε )

2, ζ∗(sit;θ
j
1) := s`it − smit − ln(βj`/β

j
m) + 0.5(σjζ)

2, (22)

v∗(˜̀
it −mit;θ

j
1, αt) := −

(
˜̀
it −mit + αt + ln(βjm/β

j
` ) + 0.5(σjζ)

2 + ψj
)
. (23)
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Then, we estimate θ1 by maximizing the log likelihood function as

(π̃, θ̃1, α̃) = argmax
π,θ1,α

n∑
i=1

ln

(
J∑
j=1

πjL1i(θ
j
1,α)

)
+

J∑
j=1

{
pn((σjv)

2; σ̂2
v,0) + pn(Σj

εζ ; Σ̂εζ,0)
}
,

where, under Assumption 8(b), the likelihood function L1i(θ
j
1,α) is given by

L1i(θ
j
1,α) :=

T∏
t=1

1√
1− (ρjεζ)

2σjεσ
j
ζ

φ

(
ε∗(sit;θ

j
1)

σjε

)
φ

ζ∗(sit;θj1)− ρjεζ(σ
j
ζ/σ

j
ε )ε
∗(sit;θ

j
1)√

1− (ρjεζ)
2σjζ


× 1

σjv
φ

(
v∗(mit − ˜̀

it;θ
j
1, αt)

σjv

)

with ε∗(sit;θ
j
1), ζ∗(sit;θ

j
1), and v∗(˜̀

it −mit;θ
j
1, αt) defined in (22)-(23).

In the second stage, from (14), εit = E[smit |x̃it]− smit , and yit + smit = mit + ln(PM,t/PY,t),

we have

ωit = ω∗t (mit, ˜̀
it−mit, kit;θ

j) := (1− βjm− β
j
` )mit− βj`ψ

j − βjt − β
j
` (

˜̀
it−mit)− βjkkit, (24)

where βjt := βj0,t + ln(PM,t/PY,t)− ln βjm − 0.5(σjε )
2.

In view of equation (24), by a change of variables, we may relate the density function

of mit conditional on ˜̀
it − mit and kit to the density function of ωit, denoted by gω,t, as

gjt (mit|`it −mit, kit) = (1− βjm − β
j
` )g

j
ω,t(ω

∗
t (mit, ˜̀

it −mit, kit;θ
j)). Then, from (23)-(24) and

Assumptions 2-3, we have

gj1(mi1|`i1 −mi1, ki1;θj) = (1− βjm − β
j
` )g

j
ω|k,1(ω∗i1(θj)|ki1), (25)

gjt (mit|`it −mit, kit, x̃it−1;θj) = (1− βjm − β
j
` )g

j
η(η
∗
it(θ

j)) for t ≥ 2, (26)

gjt (kit|x̃it−1;θj) = gjk,t(kit|kit−1, ω
∗
i,t−1(θj)) for t ≥ 2, (27)

where gjω|k,1(ωi1|ki1) is the density function of ωi1 conditional on ki1, gjk,t(kit|kit−1, ωit−1) is

the density function of kit given (kit−1, ωit−1), ω∗it(θ
j) := ω∗t (mit, `it −mit, kit;θ

j), and

η∗it(θ
j) := ω∗it(θ

j)− ρjωω∗i,t−1(θj). (28)
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Therefore, under Assumption 8, it follows from (18) and (25)-(27) that

L2i(θ
j) = gj1(mi1|`i1 −mi1, ki1;θj)gj1(ki1;θj)×

T∏
t=2

gjt (mit|`it −mit, kit, xit−1;θj)gjt (kit|xit−1;θj)

= (1− βjm − β
j
` )
Tgjωk,1(ω∗i1(θj), ki1)

T∏
t=2

gjη(η
∗
it(θ

j))gjk,t(kit|kit−1, ω
∗
i,t−1(θj)),

where

gjη(η
∗
it(θ

j)) :=
1

σjη
φ

(
η∗it(θ

j)

σjη

)
,

gjωk,1(ω∗i1(θj), ki1) := (2π)−3/2|Σj
1|−1/2 exp

(
−1

2

((
ki1

ω∗i1(θj)

)
− µj1

)′
(Σj

1)−1

((
ki1

ω∗i1(θj)

)
− µj1

))
,

gjk,t(kit|kit−1, ω
∗
i,t−1(θj)) :=

1

σjk
φ

(
kit − (ρjk0 + ρjkkkit−1 + ρjkωωit−1)

σjk

)
.

Given the first stage estimate θ̃1, the second stage estimates parameters π and θ2 by

maximizing the log-likelihood function as

(π̃2, θ̃2) = argmax
π,θ2

n∑
i=1

log

(
J∑
j=1

πjL1i(θ̃
j

1, α̃)L2i(θ̃
j

1,θ
j
2)

)
+

J∑
j=1

 ∑
s∈{k,η}

pn((σjs)
2; σ̂2

s,0) + pn(Σj
1; Σ̂1,0)

 .

Finally, using θ̃ := (π̃′2, θ̃
′
1, θ̃

′
2)′ as an initial value, we obtain the PMLE θ̂ by maximizing

the full-information penalized log-likelihood function as in Equation (19) using the EM

algorithm.

Let the true value of the model parameter be denoted by θ∗. When the number of types

J is correctly specified, the Fisher Information matrix is given by

I(θ∗) := −E [∇θθ′Qi(θ
∗)] = E [∇θQi(θ

∗)∇θ′Qi(θ
∗)] ,

which is positive definite. The following proposition demonstrates that the PMLE is consis-

tent and asymptotically normal.

Proposition 5. Suppose that Assumptions 1-8 hold. Then, θ̂
p→ θ∗ and

√
n(θ̂ − θ∗) d→

N(0, I(θ∗)).
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6 Empirical Application

6.1 Data

We utilize plant-level panel data from the Census of Manufacture of Japan spanning 1986-

2010. This dataset encompasses production information for manufacturing plants in Japan.

Our analysis focuses on plants with 30 or more employees, as detailed data are consistently

available only for these establishments.5

At the 4-digit industry classification level accessible in the Census of Manufacture, we

identify a total of 276 industries. In our empirical application, we primarily concentrate on

concrete products and electric audio equipment for two reasons: 1. Both industries have

a substantial number of observations; 2. The former exhibits relatively small variation in

intermediate input share, while the latter displays significant variation, as demonstrated in

Section 2. Thus, examining these two industries proves useful for assessing the significance

of unobserved heterogeneity.

Output (Y ) is defined as the sum of shipments, revenue from repair and maintenance

services, and revenue from performing subcontracted work. Initial capital value (K) is

determined as the fixed asset value minus land, and subsequent capital values are constructed

using the perpetual inventory method. The observed labor input (L̃) is represented by the

number of employees. The intermediate input (M) is defined as the sum of material input,

energy input, and subcontracting expenses for consigned production.

Flow data, such as shipments and various production costs, pertain to the calendar year.

The number of employees refers to the value at the end of the year, while the stock of fixed

assets corresponds to the beginning of the period. Table 4 presents summary statistics for

the variables employed in our empirical analysis.

6.2 Estimation of Production Function

This section presents estimation results for a random-coefficient Cobb-Douglas production

function featuring three technology types and two unobserved labor types within each tech-

nology type.

Table 5 and Table 6 present the parameter estimates for the concrete products and

electric audio equipment industries, considering both the unobserved heterogeneity case (J =

5The survey employs distinct questionnaires based on plant size: 1. Plants with 30 or more employees;
2. Plants with 4-29 employees; 3. Plants with 1-3 employees. The questionnaire for plants with 30 or more
employees provides more comprehensive information. For instance, beginning in 2000, the census collects
fixed asset data every five years, rather than annually, for plants with fewer than 30 employees.
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Table 4: Summary Statistics

Concrete Products Electric Audio Equipment
Obs Mean Std. Dev Min Max Obs Mean Std. Dev Min Max

yit 13892 11.37 0.68 7.60 14.39 10913 11.24 1.78 5.51 17.35
˜̀
it 13892 3.97 0.41 3.40 6.81 10913 4.51 0.90 3.40 8.53
kit 13892 10.91 0.86 5.22 14.06 10913 10.04 1.99 1.67 16.22
mit 13892 10.34 0.83 -0.13 13.89 10913 10.37 2.31 3.27 16.89
smit 13892 -0.98 0.35 -1.83 -0.33 10913 -0.99 0.79 -3.13 -0.08
s`it 13892 -1.47 0.43 -2.39 -0.50 10913 -1.39 0.78 -3.11 -0.16
Iit/Kit 13892 0.10 1.06 -1.04 115.02 10913 0.34 11.49 -1.28 1030.83

3× 2 = 6) and the homogeneous case (J = 1). The estimated coefficients in both industries

demonstrate economically significant differences in output elasticities associated with labor,

capital, and intermediate inputs across various firm types.

Comparing the two industries, the variation in β̂jm across types is more substantial for

electric audio equipment than for concrete products, which aligns with the dispersion of

intermediate input shares discussed in Section 2. As β̂j` and β̂jk also exhibit variation across

types, the ratio of output elasticities between capital and labor, β̂jk/β̂
j
` , varies as well. For

electric audio equipment, the value of β̂jk/β̂
j
` ranges from 0.29 (Type 1 and 2) to 1.14 (Type

3 and 4), while for concrete products, it spans from 0.56 to 0.78. As demonstrated below,

the value of β̂jk/β̂
j
` serves as a crucial determinant of the capital investment response to

productivity ω̂it.

Furthermore, the productivity growth processes display variations across latent types,

as indicated by the estimated AR(1) coefficient ρjω and standard deviation σjη. In both in-

dustries, the estimated AR(1) coefficient for the homogeneous case (J = 1) is considerably

larger than those for the unobserved heterogeneity case (J = 6). This suggests that neglect-

ing unobserved heterogeneity may result in an upward bias in the estimates of the AR(1)

coefficient for productivity processes.

In various latent types, the returns to scale for concrete products, denoted by (β̂jm + β̂j` +

β̂jk), is approximately 0.7, whereas for electrical audio equipment, it ranges between 0.78

and 0.91. When considering the homogeneous case, the returns to scale are comparatively

lower at 0.63 and 0.65 for these respective industries. The estimates of (ψ̂j) indicate the

existence of considerable unobserved heterogeneity in labor quality or working hours among

manufacturing plants.

Figures 5 and 6 display the distribution of posterior type probabilities, defined by π̂ji :=
π̂jLi(θ̂

j)∑J
k=1 π̂

kLi(θ̂k)
for j = 1, ..., J , across plants for the model with J = 6. The posterior probabil-
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Table 5: Estimates of Production Function (Concrete Products)

J = 1 J = 6
Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

βjm 0.332 0.287 0.326 0.394
(0.004) (0.005) (0.012) (0.005)

βj` 0.224 0.263 0.220 0.186
(0.003) (0.005) (0.009) (0.003)

βjk 0.075 0.147 0.172 0.103
(0.015) (0.036) (0.034) (0.014)

ρjω 0.935 0.834 0.869 0.877
(0.007) (0.014) (0.024) (0.012)

σjη 0.155 0.137 0.248 0.114
(0.004) (0.004) (0.014) (0.003)

βjm + βj` + βjk 0.632 0.696 0.719 0.683

βjk/β
j
` 0.336 0.558 0.780 0.556

ΣT
t=1β

j
0,t/T 6.218 5.604 5.303 5.449

ψj 0.000 -0.108 0.344 -1.454 0.534 0.056 0.627
(NA) (0.086) (0.090) (0.339) (0.081) (0.085) (0.088)

π 1.000 0.174 0.240 0.051 0.119 0.263 0.152
(NA) (0.014) (0.019) (0.015) (0.021) (0.018) (0.015)

Obs 13892
No. Plants 914

Notes: Standard errors are reported in parentheses.

ities for each type are concentrated around 0 or 1. In the subsequent analysis, we assign one

of the J types to each plant based on its posterior type probability that achieves the highest

value across the J types.

Ignoring unobserved heterogeneity may lead to significant biases in measuring productiv-

ity growth. To examine this issue, we consider a specification with J = 6 as the true model

and compute the bias in measuring productivity growth when using a misspecified model

with J = 1. Specifically, let ∆ωit := ∆yit − (β̂jt + β̂jm∆mit + β̂j`∆
˜̀
it + β̂jk∆kit + ∆ε̂jit)

for j = 1, 2, ..., 6 be the estimated productivity growth when J = 6 and let ∆ω̃it :=

∆yit − (β̄t + β̄m∆mit + β̄`∆˜̀
it + β̄k∆kit + ∆ε̄it) be the estimated productivity growth when

J = 1, where {β̂jt , β̂jm, β̂
j
` , β̂

j
k}6

j=1 and {β̄t, β̄jm, β̄
j
` , β̄

j
k} denote estimated coefficients when

J = 6 and J = 1, respectively. Then, we compute the bias as

∆ω̃it = ∆ωit + (β̄m − β̂jm)∆mit + (β̄` − β̂j` )∆`it + (β̄jk − β̂
j
k)∆kit + (∆ε̄it −∆ε̂jit)︸ ︷︷ ︸

:=Biasit

.
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Table 6: Estimates of Production Function (Electric Audio Equipment)

J = 1 J = 6
Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

βjm 0.281 0.135 0.430 0.536
(0.008) (0.022) (0.029) (0.054)

βj` 0.296 0.496 0.163 0.195
(0.006) (0.016) (0.010) (0.041)

βjk 0.076 0.146 0.186 0.175
(0.016) (0.031) (0.027) (0.049)

ρjω 0.960 0.769 0.845 0.895
(0.003) (0.017) (0.018) (0.032)

σjη 0.378 0.457 0.376 0.135
(0.011) (0.040) (0.037) (0.014)

βjm + βj` + βjk 0.652 0.776 0.778 0.906

βjk/β
j
` 0.256 0.294 1.140 0.893

ΣT
t=1β

j
0,t/T 6.125 5.747 4.560 2.992

ψj 0.000 -1.084 0.452 -0.551 1.178 -0.534 0.540
(NA) (0.249) (0.080) (0.062) (0.109) (0.390) (0.146)

π 1.000 0.278 0.168 0.163 0.098 0.109 0.184
(NA) (0.033) (0.046) (0.015) (0.044) (0.027) (0.022)

Obs 10913
No. Plants 907

Notes: Standard errors are reported in parentheses.

The first row of Table 7, labeled as Mean of |Biasit|
Mean of |∆ω̃it| , presents the ratio of the average absolute

value of bias to the average productivity growth within each of three subsamples, which

are classified by technology types. The magnitude of the bias is around 0.10 for concrete

products, while it ranges from 0.23 to 0.35 for electric audio equipment.

The second row of Table 7, denoted by Mean of Biasit
Mean of |∆ω̃it|

∣∣∣
∆ωit>0

, reports the ratio of the av-

erage value of bias to the average productivity growth conditional on positive productiv-

ity growth measured by the model with J = 6. Note that Biasit ≈ (β̂jm − β̄m)∆mit and

Corr(∆ωit,∆mit) > 0. Consequently, the average bias conditional on ∆ωit > 0 tends to

be positive when β̂jm > β̄jm. The empirical results confirm this pattern: for both concrete

products and electric audio equipment, Types 5-6 have β̂jm higher than β̄m, and thus the

estimated bias Mean of Biasit
Mean of |∆ω̃it|

∣∣∣
∆ωit>0

is positive for these types, while the estimated bias when

∆ωit > 0 is negative for Types 1-2 that have lower values of β̂jm.

These findings imply that neglecting unobserved heterogeneity could lead to significant

bias in estimating productivity growth, and the bias is likely to exhibit a systematic pattern
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Figure 5: Posterior Probabilities (Concrete Products)
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Table 7: Bias in ∆ω̃

Concrete Products Electric Audio Equipment
J = 6 J = 6

Type 1 - 2 Type 3 - 4 Type 5 - 6 Type 1 - 2 Type 3 - 4 Type 5 - 6
Mean of |Biasit|
Mean of |∆ω̃it| 0.098 0.104 0.099 0.230 0.229 0.350

Mean of Biasit
Mean of |∆ω̃it|

∣∣∣
∆ωit>0

-0.080 -0.025 0.089 -0.201 0.156 0.203

βjm 0.287 0.326 0.394 0.135 0.430 0.536

depending on the values of β̂jm.

As an application of using the estimated productivity growth in empirical analysis, we

now investigate whether unobserved heterogeneity, as captured by type-specific production

function parameters, is significant for investment decisions. Specifically, for each subsample

classified by type, we estimate the following linear investment model:

Iit
Kit

= α0 + αjωω̂it + quadratic of kit + ζit,

where Iit/Kit represents the ratio of investment to capital stock.

Table 8 displays the OLS estimates of αjω in the first row as well as the quantile regression

estimates of αjω at the 10th, 25th, 50th, 75th, and 90th percentiles across different types for

J = 1 and 6 for concrete products. Table 9 presents the same estimates for the electric audio

equipment industry. When J = 1, the OLS coefficient of ωit is estimated significantly at

0.06 for concrete products and at 0.5 for electric audio equipment.
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Figure 6: Posterior Probabilities (Electric Audio Equipment)
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For the model with J = 6, the estimated coefficients of ωit differ considerably across

different types of plants, indicating that the investment response to a productivity shock

varies across plants. Both OLS and quantile regression results show that the estimated

coefficients tend to be higher for the types with higher β̂jm and β̂jk/β̂
j
` , suggesting that firms

invest more given a positive productivity shock if their production technology features high

material shares and high capital-labor ratios. In the case of quantile regressions, this pattern

is particularly pronounced for firms with high investment ratios.

Overall, these results highlight the importance of accounting for unobserved heterogene-

ity in the production function when estimating plant-level productivity and its impact on

investment.

7 Conclusion

This paper establishes the nonparametric identifiability of production functions when unob-

served heterogeneity exists across firms in the form of latent technology groups. Building on

our nonparametric identification analysis and considering computational simplicity, we pro-

pose an estimation procedure for the production function with random coefficients employing

a finite mixture specification.

Our analysis of Japanese plant-level panel data reveals a substantial degree of variation

in estimated input elasticities and productivity growth processes across latent types within

narrowly defined industries. We demonstrate that neglecting unobserved heterogeneity in in-

put elasticities can lead to significant and systematic bias in estimated productivity growth.
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Table 8: The Effect of ωit on Investment (Concrete Products)

J = 1 J=6
Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

αjω 0.059 0.059 0.061 0.048 −0.163 0.076 0.081
(0.024) (0.013) (0.014) (0.037) (0.140) (0.011) (0.011)

αjω(0.10) 0.002 0.004 0.001 −0.000 0.014 0.016 0.018
(0.000) (0.003) (0.000) (0.004) (0.004) (0.003) (0.004)

αjω(0.25) 0.007 0.016 0.011 0.001 0.010 0.023 0.029
(0.001) (0.003) (0.003) (0.003) (0.002) (0.003) (0.004)

αjω(0.50) 0.017 0.031 0.031 0.011 0.022 0.044 0.040
(0.001) (0.005) (0.005) (0.006) (0.004) (0.005) (0.005)

αjω(0.75) 0.037 0.049 0.065 0.050 0.030 0.073 0.080
(0.003) (0.009) (0.008) (0.016) (0.007) (0.008) (0.009)

αjω(0.90) 0.072 0.077 0.125 0.091 0.025 0.124 0.110
(0.007) (0.025) (0.024) (0.021) (0.018) (0.025) (0.023)

βjm 0.332 0.287 0.287 0.326 0.326 0.394 0.394

βjk/β
j
` 0.336 0.558 0.558 0.780 0.780 0.556 0.556

(Iit/Kit) 0.104 0.080 0.085 0.141 0.264 0.075 0.069

Notes: Standard errors are reported in parentheses. The first row presents the OLS
estimate, while the second to the sixth rows present the quantile regression estimates at
the τ -th quantile for τ = 0.10, 0.25, 0.50, 0.75, 0.90.

Moreover, we highlight the critical role played by unobserved disparities in input elasticities

in plant-level investment decisions. Specifically, we find that the correlation between esti-

mated productivity and investment is notably stronger among high capital-intensive latent

type firms than among low capital-intensive type firms.

As future research topics, we may extend our framework in several directions. First, the

framework may be extended to explicitly account for plant- or firm-specific biased techno-

logical change, which may be continuously distributed. This can be achieved by integrating

the structural assumption discussed in Doraszelski and Jaumandreu (2018), Zhang (2019),

Demirer (2020), and Raval (2023) into our framework. The identification approach of this

paper—based on panel data with a Markov structure—is different from, but complemen-

tary to, the structural approaches of these existing papers. Adopting both identification

approaches simultaneously can provide an empirical framework for estimating production

functions that incorporates a broader range of unobserved heterogeneity.

Second, although we establish nonparametric identification, we employ a parametric fi-

nite mixture model for estimation due to computational complexity. An important research
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Table 9: The Effect of ωit on Investment (Electric Audio Equipment)

J = 1 J=6
Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

αjω 0.500 −0.215 −0.113 0.188 0.171 0.080 0.079
(0.110) (0.138) (0.974) (0.401) (0.079) (0.020) (0.014)

αjω(0.10) 0.002 0.002 −0.000 0.002 0.014 0.004 0.004
(0.000) (0.001) (0.000) (0.001) (0.006) (0.002) (0.003)

αjω(0.25) 0.001 0.000 0.000 0.000 0.013 0.006 0.012
(0.000) (0.002) (0.003) (0.000) (0.004) (0.003) (0.003)

αjω(0.50) 0.010 0.003 0.010 0.010 0.030 0.030 0.050
(0.001) (0.001) (0.003) (0.002) (0.006) (0.009) (0.005)

αjω(0.75) 0.028 0.016 0.031 0.039 0.048 0.071 0.074
(0.002) (0.004) (0.006) (0.007) (0.011) (0.017) (0.011)

αjω(0.90) 0.060 0.011 0.032 0.097 0.060 0.115 0.106
(0.004) (0.011) (0.014) (0.018) (0.015) (0.024) (0.028)

βjm 0.281 0.135 0.135 0.430 0.430 0.536 0.536

βjk/β
j
` 0.256 0.294 0.294 1.140 1.140 0.893 0.893

(Iit/Kit) 0.335 0.350 0.828 0.471 0.165 0.073 0.079

Notes: Standard errors are reported in parentheses. The first row presents the OLS
estimate while the second to the sixt rows present the estimates of quantile regressions at
the τ -th quantile for τ = 0.10, 0.25, 0.50, 0.75, 0.90.

direction would be to relax the parametric assumption and develop a nonparametric esti-

mator for a finite mixture model of the production function. This could be achieved, for

instance, by extending the maximum smooth likelihood estimator proposed by Levine et al.

(2011) or the estimator presented by Bonhomme et al. (2016).

Finally, the assumption of perfect competition or monopolistic competition with constant

price elasticity may not be realistic. If data on quantities and prices are available separately,

our framework can be employed to estimate the production function using the quantity of

output, instead of relying on sales as a proxy for output. However, it is frequently the case

that firm- or plant-level datasets do not contain output quantities and prices separately.

Therefore, developing a framework for concurrently identifying the production function and

demand structure from revenue data, as demonstrated in the work by Kasahara and Sugita

(2020), while incorporating unobserved heterogeneity, is an important future research topic.
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A Appendix

A.1 Proof of Proposition 1

We partition θ as θ = (θ′1, θ
′
2) with θ1 := {gvt(·), gεtζt(·),ΓM,t(·),ΓL,t(·), PL,t}Tt=1 and θ2 :=

{{Ft(·)}Tt=2, {ht(·), gη,t(·)}Tt=3}. We drop the superscript j and we have Lt = L̃t and Xt = X̃ t

because J = 1 and ψ1
t = 0 under Assumption 6.

We first prove the identification of θ1. Let (s`t, s
m
t ) = (lnS`t , lnS

m
t ) and let ∆st := s`t −

smt . Because E[smt |Xt] = ln (ΓM,t(Xt)Et[e
ε]) and E[∆st|Xt] = ln

(
ΓL,t(Xt)/ΓM,t(Xt)Et[e

ζ ]
)
,

we may identify the value of (εt, ζt) across all observations as εt = E[smt |Xt] − smt and

ζt = ∆st − E[∆st|Xt] from the second and third equations in (8), and gεζ,t(·) is iden-

tified from the identified values of (εt, ζt). The marginal density functions of εt and ζt

are also identified as gεt(ε) =
∫
gεζ,t(ε, ζ)dζ and gζt(ζ) =

∫
gεζ,t(ε, ζ)dε. Furthermore, be-

cause E[smt |Xt] = ln ΓM,t(Xt) + ln
∫
eεgεt(ε)dε, we may identify ΓM,t(Xt) as ΓM,t(Xt) =

exp
(
E[smt |Xt]− ln

∫
eεgεt(ε)dε

)
and, similarly, ΓL,t(Xt) = exp

(
E[∆st|Xt] + ln

∫
eζgζt(ζ)dζ

)
.

Given the identification of ΓM,t(X), ΓL,t(X), and gζt(·), we may identify the value of vt for

all observations as vt = lnPM,tMt − ln
(
LitΓL,t(Xt)

∫
eζgζt(ζ)dζ/ΓM,t(Xt)

)
, and the identifi-

cation of gv,t(·) follows. PL,t is identified as lnPL,t = Et[ln
(
S`tPM,tMt/S

m
t Lt

)
] given that vt

and ζt are mean zero random variables. This proves that θ1 is identified.
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We proceed to show that θ2 is identified. Fix (L0,M0) ∈ L ×M such that L0 < Lt and

M0 < Mt. Because
ΓL,t(Xt)

Lt
= ∂ lnFt(Xt)

∂Lt
and

ΓM,t(Xt)

Mt
= ∂ lnFt(Xt)

∂Mt
, we have

lnFt(Kt, Lt,Mt) =

∫ Lt

L0

ΓL,t(Kt, L,Mt)

L
dL+

∫ Mt

M0

ΓM,t(Kt, L0,M)

M
dM + lnFt(Kt, L0,M0).

(29)

It follows from (2), (29), εt = E[smt |Xt]− smt , and lnYt + smt = lnMt + ln(PM,t/PY,t) that

ωt = ỹt(Xt; θ1)− lnFt(Kt, L0,M0), (30)

where

ỹt(Xt; θ1) := lnMt+ln(PM,t/PY,t)−
{∫ Lt

L0

ΓL,t(Kt, L,Mt)

L
dL+

∫ Mt

M0

ΓM,t(Kt, L0,M)

M
dM + E[smt |Xt]

}
.

Note that, given the identification of θ1, we may identify ỹt(Xt; θ1) for each value of Xt.

Substituting the right-hand side of (30) to ωt = h(ωt−1) + ηt and rearranging terms give

ỹt(Xt; θ1) = lnFt(Kt, L0,M0) + h (ỹt−1(Xt−1; θ1)− lnFt−1(Kt−1, L0,M0)) + ηt, (31)

where the second term on the right hand side only depends on Xt−1. Fix K0 ∈ K and let

Ct := lnFt(K0, L0,M0). Then, by taking the conditional expectation given Kt and Xt−1 in

(31) and noting that E[ηt|Kt, Xt−1] = 0, lnFt(Kt, L0,M0) is identified up to constant Ct as

lnFt(Kt, L0,M0) = Ct + E[ỹt(Xt; θ1)|Kt, Xt−1]− E[ỹt(Xt; θ1)|Kt = K0, Xt−1]. (32)

It follows from the moment restriction E[ωt] = 0 with (30) and (32) that we may identify

Ct as

Ct = E {ỹt(Xt; θ1)− E[ỹt(Xt; θ1)|Kt, Xt−1] + E[ỹt(Xt; θ1)|Kt = K0, Xt−1]} .

Therefore, lnFt(Kt, L0,M0) is identified from (32), and the identification of lnFt(Lt, Kt,Mt)

for t ≥ 2 follows from (29) given that the first two terms on the right hand side of (29) is

identified from ΓL,t(Xt) and ΓM,t(Xt).

Finally, we prove the identification of gη,t(·) and ht(·). Note that the value of ωt for

all observations is identified as ωt = ỹt(Xt; θ1) − lnFt(Kt, L0,M0) for t ≥ 2. Thus, we may

identify the conditional probability density function of ωt given ωt−1, denoted by gω,t(ωt|ωt−1),

from the joint distribution of ωt and ωt−1 for t ≥ 3. Then, ht(ωt−1) is identified as ht(ωt−1) =
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Et[ωt|ωt−1] =
∫
ωtgω,t(ωt|ωt−1)dωt. Given the identification of ωt, ωt−1, and ht(·), the value

of ηt is identified as ηt = ωt− ht(ωt−1) for all observations and hence the probability density

function of ηt is identified. This proves the identification of θ2.

A.2 Proof of Proposition 2

For notational brevity, we drop the subscript from the probability density function by writing,

for example, gj
{St,X̃t}Tt=1

({st, x̃t}Tt=1) as gj({st, x̃t}Tt=1). The probability density function of

{st, x̃t}Tt=1 for type j can be written as

gj({st, x̃t}Tt=1) = gj(s1, x̃1)
T∏
t=2

gj(st, x̃t|{st−s, x̃t−s}t−1
s=1)

= gj(s1|x̃1)gj(x̃1)
T∏
t=2

gj(st|x̃t, {st−s, x̃t−s}t−1
s=1)gj(x̃t|{st−s, x̃t−s}t−1

s=1).

(33)

Define F̃ j
t (Kt,Mt, L̃t) := F j

t (Kt,Mt, e
ψjt L̃t). Similarly, define Γ̃jL,t(Kt,Mt, L̃t) := ΓjL,t(Kt,Mt, e

ψjt L̃t)

and Γ̃jM,t(Kt,Mt, L̃t) := ΓjM,t(Kt,Mt, e
ψjt L̃t). Then, we may write a system of equations (8)

as

lnYt = ln F̃ j
t (X̃ t) + ωt + εt, lnSmt = ln

(
Γ̃jM,t(X̃ t)E

j
t [e

ε]
)
− εt,

lnS`t − lnSmt = ln

(
Γ̃jL,t(X̃ t)

Γ̃jM,t(X̃ t)E
j
t [e

ζ ]

)
+ ζt, lnPM,tMt = ln

(
PL,tL̃tΓ̃

j
M,t(X̃ t)E

j
t [e

ζ ]

Γ̃jL,t(X̃ t)

)
+ ψjt + vt.

(34)

In view of the second and the third equations of (34), because εt and ζt are i.i.d. under

Assumption 2(c), we have

gj(st|x̃t, {st−s, x̃t−s}t−1
s=1) = gj(st|x̃t). (35)

Furthermore,

gj(x̃t|{st−s, x̃t−s}t−1
s=1) = gj(Kt, ωt, vt|{st−s, Kt−s, ωt−s, vt−s}t−1

s=1)

= gj(ωt, vt|Kt, {st−s, Kt−s, ωt−s, vt−s}t−1
s=1)gj(Kt|{st−s, Kt−s, ωt−s, vt−s}t−1

s=1)

= gj(ωt|ωt−1)gj(vt)g
j
t (Kt|Kt−1, ωt−1)

= gj(Kt, ωt, vt|Kt−1, ωt−1)

= gj(Kt, ωt, vt|Kt−1, ωt−1, vt−1)

= gj(x̃t|x̃t−1),

(36)
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where the first equality and the last equality hold because there is a one-to-one mapping

between X̃ t and (Kt, ωt, vt) given ψjt in view of Assumption 4(b); the third equality follows

from Assumptions 2(a) and 3(b); the fifth equality holds because vt−1 is i.i.d. and, thus,

independent of (Kt, ωt, vt). Therefore, the stated result follows from (33), (35), and (36).

A.3 Proof of Proposition 3

We apply the argument of Kasahara and Shimotsu (2009), Carroll et al. (2010), and Hu

and Shum (2012) under the assumption that unobserved heterogeneity is permanent and

discrete. The proof is constructive.

Consider the case that T = 4. For each value of z3 ∈ Z3, choose (ž2, z̄2, z̄3) ∈ Z2×Z2×
Z3, (a1, ...,aJ) ∈ ZJ1 , and (b1, ..., bJ−1) ∈ ZJ−1

4 that satisfy Assumption 7. Evaluating (10)

for T = 4 at (Z1,Z2,Z3,Z4) = (a, z2, z3, b) gives

gZ1,Z2,Z3,Z4(a, z2, z3, b) =
J∑
j=1

πjgjZ1
(a)gjZ2|Z1

(z2|a)gjZ3|Z2
(z3|z2)gjZ4|Z3

(b|z3)

=
J∑
z=1

λ̄j2(a, z2)λj3(z3|z2)λj4(b|z3),

(37)

where λ̄j2(a, z2) := πjgjZ1
(a)gjZ2|Z1

(z2|a), λj3(z3|z2) := gjZ3|Z2
(z3|z2), and λj4(b|z3) := gjZ4|Z3

(b|z3).

Similarly, evaluating (11) for T = 3 at (Z1,Z2,Z3) = (a, z2, z3) gives

gZ1,Z2,Z3(a, z2, z3) =
J∑
j=1

λ̄j2(a, z2)λj3(z3|z2). (38)

Denote qz2,z3(a, b) := gZ1,Z2,Z3,Z4(a, z2, z3, b) and q̄z2,z3(a) := gZ1,Z2,Z3(a, z2, z3). Evalu-

ating (37) at a = a1, ...,aJ and b = b1, ..., bJ−1 gives J(J − 1) equations while evaluating

(38) at a = a1, ...,aJ gives J equations.

Using matrix notation, we collect these J(J − 1) + J = J2 equations as

Qz2,z3 = Lz3Dz3|z2L̄
>
z2
, (39)
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where Lz3 , L̄z2 , and Dz3|z2 are defined in (12) while

Qz2,z3 :=


q̄z2,z3(a1) q̄z2,z3(a2) · · · q̄z2,z3(aJ)

qz2,z3(a1, b1) qz2,z3(a2, b1) · · · qz2,z3(aJ , b1)
...

...
. . .

...

qz2,z3(a1, bJ−1) qz2,z3(a2, bJ−1) · · · qz2,z3(aJ , bJ−1)

 . (40)

Let z∗3 be the value of z3 as defined in Assumption Assumption 7. For each z3, choose ž2,

z̄2, and z̄3 that satisfy Assumption 7(a)(b). Evaluating (39) at four different points, (ž2, z
∗
3),

(z̄2, z3), (ž2, z̄3), and (z̄2, z̄3) gives

Qž2,z3 = Lz3Dz3|ž2L̄
>
ž2
, Qz̄2,z̄3 = Lz̄3Dz̄3|z̄2L̄

>
z̄2
,

Qž2,z̄3 = Lz̄3Dz̄3|ž2L̄
>
ž2
, Qz̄2,z∗3

= Lz∗3Dz∗3|z̄2L̄
>
z̄2
.

Then, following the identification argument in Carroll et al. (2010), under Assumption

7(a)(c), we have

Az∗3,z3
:= Qž2,z3Q

−1
ž2,z̄3

Qz̄2,z̄3Q
−1
z̄2,z∗3

= Lz3Dz∗3,z3
L−1
z∗3
, (41)

where

Dz∗3,z3
:= Dz3|ž2D

−1
z̄3|ž2Dz̄3|z̄2D

−1
z∗3|z̄2

. (42)

We first identify Lz3 for all z3 ∈ Z3 up to an unknown permutation matrix. Evaluating

(41) at z∗3 = z3, we have

Az3,z3Lz3 = Lz3Dz3,z3 .

Because Az3,z3 has J distinct eigenvalues under Assumption 7(b), the eignvalues of Az3,z3

determine the diagonal elements of Dz3,z3 while the right eigenvectors of Az3,z3 determine

the columns of Lz3 up to multiplicative constant and the ordering of its columns. Namely,

collecting the right eigenvectors of Az3,z3 into a matrix in descending order of their eigen-

values, we identify

B := Lz3∆z3C,

where B satisfies Az3,z3B = BDz3,z3 , ∆z3 is an unknown permutation matrix, and C is

some diagonal matrix with non-zero diagonal elements.

We can determine the diagonal matrixCDz3,z3 from the first row ofAz3,z3B = BDz3,z3 =

Lz3∆z3CDz3,z3 because the first row of Lz3∆z3 is a vector of ones. Then, Lz3∆z3 is deter-

mined from Az3,z3B and CDz3,z3 as Lz3∆z3 = Az3,z3B(CDz3,z3)
−1 in view of Az3,z3B =
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Lz3∆z3CDz3,z3 . Repeating the above argument for all values of z3 ∈ Z3, the eigenvalue

decomposition algorithm identifies the matrices

L̃z3 := Lz3∆z3 for all z3 ∈ Z3, (43)

where ∆z3 is an unknown permutation matrix that depends on z3.

Next, we identify permutation matrices that re-arrange Lz3∆z3 in a common order of

latent types across different values of z3 using the identification argument in Higgins and

Jochmans (2021). Pre- and post- multiplying (41) by L̃
−1

z3
and L̃z∗3 , respectively, we have

D̃z∗3,z3
:= L̃

−1

z3
Az∗3,z3

L̃z∗3 = ∆−1
z3
Dz∗3,z3

∆z∗3
= ∆−1

z3
∆z∗3

(
∆−1
z∗3
Dz∗3,z3

∆z∗3

)
,

where the last equality uses the fact that ∆z∗3
∆−1
z∗3

is an identity matrix. Because ∆−1
z3

∆z∗3

is a permutation matrix, D̃z∗3,z3
is a matrix obtained by permutating the rows of the diag-

onal matrix ∆−1
z∗3
Dz∗3,z3

∆z∗3
. Therefore, each diagonal element of ∆−1

z∗3
Dz∗3,z3

∆z∗3
is identified

with the sum of elements in the corresponding column of D̃z∗3,z3
, and the identification of

∆−1
z∗3
Dz∗3,z3

∆z∗3
follows. Then, we may identify ∆−1

z3
∆z∗3

as ∆−1
z3

∆z∗3
= D̃z∗3,z3

(
∆−1
z∗3
Dz∗3,z3

∆z∗3

)−1

.

Therefore, Lz3 is identified up to a common permutation matrix ∆z∗3
that does not depend

on z3 from (43) as

L∗z3 := Lz3∆z∗3
= L̃z3∆

−1
z3

∆z∗3
= L̃z3D̃z∗3,z3

(
∆−1
z∗3
Dz∗3,z3

∆z∗3

)−1

. (44)

In the next step, we identify {πj, gjZ1
(z1), gjZ2|Z1

(z2|z1), gjZ3|Z2
(z3|z2), gjZ4|Z3

(z4|z3)}Jj=1

up to a permutation matrix ∆z∗3
. For this purpose, we evaluate gZ3,Z4|Z2(Z3,Z4|Z2) =∑J

j=1 π
jgjZ2,Z3,Z4

(Z2,Z3,Z4)/
∑J

k=1 π
kgkZ2

(Z2) at (Z2,Z3,Z4) = (z2, z3, b) as

gZ3,Z4|Z2(z3, b|z2) =

∑J
j=1 π

jgjZ2
(z2)gjZ3|Z2

(z3|z2)gjZ4|Z3
(b|z3)∑J

j=1 π
jgjZ2

(z2)

=
J∑
j=1

π̃jz2g
j
Z3|Z2

(z3|z2) gjZ4|Z3
(b|z3)︸ ︷︷ ︸

=λj4(b|z3)

,
(45)

where π̃jz2 := πjgjZ2
(z2)/

∑J
k=1 π

kgkZ2
(z2). Then, evaluating (45) at b = b1, ..., bJ−1 and

collecting them into a vector together with gZ3|Z2(z3|z2) =
∑J

j=1 π̃
j
z2
gjZ3|Z2

(z3|z2) gives

rz3|z2 = Lz3dz3|z2 ,= L∗z3∆
−1
z∗3
dz3|z2 (46)
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with

rz3|z2 =


gZ3|Z2(z3|z2)

gZ3,Z4|Z2(z3, b1|z2)
...

gZ3,Z4|Z2(z3, bJ−1|z2)

 and dz3|z2 =


d1
z3|z2
...

dJz3|z2

 :=


π̃1
z2
g1
Z3|Z2

(z3|z2)
...

π̃Jz2g
J
Z3|Z2

(z3|z2)

 ,

where the last equality in (46) follows from (44). Therefore, from (44) and (46), we identify

π̃jz2g
j
Z3|Z2

(z3|z2) for all values of (z2, z3) ∈ Z3 ×Z3 up to ∆z∗3
as

∆−1
z∗3
dz3|z2 :=


d
α(1)
z3|z2
...

d
α(J)
z3|z2

 =
(
L∗z3
)−1

rz3|z2 , (47)

where

α : {1, 2, ..., J} → {1, 2, ..., J}

is a permutation implied by ∆−1
z∗3

. Furthermore, because π̃jz2 =
∫
Z3
π̃jz2g

j
Z3|Z2

(z3|z2)dz3 and

gjZ3|Z2
(z3|z2) = [π̃jz2g

j
Z3|Z2

(z3|z2)]/π̃jz2 , we may identify g
α(j)
Z3|Z2

(z3|z2) from d
α(j)
z3|z2 as

g
α(j)
Z3|Z2

(z3|z2) :=
d
α(j)
z3|z2∫

Z3
d
α(j)

z′3|z2
dz′3

. (48)

Then, we may identify Dz3|z2 up to ∆z∗3
as

∆−1
z∗3
Dz3|z2∆z∗3

= diag
(
g
α(1)
Z3|Z2

(z3|z2), ..., g
α(J)
Z3|Z2

(z3|z2)
)
, (49)

and L̄
>
z2

is identified from (39), (44), and (49) up to ∆z∗3
as

∆−1
z∗3
L̄
>
z2

= (∆−1
z∗3
Dz3|z2∆z∗3

)−1
(
L∗z3
)−1

Qz2,z3 , (50)

where the invertibility of Dz3|z2 follows from Assumption 7(c).

Once Dz3|z2 and L̄z2 are identified up to ∆z∗3
as in (49)-(50), we determine `z3(z4) :=

(λ1
4(z4|z3), ..., λJ4 (z4|z3)) = (g1

Z4|Z3
(z4|z3), ..., gJZ4|Z3

(z4|z3)) for any (z3, z4) ∈ Z3 × Z4 up

to ∆z∗3
by constructing

pz2,z3(z4) := (qz2,z3(a1, z4), qz2,z3(a2, z4), ..., qz2,z3(aJ , z4))
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from the observed data, and using the relationship

`z3(z4)∆z∗3
=
(
g
α(1)
Z4|Z3

(z4|z3), ..., g
α(J)
Z4|Z3

(z4|z3)
)

= pz2,z3(z4)(∆−1
z∗3
L̄
>
z2

)−1(∆−1
z∗3
Dz3|z2∆z∗3

)−1

(51)

for all values of (z3, z4) ∈ Z3 ×Z4. Therefore, {gjZ4|Z3
(z4|z3)}Jj=1 is identified up to ∆z∗3

.

Similarly, we determine ¯̀
z2(z1) := (λ̄1

2(z1, z2), ..., λ̄J2 (z1, z2))> = (π1g1
Z2|Z1

(z2|a)g1
Z1

(z1), ...,

πJgJZ2|Z1
(z2|a)gJZ1

(z1))> up to ∆z∗3
for any (z1, z2) ∈ Z1 × Z2 from (44) and (49) by con-

structing

p̄z2,z3(z1) := (q̄z2,z3(z1), qz2,z3(z1, b1), qz2,z3(z1, b2), ..., qz2,z3(z1, bJ−1))

and using the relationship

∆−1
z∗3

¯̀
z2(z1) =


λ̄
α(1)
2 (z1, z2)

...

λ̄
α(J)
2 (z1, z2)

 = (∆−1
z∗3
Dz3|z2∆z∗3

)−1
(
L∗z3
)−1

p̄z2,z3(z1)>. (52)

Then, {πj, gjZ1
(z1), gjZ2|Z1

(z2|z1)}Jj=1 is identified up to ∆z∗3
from {λ̄α(j)

2 (z1, z2)}Jj=1 in (52)

given λ̄j2(z1, z2) = πjgjZ1
(z1)gjZ2

(z2|z1) as

πj :=

∫
Z1

∫
Z2

λ̄j2(z1, z2)dz2dz1, gjZ1
(z1) :=

∫
Z2
λ̄j2(z1, z2)dz2

πj
,

and gjZ2|Z1
(z2|z1) :=

λ̄j2(z1, z2)

πj × gjZ1
(z1)

for j = 1, ..., J . (53)

Therefore, we identify {πj, gjZ1
(z1), gjZ2|Z1

(z2|z1), gjZ3|Z2
(z3|z2), gjZ4|Z3

(z4|z3)}Jj=1 up to a

permutation matrix ∆z∗3
.

A.4 Proof of Proposition 4

We first show that PL,t and {ψjt}Jj=1 are identified from {πj, gjBt(Bt)}Jj=1. Because Ej
t [lnBt] =

ln(PL,te
ψjt ), we may have ψjt = Ej

t [lnBt] − lnPL,t for j = 1, ..., J , where Ej
t [lnBt] is iden-

tified from gjZt(Zt). Then, PL,t is identified from
∑J

j=1 π
jeE

j
t [lnBt]−lnPL,t = 1 as PL,t =∑J

j=1 π
jeE

j
t [lnBt]. Once PL,t and {ψjt}Jj=1 are identified, then repeating the argument in

the proof of Proposition 1 for each type proves the stated result.
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A.5 Proof of Proposition 5

Our panel data model belongs to a class of multivariate normal mixture models analyzed

in Chen and Tan (2009). Chen and Tan (2009) provides the consistency proof under their

conditions C1-C3 but Alexandrovich (2014) identifies a soft spot in the proof of Chen and

Tan (2009) and provides an alternative consistency proof by strengthening the condition C3

of Chen and Tan (2009).

Let Ωj be the variance matrix for the vector of random variables (ε′i, ζ
′
i,v
′, ki1, ωi1, ξ

′
i)
′ for

type j, where εi = (εi1, ..., εiT )′, ζi = (ζi1, ..., ζiT )′, vi = (vi1, ..., viT )′, and ξi = (ki2 − (ρjk0 +

ρjkkki1 + ρkωωi1), ..., kiT − (ρjk0 + ρjkkkiT−1 + ρkωωiT−1)′. Using our notations, the condition

C1-C2 in Chen and Tan (2009) and the condition C3 strengthned by Alexandrovich (2014)

are stated as follows:

C1. The penalty function is written as p̃n(θ) =
∑J

j=1 pn(Ωj).

C2. For any fixed θ with det(Ωj) > 0 for j = 1, 2, ..., J , we have p̃n(θ) = o(n) and

supθ∈Θ max{0, p̃n(θ)} = o(n). In addition, p̃n(θ) is differentiable with respect to θ and

as n→∞, ∇θp̃n(θ) = o(n1/2) at any fixed θ such that det(Ωj) > 0 for j = 1, 2, ..., J.

C3 by Alexandrovich (2014). For large enough n, pn(Ωj) ≤
(

3
4

√
n log log n

)
log(det(Ωj)),

when det(Ωj) < cn−2 for some c > 0.

The consistency and the asymptotic normality of the PMLE, θ̂, follows from Theorems 1

and 2 of Chen and Tan (2009) and Corollary 3 of Alexandrovich (2014) if we can show

that the above three conditions hold for our penalty function defined in (19). C1 triv-

ially holds with pn(Ωj) =
∑

s∈{ε,ζ,v,k,η} pn((σjs)
2; σ̂2

s,0) + pn(Σj
1; Σ̂

j

1,0). C2 also holds be-

cause ∇σjs
pn((σjs)

2; σ̂2
s,0) for s ∈ {ε, ζ, v, k, η} and ∇vech(Σj1)pn(Σj

1; Σ̂
j

1,0) are O(n−1) for σjs >

0 and det(Σj
1) > 0. For C3, suppose that (σjs)

2 < n−2 for s ∈ {ε, ζ, v, k, η}. Then,

pn((σjs)
2; σ̂2

s,0) = −n−1
{
σ̂2
s,0/(σ

j
s)

2 − log(σ̂2
s,0/(σ

j
s)

2)
}
< −nσ̂js,0+n−1 log(σ̂js,0)+n−12 log(n) <

−3
4

√
n log log n × 2 log n for large n. Similarly, we may show that, if det(Σj

1) < n−2, then

pn(Σj
1; Σ̂

j

1,0) < −3
4

√
n log log n × 4 log n for large n. Therefore, C3 holds. Consequently,

p̃n(θM) satisfies the above three conditions, and the stated result follows follows from The-

orems 1 and 2 of Chen and Tan (2009) and Corollary 3 of Alexandrovich (2014).
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B Online Appendix

B.1 Assumption 7 under Cobb-Douglas production function

In the following, we discuss the conditions under which Assumption 7 holds when the pro-

duction function is Cobb-Douglas.

Example 1 (continued). To simplify our identification analysis, we also assume the follow-

ings. First, we fix the value of {X̃ t}Tt=1 at, say, {x̃t}4
t=1 so that the variation in the values of

aj’s and bj’s are due the variation in the values of S1 and S4. Let aj = (S̄m1,j, S̄
`
1,j, x̃1)′ for

j = 1, ..., J and let bj = (S̄m4,j, S̄
`
4,j, x̃4)′ for j = 1, ..., J − 1. Second, ln S̄`4,j − ln S̄m4,j takes the

same value at ∆ lnS4 for j = 1, ..., J−1 in the values of bj’s and that ln S̄`1,j−ln S̄m1,j = ∆ lnS1

for j = 1, ..., J in the values of aj’s. Third, we assume that the probability density function

of εt does not vary across types, i.e., gjεt = gεt for all j = 1, ..., J . These assumptions impose

restrictions that make it more difficult to satisfy Assumption 7 but help the identification

argument to be transparent. Then, in view of Proposition 2, given z3 = (S3, x̃3),

λjz3(bk) = gjZ4|Z3
(bk|z3) = cj4gε4(ln(βjm,4E4[eε])− ln S̄m4,k)

with

cj4 := gj
X̃4|X̃3

(x̃4|x̃3)gjζ4
(
∆ lnS4 − ln(βj`,4/β

j
m,4E

j
4[eζ ])

)
for j = 1, ..., J and k = 1, ..., J − 1, where the dependence of cj4 on the value of x̃3, x̃4, and

∆ lnSt is implicit.

Therefore, we have

Lz3 = diag{c1
4, ...., c

J
4}


1 gε4(ln(β1

m,4E4[eε])− ln S̄m4,1) · · · gε4(ln(β1
m,4E4[eε])− ln S̄m4,J−1)

...
... . . .

...

1 gε4(ln(βJm,4E4[eε])− ln S̄m4,1) · · · gε4(ln(βJm,4E4[eε])− ln S̄m4,J−1)

 .
(54)

Similarly, given z2 = (S2, x̃2) = (Sm2 , S
`
2, x̃2), we have

λ̄j2(a, z2) = πjgjZ2|Z1
(z2|a)gjZ1

(a) = cj2g
j
ε1

(ln(βjm,1E1[eε])− ln S̄m1,k)

with

cj2 := πjgj
X̃2|X̃1

(x̃2|x̃1)gj
X̃1

(x̃1)gjζ1
(
∆ lnS1 − ln(βj`,1/β

j
m,1E

j
1[eζ ])

)
× gε2(ln(βjm,2E2[eε])− lnSm2 )gjζ2

(
ln(S`2/S

m
2 )− ln(βj`,2/β

j
m,2E

j
2[eζ ])

)
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for j, k = 1, ..., J . Therefore,

L̄z2 = diag{c1
2, ...., c

J
2}


gε1(ln(β1

m,1E1[eε])− ln S̄m1,1) · · · gε1(ln(β1
m,4E1[eε])− ln S̄m1,J)

... . . .
...

gε1(ln(βJm,1E1[eε])− ln S̄m1,1) · · · gε1(ln(βJm,4E1[eε])− ln S̄m1,J)

 .
For Assumption 7(a), we have cj2 6= 0 and cj4 6= 0 for any j when gj

X̃4|X̃3
(x̃4|x̃3) > 0,

gj
X̃2|X̃1

(x̃2|x̃1) > 0, gj
X̃1

(x̃1) > 0, gjεt(ε) > 0, and gjζt(ζ) > 0 for ε, ζ ∈ R. Note that the

value of gε4(ln(βjm,4E4[eε]) − ln S̄m4,k for j = 1, ..., J and k = 1, ..., J − 1 in the element of

Lz3 in (54) represents the value of the probability density function of lnSm4 for the j-th type

evaluated at lnSm4 = ln S̄m4,k. Therefore, the full rank condition of Lz3 holds if the value of

probability density function of lnSm4 changes heterogenously across types when we change

the value of lnSm4 . Similarly, the full rank condition of L̄z2 holds if the value of probability

density function of lnSm1 changes heterogenously across types when we change the value of

lnSm4 .

Assumption 7(b) holds if gj
X̃3|X̃2

(x̃3|¯̃x2) 6= 0 and gj
X̃3|X̃2

(¯̃x3|x̃2) 6= 0 for all j. Then, we

have

Dz3|z2(Dz̄3|z2)
−1Dz̄3|z̄2(Dz3|z̄2)

−1

= diag

{
g1
X̃3|X̃2

(x̃3|x̃2)

g1
X̃3|X̃2

(¯̃x3|x̃2)

g1
X̃3|X̃2

(¯̃x3|¯̃x2)

g1
X̃3|X̃2

(x̃3|¯̃x2)
, ...,

gJ
X̃3|X̃2

(x̃3|x̃2)

gJ
X̃3|X̃2

(¯̃x3|x̃2)

gJ
X̃3|X̃2

(¯̃x3|¯̃x2)

gJ
X̃3|X̃2

(x̃3|¯̃x2)

}
.

Therefore, Assumption 7(c) requires that
gj
X̃3|X̃2

(x̃3|x̃2)

gj
X̃3|X̃2

(¯̃x3|x̃2)

gj
X̃3|X̃2

(¯̃x3|¯̃x2)

gj
X̃3|X̃2

(x̃3|¯̃x2)
takes different values

across different j’s.

B.2 Constant Price Elasticity of Demand

In place of Assumption 5, we may alternatively consider the case where firms produce dif-

ferentiated products and face a demand function with constant price elasticity as follows.

Assumption 9 (Constant Demand Elasticity). (a) A firm faces an inverse demand function

with constant elasticity given by PY,it = Y
−1/σjY
it eε

j
d,it, where εd,it /∈ I it is an i.i.d. ex-post shock

that is not known when Mit is chosen at time t. (b) A firm is a price taker for intermediate

and labour inputs and the intermediate price and the market wage at time t, PM,t and PL,t,

are common across firms. (c) PY,it and Yit are not separately observed in the data.

Under Assumption 9, the “revenue” production function is given by PY,itYit = F
j

t(X it)e
ωit+εit ,
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where F
j

t(X it) := [F j
t (X it)]

σ
j
Y
−1

σ
j
Y , ωit :=

σjY −1

σjY
ωit, ζ it :=

σjY −1

σjY
ζit, and εit := εdit+

σjY −1

σjY
εit. Then,

in place of (8), we have

lnPY,itYit = lnF
j

t(X it) + ωit + εit, lnSmit = ln
(

Γ
j

M,t(X it)
)

+ ln
(
Ej
t [e

ε]
)
− εit,

lnS`it − lnSmit = ln

(
Γ
j

L,t(X it)

Γ
j

M,t(Xit)E
j
t [e

ζ ]

)
+ ζ it, lnPM,tMit = ln

(
PL,tLitΓ

j

M,t(X it)E
j
t [e

ζ ]

Γ
j

L,t(Xit)

)
+ vit,

(55)

where Γ
j

M,t(X it) :=
F
j
M,t(Xit)Mit

F
j
t (Xit)

and Γ
j

L,t(X it) :=
F
j
L,t(Xit)Lit

F
j
t (Xit)

. When PY,it and Yit are not

separately observed in the data, the observable implication of (55) are the same as that

of (8). In particular, we cannot separately identify the parameter σjY and the production

function F j
t . Therefore, we focus on the identification analysis under Assumption 5 although

we should be careful in interpreting the empirical result because the unobserved heterogeneity

in revenue production function could partly reflect in difference in demand elasticity.
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