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Abstract

Microeconomic theory often assumes that a producer maximizes 
its profit. As a consequence, under perfect competition, the optimal 
production amount is either zero or positive, where the latter satisfies 
the condition that the price is equal to the cost for the additional 
production amount (the marginal cost). This paper proposes two 
statistical models directly derived from this relationship and develops 
a Bayesian estimation method for the parameters included in this 
relationship. The models are applied to analyze vegetable production 
in Japan.

Keywords: producer theory; Bayesian approach; Jeffreys’ prior.

1 Introduction

Microeconomic theory for producers starts from perfect competition, where

each producer chooses its production amount given the price by maximiz-
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ing its profit. When this situation as well as the single-output technology

assumption holds, the optimal production amount is derived by solving the

profit maximization condition and either is zero or has a positive value that

satisfies the equation between the price and the production amount, where

the price is equal to the change in cost from the additional production, i.e.,

the marginal cost. When the marginal cost is high relative to the price, a

producer decides that no production amount is optimal. This paper proposes

two statistical models that describe such behavior, develops an estimation

methodology, and applies the models to the analysis of vegetable production

in Japan.

The statistical models that are directly derived from the profit maximiza-

tion condition are different from the typical regression model in two aspects.

First, no production amount is explicitly included in the model. This is

justified not only from a theoretical point of view, as explained above, but

also from an empirical point of view. No production occurs for a substantial

number of observations, as shown in the next section.

Second, the conditional distribution will be specified for the variable of

the marginal cost function. We are able to transform the model into its typ-

ical form. In the econometrics literature, the former is called the structural

model, while the latter is called the reduced form (see, e.g., Cameron and

Trivedi (2005)). Although the parameters included in these two forms are

consistent with each other, the least squares estimation does not retain this

consistency. That is, the least squares estimates for the former do not yield

the estimates for the latter when we use the relationship suggested by these

two forms. To guarantee such a parametrization invariance as well as to

address the corner solution problem, this paper takes the Bayesian approach

using the Jeffreys prior.
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The Jeffreys prior was proposed by Jeffreys (1946) in search for parametriza-

tion invariance and is widely known in Bayesian statistics for its desirable

properties, including this invariance and the ignorance of knowledge (see

Kass and Wasserman (1996)). Although this prior possesses these plausible

properties, the resulting posterior distribution in our work is difficult to tract

analytically, and we take the Markov chain Monte Carlo (MCMC) method

to approximately infer the posterior distribution (see, e.g., Gamerman and

Lopes (2006) for this method).

The proposed framework is applied to analyze vegetable production in

Japan. There are 38 vegetables in our dataset, and none are produced in

all prefectures of Japan. Such a production pattern is possibly due to cli-

matic conditions (temperature and rainfall), in addition to market conditions.

Then, if the marginal cost became low relative to the price due to global

warming, it would be possible for producers to plant vegetables that are not

produced before, as suggested by the profit maximization condition. This

aspect was first examined by Mendelsohn et al. (1994) to show the impact of

global warming on agriculture in the United States. It is also measured by

Deschênes and Greenstone (2007).

This paper is organized as follows. After the motivating dataset is exam-

ined in Section 2, Section 3 proposes two statistical models that are directly

derived from the profit maximization condition, and Section 4 describes the

Bayesian estimation method. The proposed models and method are applied

to analyze vegetable production in Japan in Section 5. Section 6 concludes

this paper.
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2 Vegetable production in Japan

The motivating data are the vegetable production data in Japan aggregated

at the prefecture level in 2018, which will be analyzed in Section 5. The data

are collected by the Ministry of Agriculture, Forestry and Fisheries, Japan,

and consist of 47 prefectures, each of which contains about five thousand

to about forty-five thousand agricultural units, about twenty thousand units

on average, according to the 2020 Census of Agriculture and Forestry. Each

prefecture records the production amount of 38 vegetables. This amount is

different from the one sold in the market. Of 1, 786 (= 47×38) observations,

900 reports no production amount. Table 1 summarizes their distribution.

From this table, no production is observed in about 24 prefectures on average

Table 1: Distribution observations of no production amount

Minimum First quartile Mean Third quartile Maximum

By vegetables 2 18.75 23.68 32.75 40

By prefectures 4 15 19.15 24 31

for each vegetable.

Such observations of no production occur partly because of the producer’s

response to climatic and market conditions. If the price were sufficiently

high after taking account of these costs, all types of vegetables would be

produced in positive amounts. This aspect is incorporated by resorting to the

producer’s profit maximization problem derived from microeconomic theory.

However, its direct application causes a statistical invariance problem, as

discussed in the following two sections.
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3 Profit maximization condition and statisti-

cal models

Two statistical models will be described in this section. Both of them are

derived from the profit maximization condition but based on different spec-

ifications of the cost function. These models are relatively simple and they

ignore several issues. They will be discussed later in this section.

The first model is given bypi + λi = β0 + x′
iβ + ui, if yi = 0,

pi = αyi + β0 + x′
iβ + ui, if yi > 0,

(1)

where subscript i denotes the i-th observational unit (i = 1, . . . , n). In the

empirical analysis given in Section 5, the observational unit is the prefecture

and n = 47 given each vegetable. In this model, yi is the production amount,

pi is the price, and xi is the k-dimensional covariate vector. The error term

ui is assumed to follow a normal distribution with mean 0 and variance σ2,

i.e., N(0, σ2).

The model parameters are (α, β0,β, σ
2, {λi}i∈C0), where C0 is a set of

observational units whose yi is zero, i.e., C0 = {i | i = 1, . . . , n and yi = 0}.

The parameter λi is the premium additive to the price for a producer to start

production. The parameter σ2 is the nuisance parameter, while the other

parameters are the parameters of interest, i.e., the structural parameters.

We assume both α and λi to be positive. This assumption arises naturally

from the theory related to our statistical model, which is explained later, and

is incorporated as prior knowledge.

This statistical model is structural because it is directly derived from mi-

croeconomic theory. In the theory, under perfect competition, given the price
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p, a producer with a single-output technology chooses the production amount

y that maximizes its profit subject to the following nonnegative constraint:

max
y

p · y − C(y), subject to y ≥ 0,

where C(y) is the cost function. Then, its first-order condition is given byp+ λ = C ′, if y = 0,

p = C ′, if y > 0,

(2)

where C ′ is the derivative with respect to y (the so-called marginal cost

in economics) and λ > 0 is the Lagrange multiplier. This is the direct

result of the Karush-Kuhn-Tucker theorem. While Hall (1988) empirically

suggests that this condition does not hold in the U.S. industry, no structural

alternative seems to be plausible for our motivating dataset. Thus, we take

it as the foundation of our analysis.

In this condition, it is the production amount that is decided. The La-

grange multiplier is sometimes called the shadow price in microeconomic the-

ory. Under some regularity conditions, it is equal to the infinitesimal change

in the nonnegative constraint. See, e.g., Mas-Colell et al. (1995) for detailed

explanations of the shadow price and the producer’s theory. By assuming

that the marginal cost function (C ′) is linear in the production amount and

is observed with an additive normal error, we have statistical model (1) as a

natural consequence of the microeconomic theory for producers.

The relationship between the microeconomic theory provided above and

model (1) implies the four following points. First, because the right-hand side

of (1) is the marginal cost function, yi and xi are variables that determine

the marginal cost. Second, the positive constraints on α and λi are reason-

able because the marginal cost usually increases as the production amount
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increases and because no production amount occurs when the marginal cost

is more than the price, respectively.

Third, the error term represents variations in the omitted variables and

the deviation from the first-order approximation of the marginal cost function

(i.e., the second- and higher-order terms). It would be more rigorous to

truncate the distribution because it is the difference between the price and

the specified marginal cost function. Regarding this point, we note that the

next model (4) addresses this issue, and we provide a more detailed discussion

below.

Fourth, the dependent variable is not pi but yi. This aspect requires

special care when we estimate the model parameters. A similar and familiar

form is the Tobit regression model, where yi is on its left hand, which is given

by

yi = max{y∗i , 0},

y∗i = δ0 + γpi + x′
iδ + vi,

(3)

where y∗i is the latent production amount and the error term vi is assumed to

follow a normal distribution with mean 0 and variance τ 2 (see Chib (1992)

for its Bayesian estimation method). Both model (1) and model (3) should

be consistent with their theoretical origin, model (2). That is, the model

parameters (α, β0,β, σ
2, {λi}) and (γ, δ0, δ, τ

2, {y∗i }) are consistent with each

other. Such consistency is easier to implement in the Bayesian estimation.

Section 4 discusses this aspect further.

The second model is given bylog pi + λi = β0 + x′
iβ + ui, if yi = 0,

log pi = α log yi + β0 + x′
iβ + ui, if yi > 1.

(4)

Because this model is essentially the same from a statistical point of view,

we reuse the parameters. However, their interpretation is different, e.g., λi is
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not the additive premium but the logarithm of the multiplicative premium to

start production. In addition, the production amount jumps from yi = 0 to

yi = 1 as the price rises. Then, the term on the left-hand side, β0+x′
iβ+ui if

yi = 0, becomes the logarithm of the so-called shutdown price in economics.

A possible source of this jump is the nonsunk fixed cost to produce the

amount of the first unit (see Mas-Colell et al. (1995)). From the perspective

of microeconomic theory, the log model (4) is more reasonable in agriculture

than the linear model (1) because agriculture usually requires the rental and

depreciation costs regardless of the production amount.

These two models have advantages and weak points. The linear model

is a direct derivation from the profit maximization condition and puts no

constraints on the measurement unit. However, it requires a truncation,

such as I(pi − β0 − β′xi > ui) for yi > 0, as discussed above. A similar

truncation occurs under the reduced form, which leads to the complicated

Jeffreys prior, as noted in Chib (1992) and Amemiya (1973). Further, Angrist

(2001) discusses that the marginal effect without truncation on the dependent

variable is estimated to be similar to the marginal effect with truncation.

Therefore, we do not incorporate this truncation in the linear model to avoid

such a complication.

The log model has a jump, as described above, and requires no truncation

of the error term. However, it requires a constraint on the measurement unit.

The unit should be selected as long as it satisfies yi > 1 for all observations

with a positive production amount. This holds in our empirical dataset, the

minimum of which is 47.

The linear and log models are different with respect to the cost func-

tion that they are based on. When the cost function is specified as a

quadratic function of the production amount, we obtain the linear model.
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When logC(y) = a + b log(y), the marginal cost function is C ′ = bC(y)/y,

leading to

logC ′ = a+ log(b) + (b− 1) log(y).

Thus, it is straightforward to obtain the log model (4) with this specific

cost function. Model selection between these two models by the deviance

information criterion (DIC) proposed by Spiegelhalter et al. (2002) will be

conducted in Subsection 5.2 with the empirical dataset.

Four issues related to the proposed statistical models are discussed. First,

the decision on the production amount is usually made before the actual equi-

librium is observed, and it might be more reasonable to use the expectation

of the price instead of its current values (the price contemporaneous with the

production amount), provided there is no uncertainty about the production

amount. A possible explanation for this situation is the rational expectation

assumption where expected values are observed.

This paper assumes the rational expectation, mainly because Cooley and

DeCanio (1977) and Goodwin and Sheffrin (1982) empirically showed that

this assumption is consistent with agricultural data. In addition, Subsection

5.4 uses the previous price instead of the current one and shows that this

change has little influence on the inferences about the parameters of interest.

The decision under uncertainty would be another aspect to consider.

Sandmo (1971) proposes its analytical framework, while Pope and Chavas

(1994), Pope and Just (1996), and Moschini (2001) provide its empirical

specifications. However, to keep the models as simple as possible and to

avoid misspecifying the structure based on expectation, we do not pursue

this aspect in this paper.

Second, model parameter estimates can suffer from the endogeneity bias.

As an example, consider a factor that relates to the economic environment. It
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may also relate to the producer’s technology, so that the error term correlates

with the factor that relates to the economic environment if such a factor

is excluded from the model. On the other hand, this factor also affects

the demand, so that the price is likely to correlate with this factor. Then,

this factor omitted from the model causes the endogeneity bias on model

parameter estimates. When we assume that the technology is independent

of such a factor, it is not a problem. The short-run analysis is a case where

this assumption holds because the technology does not change so quickly.

Third, the marginal cost function is specified as linear in the production

amount, even after taking logarithms. An alternative is its nonparametric

estimation proposed by Hall and Yatchew (2007). Our specification can be

considered to be its first-order approximation. Estimation with higher-order

terms complicates the estimation methodology, and we leave it for a future

work.

Finally, the substitution between vegetables is ignored in this model.

Thus, as the theoretical foundation, we assume a producer with a single-

output technology. Depending on the application context, the substitution

would be of interest. A theoretical framework for this case is the one proposed

by Pfouts (1961), where a firm produces many products. Such a situation is

observed in the manufacturing industry, and is examined by Bernard et al.

(2010) with a continuum of products. A possible empirical specification is

proposed by Just et al. (1983), useful for the inner solution.

In our model, such an aspect can be incorporated when the land is in-

cluded in the profit maximization condition. We do not include it by as-

suming that the producer has the unlimited access to the land. As in our

empirical analysis, this assumption is reasonable when the production unit

is the prefecture, which can be considered to have enough land.

10



4 Bayesian estimation

This section describes the Bayesian estimation of the linear model (1). The

estimation of the log model (4) can be implemented in a similar way, which

will not be described in this paper (see Remark 1 below).

The likelihood function under the linear model (1) is proportional to

f
(
{yi}ni=1 | α, β0,β, σ2, {λi}i∈C0 , {pi,xi}ni=1

)
∝ |α|n1

(
σ2
)−n/2

× exp

− 1

2σ2

∑
i∈C0

(
pi + λi − β0 − x′

iβ
)2

+
∑
i∈C1

(
pi − αyi − β0 − x′

iβ
)2

 ,

where C1 is the complement of C0, i.e., C1 = {i | i = 1, . . . , n and yi > 0}

and n1 = |C1|. The design matrices Z, X1, and X2 are assumed to be of

full column rank, where Z has (1,x′
i) for its i-th row (i = 1, . . . , n), X1 has

(pi, yi, 1,x
′
i) for its i-th row (i ∈ C1), and X2 has (pi, 1,x

′
i) for its i-th row

(i ∈ C0).

Remark 1. For the log model, change (pi, yi) to (log pi, log yi) and modify

C1 = {i | i = 1, . . . , n and yi > 1} to have the likelihood with respect to

{log yi}ni=1. Then, the following discussion holds similarly.

The prior density function is assumed to be

π
(
α, β0,β, σ

2, {λi}i∈C0
)
∝ 1

α
I (α > 0)

1

(σ2)(k+4+n0)/2
I
(
σ2 > 0

)
×

{
1

σ2
+

q21
2n1

(
1− n1

n

)}1/2 ∏
i∈C0

I (λi > 0) , (5)

where n0 = |C0| and

q21 =
∑
i∈C1

p2i −
∑
i∈C1

z′
ipi

(∑
i∈C1

ziz
′
i

)−1∑
i∈C1

zipi.

We use I(A) as the indicator function, where I(A) = 1 if A is true and

I(A) = 0 otherwise. This prior is a product of the prior knowledge of the sign
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constraint and the so-called Jeffreys prior derived from the structural model

(1). Appendix A provides its derivation. The Jeffreys prior is often used in

the objective Bayes literature and considered to be one of the noninformative

priors (see, e.g., Kass and Wasserman (1996)). Because a noninformative

prior does not necessarily lead to a proper posterior distribution, the proof

of its properness is given in Appendix B.

One main advantage of the Jeffreys prior is its invariance to parameter

transformation. The proposed statistical model has another parametrization,

where yi is on the left-hand side (3). Both parametrizations should lead to

posterior distributions that are consistent with each other after the appropri-

ate parameter transformation. Otherwise, the prior distribution under one

model introduces prior knowledge that is different from that under the other

model. Such invariance is a desirable property for the statistical inference of

our models. This paper focuses on the parametrization of model (1) and its

Jeffreys prior because its statistical inferences are easier to conduct.

Our prior specification has a side effect. Eaton and Sudderth (2010) show

that the Jeffreys’ prior corresponds to the left-invariant Haar measure in the

invariance situation (see their Theorem 3.7). This implies that the resulting

estimator is invariant according to the linear unit transformation (from ton

to kilogram, for example). Because the choice of unit is arbitrary in our

empirical application, this property is plausible.

To conduct inferences, we apply the Gibbs sampler (one of the Markov

chain Monte Carlo methods) to approximately infer the posterior distribu-

tion. It is implemented in the following six-step algorithm.

Step 1. Initialize the model parameters (α, β0,β, σ
2, {λi}i∈C0).

Step 2. Generate α conditional on β0,β, σ
2, {λi}i∈C0 .
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Step 3. Generate (β0,β) conditional on α, σ2, {λi}i∈C0

Step 4. Generate σ2 conditional on α, β0,β, {λi}i∈C0 .

Step 5. Generate λi conditional on α, β0,β, σ
2 for i ∈ C0.

Step 6. Repeat Step 2 through Step 5.

Because the conditional densities used in Steps 2 and 4 are nonstandard, we

use the Metropolis-Hastings algorithm to generate a random sample from

them. For Step 2, the Laplace approximation based on the Taylor series

expansion of its logarithm around the mode is applied (see Tierney and

Kadane (1986)). For Step 4, a mixture of inverse gamma distributions is

used as the proposal distribution. For details of the full conditional posterior

density functions used in this Gibbs sampler, see Appendix C.

5 Empirical analysis of Japanese vegetable

production

This section analyzes the prefecture-level vegetable production data in Japan

in 2018. As stated in Section 2, 38 vegetables are included in the analysis,

and they are separately analyzed by applying the models described in Section

3.

5.1 Data description

The variables to be used for the analysis are the production amount, the

price, and climate-related variables. See also Section 2 for the source of the

dataset. The measurement unit for the production amount and the price

are ton and Japanese yen per kilogram, respectively. The price variable is
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the one reported at the wholesale market. When a prefecture has more than

one market, we average the prices by using their sales amount at markets as

weight. For the climate-related variables, three variables are selected, i.e, the

average temperature x1, the average rainfall x2, and the average number of

hours of sunlight x3, collected by the Japan Meteorological Agency. Although

these variables vary even within a prefecture, we use the ones reported at

the meteorological observatory closest to the prefectural capital.

Wage and the rental cost of capital would be reasonable candidate vari-

ables for the marginal cost function. However, they are not available in Japan

partly because most agricultural units are family-based (about 96.4% of them

are owned by an individual according to the 2020 Census of Agriculture and

Forestry), so that wage and the rental cost of capital are difficult to measure

for such a unit.

Because the log model (4) is preferred to the linear model (1) in terms

of DIC, as shown later, the logarithm of the production amount and price

are summarized in the form of a boxplot by each vegetable in Figures 1

and 2. The box gives the interquartile range (IQR) between the first and

third quartiles with a line at the median. The two whiskers are the 1.5-

IQR length, and observations outside the whiskers are given by dots. When

observations are within the 1.5-IQR length, the whiskers are stretched at the

maximum/minimum.

Summary statistics of the climate-related variables are given in Table 2.

5.2 MCMC settings and model selection

For all vegetable data, we estimate the model parameters by the MCMC

method described in the previous section. Discarding the first 10,000 sam-

ples, the subsequent 100,000 samples are generated, and every 5-th sample
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Figure 1: Log production amount by vegetables.

3

4

5

6

7

8

9

as
pa

ra
gu

s
br

oc
co

li
bu

rd
oc

k
ca

bb
ag

e
ca

rr
ot

ca
ul

ifl
ow

er
ce

le
ry

ch
. c

ab
ba

ge
ch

. l
ee

k
ch

in
ge

ns
ai

cu
cu

m
be

r
eg

gp
la

nt
ga

rli
c

gi
ng

er
ho

ne
w

or
t

ja
. r

ad
is

h
ki

dn
ey

 b
ea

n
ko

m
at

su
na

le
ttu

ce
lo

tu
s 

ro
ot

m
el

on
m

iz
un

a
on

io
n

pe
a

po
ta

to
sh

un
gi

ku
so

yb
ea

n
sp

in
ac

h
sq

ua
sh

st
ra

w
be

rr
y

sw
ee

t c
or

n
sw

ee
t p

ep
pe

r
ta

ro
to

m
at

o
tu

rn
ip

w
at

er
m

el
on

w
el

sh
 o

ni
on

ya
m

lo
g 

pr
ic

e 
[lo

g(
ye

n/
kg

)]

Figure 2: Log price by vegetables.

is selected to have 20,000 samples. They are used to conduct the follow-

ing statistical inferences. The inefficiency factor is used to check whether the

number of MCMC samples is high enough (see Chib (2004) for this measure).
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Table 2: Summary statistics of the climate-related variables

Unit Minimum First quartile Mean Third quartile Maximum

average temperature (x1)
◦C 9.55 15.38 16.10 17.31 23.51

average rainfall (x2) mm 2.27 3.74 4.87 5.47 8.68

average hours of sunlight (x3) hour 4.18 5.20 5.67 6.13 6.55

All inefficiency factors are less than 50.

We compare the model fitting between the linear and log models by DIC.

We note that the likelihood with respect to yi is used for DIC, so that it

is comparable between both models. After the MCMC samples are divided

into ten equally sized groups, DIC is estimated for each group. Their aver-

age and standard deviation are an estimate of DIC and its standard error,

respectively. Judging from the estimated DIC, the log model is preferred,

because the minimum difference is about 18, with a standard error of about

0.43, and the other standard errors are less than 1.

5.3 Analysis of the model parameters

Figure 3 shows boxplots of the (marginal) posterior distributions of the av-

erage of exp(λi), that is, λ̄ = 1
n0

∑
i∈C0 exp(λi), for all vegetables. Each box

represents the first and third quartiles with a line at the mean, and both

ends of the whiskers show the 95% credible interval.

As the log model is used, this average can be interpreted as the average

(multiplicative) premium price to start production scaled by the price. The

premium differs across vegetables, reflecting their economic and agricultural

environment. Most premium prices are around 1.2, and they are less than

about 1.8.

Figure 4 shows the marginal effect of the average temperature on the
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Figure 3: Premium.

marginal cost. Boxplots are drawn in the same manner as the ones in Fig-
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Figure 4: Marginal effect of the average temperature.

ure 3. This figure suggests that the association between the marginal cost

and the average temperature is nonuniform among vegetables. In its Sixth
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Assessment Report by Working Group II, the Intergovernmental Panel on

Climate Change reports that the average temperature will rise by about 1.5

to 5 ◦C in 2100 compared with the one in 1850–1900 (see Pörtner et al.

(2022)). Our result suggests that its influence on vegetable production varies

according to the type of vegetable.

To see this more clearly, we divide the vegetables into two groups ac-

cording to their marginal posterior probabilities of β1. For each vegetable,

we estimate its posterior probability that its β1 is positive/negative, i.e.,

Pr(β1 > 0 | data) or Pr(β1 < 0 | data). When the probability is more

than 0.95, it is credible that the average temperature has a positive/negative

association with the marginal cost. The results are given in Table 3.

Table 3: Marginal posterior probability of β2

Positive Negative

burdock, cucumber, potato, welsh

onion, onion, sweet corn, soybean,

yam

asparagus, chingensai, ginger, kid-

ney bean, komatsuna, lettuce, lotus

root, pea, shungiku, taro

The posterior summary for the remaining model parameters is provided

in Appendix D.

5.4 Examination of the rational expectation assump-

tion

The result above relies on the rational expectation assumption, as discussed

in Section 3. To examine whether this assumption is reasonable, we use

the price in 2017 instead of 2018 and see how this assumption affects the

18



result. The same prior and MCMC settings as for the log model are used to

generate 20,000 samples. Figure 5 shows the comparison of posterior means

with the datasets in 2017 and 2018, overlaying the 45-degree line, for all

model parameters. Judging from the posterior mean, the two results are

mostly similar because most points gather around the 45-degree line and no

systematic deviation from the line exists. Therefore, we conclude that relying

on the rational expectation assumption would be reasonable, at least for this

dataset.

6 Discussion

This paper proposed two statistical models that are derived from the pro-

ducer’s profit maximization condition. To estimate the model parameters, we

take the Bayesian approach using the Jeffreys prior to guarantee parametriza-

tion invariance between the structural and reduced forms. The proposed

models and estimation method are applied to analyze vegetable production

in Japan. The analysis estimates the premium price to start production and

the impact of the average temperature rise on the production amount. The

latter shows a nonuniform influence of global warming on vegetable produc-

tion.

To analyze the impact of global warming more accurately, we need other

information, such as the demand structure. In addition, as discussed in the

previous section, the substitution between agricultural products is another

factor to incorporate when we analyze the impact, which can be addressed

by the panel dataset. Finally, relaxing the assumption of perfect competition

would be useful when our framework is applied to another industry. Imple-

menting the above points requires a complication of our methodology and
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will be addressed in future works.

A Jeffreys’ prior

The Jeffreys prior is proportional to the square root of the determinant of the

Fisher information matrix. To this end, the following formula for the deter-

minant of a partitioned matrix is applied: |A| = |A11||A22 −A21A
−1
11 A12| =

|A22||A11 −A12A
−1
22 A21|, where

A =

A11 A12

A21 A22

 .

See, e.g., Abadir and Magnus (2005) for a proof of this formula.

The Fisher information matrix for the linear model is given by

F = −E

∂2 log f
∂ζ∂ζ′

∂2 log f
∂ζ∂λ′

∂2 log f
∂λ∂ζ′

∂2 log f
∂λ∂λ′

 ,

where ζ = (α, σ2, β0,β
′)′ and λ = (λi)i∈C0 . The expectation is over the

conditional distribution of yi (i = 1, . . . , n). This is a partitioned matrix,

where Fij is its (i, j) block element for i, j = 1, 2. After some calculations,

we have

F11 =


2n1

α2 + 1
α2σ2

∑
i∈C1 d

2
i − n1

ασ2
1

ασ2

∑
i∈C1 z

′
idi

− n1

ασ2
n

2(σ2)2
0

1
ασ2

∑
i∈C1 zidi 0 1

σ2

∑
i ziz

′
i

 ,

F22 =
1

σ2
In0 ,

F12 = F ′
21 =


0′

0′

− 1
σ2zi

 ,
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where z′
i = (1,x′

i), In0 is the n0-dimensional unit matrix, the index i in F12

is over i ∈ C0, and

di =

pi + λi − β0 − x′
iβ, if i ∈ C0,

pi − β0 − x′
iβ, if i ∈ C1.

(6)

Then,

F11 − F12F
−1
22 F21 =


2n1

α2 + 1
α2σ2

∑
i∈C1 d

2
i − n1

ασ2
1

ασ2

∑
i∈C1 z

′
idi

− n1

ασ2
n

2(σ2)2
0

1
ασ2

∑
i∈C1 zidi 0 1

σ2

∑
i∈C1 ziz

′
i

 .

After combining all the expressions above and picking up the terms that

include the model parameters, we have

|F | =

∣∣∣∣∣∣
n

2(σ2)2
0

0 1
σ2

∑
i∈C1 ziz

′
i

∣∣∣∣∣∣×
{
2n1

α2

(
1− n1

n

)
+

1

α2σ2
q21

}

∝ 1

α2 (σ2)k+4+n0

{
σ2 +

q21
2n1

(
1− n1

n

)} .

Therefore, we have the Jeffreys prior found in Equation (5).
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B Properness of the posterior distribution

This section will give a proof that the posterior distribution that uses Prior

(5) is proper. The posterior density is proportional to

π
(
α, β0,β, σ

2, {λi}i∈C0
)
∝|α|n1−1

(
σ2
)−(k+n0+n+4)/2

exp

{
− 1

σ2

n∑
i=1

(di − αyi)
2

}

× I (α > 0) I
(
σ2 > 0

){ 1

σ2
+

q21
2n1

(
1− n1

n

)}1/2

×
∏
i∈C0

I (λi > 0)

<|α|n1−1
(
σ2
)−(k+n0+n+4)/2

exp

{
− 1

σ2

n∑
i=1

(di − αyi)
2

}

× I (α > 0) I
(
σ2 > 0

) 1

σ
+

q1√
2n1

(
1− n1

n

)


×
∏
i∈C0

I (λi > 0) .

Our proof shows that the integral of the function on the most right-hand side

over its parameter space is finite.

With the rank condition, two normalizing constants from the inverse

gamma distribution and the Arellano-Valle and Bolfarine generalized t dis-

tribution are finite. Then, we have∫
π
(
α, β0,β, σ

2, {λi}i∈C0
)
dσ2dβ0dβ <(some finite constant)

× |α|n−1 (e′Me)
−(n0+n+1)/2

,

where M = In−Z(Z ′Z)−1Z ′, e is the n-dimensional vector whose i-th row

is defined as

ei =

pi + λi − αyi, if i ∈ C0,

pi − αyi, if i ∈ C1.
(7)
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Let

f (α, {λi}i∈C0) =
(
α2
)(n−1)/2

(e′Me)
−(n0+n+1)/2

.

This function is integrable on any compact subset A of the nonnegative

orthant because of the following three reasons: (i) |α|(n−1)/2 is continuous

and closed on A, (ii) e′Me is so as well, and (iii) e′Me > 0 because of the

rank condition.

Further, let

g (α, {λi}i∈C0) =
(
∥ξ∥2

)(n−1)/2
(e′Me)

−(n0+n+1)/2
,

where ξ = (α, {λi}i∈C0) and ∥ξ∥ is the Euclidean norm of ξ. It is clear that

f ≤ g for any possible value of ξ. This function is integrable on A.

We will show that g = O(∥ξ∥−(n0+2)), where the order notation denotes

|g| ≤ M∥ξ∥−(n0+2) for some constantM . The polar coordinate representation

of ξ leads to

∥ξ∥2

e′Me
=

dr2

a+ br + cr2
,

where a, b, c, d are some functions of triangular functions and r is the radial

distance from the origin. We note that cr2 = (e − p)′M (e − p), where

p = (p1, . . . , pn)
′. By the rank condition, cr2 > 0. So c ̸= 0 as long as r > 0.

Then, the left-hand side converges to 1/c as ∥ξ∥ goes to infinity. Because

g ×
(
∥ξ∥(n0+2)

)
=

(
∥ξ∥2

e′Me

)(n0+n+1)/2

,

we have the result.

Because the order result shows that g is integrable over the nonnegative

orthant, f is so as well, which completes the proof.
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C Full conditional posterior density functions

First, the full conditional posterior density for α is proportional to

π
(
α | β0,β, σ2, {λi}i∈C0

)
∝ |α|n1−1

× exp

[
− 1

2σ2

{
α2

(
n∑

i=1

y2i

)
− 2α

(
n∑

i=1

yidi

)}]

= |α|n1−1 exp

(
−R

2
α2 +Qα

)
,

where Q = σ−2
∑n

i=1 yidi (see Equation (6) for di) and R = σ−2
∑n

i=1 y
2
i .

This conditional density is nonstandard, and we apply the Metropolis-Hastings

(MH) algorithm to draw a sample from it.

The proposal used in this step is derived as follows. The mode of this

conditional density is

m =
Q+

√
Q2 + 4R (n1 − 1)

2R
,

and the second derivative of the log conditional density is given by

H = −n1 − 1

m2
−R.

Then, the Taylor series expansion of the log conditional density around the

mode gives the proposal TN(0,∞)(m,−H−1), where TNS(µ, τ
2) denotes the

truncated normal distribution with mean µ and variance τ 2 on support S.

Let α(−1) and α̃ be the sample recorded in the previous Markov chain and

the candidate drawn from the proposal density, respectively. The candidate

is accepted with probability

min

[
1,

g (α̃)

g (α(−1))

]
,

where

g (α) = |α|n1−1 exp

{
−1

2
(R +H)α2 + (Q+mH)α

}
.
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Next, because the full conditional density for σ2 is also nonstandard, the

MH algorithm is applied as well. The proposal for this generation is a mixture

of the inverse gamma distributions IG(r1/2, S1/2) and IG((r1 + 1)/2, S1/2)

with the respective weights w and 1 − w, where r1 = k + 2 + n + n0, S1 =∑n
i=1(di − αyi)

2, and

w =
q1

q1 +
√

2n1

(
1− n1

n

) .
The acceptance probability for a candidate σ̃2 in terms of the previous sample

σ2,(−1) is given by

min

[
1,

g (σ̃2)

g (σ2,(−1))

]
, where g(σ2) =

√
(1− w)2 + w2σ2

1− w + wσ
.

The remaining full conditionals used in the Gibbs sampler are all stan-

dard. That is,

(β0,β
′)
′ | α, σ2, {λi}i∈C0 ∼N (b1,B1) ,

λi | α, β0,β, σ
2 ∼TN(0,∞)

(
−pi + αyi + β0 + x′

iβ, σ
2
)
,

where z′
i = (1,x′

i), B
−1
1 = σ−2

∑n
i=1 ziz

′
i, and b1 = σ−2B1

∑n
i=1 eizi (see

Equation (7) for ei).

D Analysis of other parameters

The regression coefficients except for the intercept are summarized in Figure

6. The broader credible interval for α is attributed to the larger number of

prefectures of no production. The intercept and standard error of regression

are summarized in Figure 7.
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Figure 6: Posterior summary I.
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Figure 7: Posterior summary II.
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