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Abstract

We consider a principal-agent model in which the principal can terminate the agent’s
project and an outsider can affect the project’s result. Only the agent can observe the out-
sider’s action and sends a message to the principal. Under strategic uncertainty about the
outsider’s action in complete information, sequential equilibrium is a suitable equilibrium
concept to select the robust outcome and to completely identify the underlying posterior
belief. We prove the revelation principle for sequential equilibrium in such a game. Based
on this revelation principle, we present a legitimate and simple form of the limited liability
constraint on a financial contract that is robust to strategic uncertainty.
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1 Introduction

In this paper, we show a version of revelation principle in a special class of complete but im-
perfect games with a principal, an agent and an “outsider.” The agent has a plan of a project
and needs the principal’s approval (for investment, permit, etc.) to launch and continue it;
to get approval, the agent promises to pay to the principal from the future profit. Only the
agent can observe the action of the outsider, which affects the agent’s profit and liquidity hold-
ing. Termination or continuation of the project also affects the outsider’s profit. Unlike the
standard version of revelation principle,1 private information is the outsider’s action and thus
an endogenous variable in the model. We verify that any outcome in a sequential equilib-
rium under an arbitrary mechanism can be truthfully implemented under a version of a di-
rect mechanism; this is our revelation principle. The “outcome” includes not only the ex-ante
unconditional probability with which the project continues but also the interim continuation
probability conditional on the outsider’s action. Hence the outsider chooses the same strategy.

The motivation comes from theory of financial contracts under product market competi-
tion.2 It is common in the analysis of financial contracts to impose limited liability constraint,
which restricts monetary payment to within the borrower’s liquidity holding. The liquidity
holding is uncertain if the profit is unobservable or unverifiable. Revelation principle allows
us to focus on equilibrium in a direct mechanism, where the borrower truthfully and directly
tells his private information and consequently his liquidity holding is uniquely inferred from
the message. It is common to assume exogenous fundamental uncertainty, e.g., about produc-
tivity or success of R&D so we use Bayesian Nash or perfect Bayesian equilibrium as a solu-
tion. However, one may want to focus on strategic uncertainty about the rival firm’s strategy
to shed light on effects of competitive pressure on the entrant’s financing. Then, the game is
of complete but imperfect information and the agent’s private information is generated by the
outsider of the contract. This is the difference from the standard version of revelation principle
under incomplete information games.

In our model, truthful implementation should induce the agent to truthfully report the
outsider’s action and the principal to believe it, whatever the outsider’s action is—especially
even if the reported action of the outsider is out of the equilibrium path of play. We explic-
itly specify the belief that the agent’s message implies about the outsider’s action. Applied
game theorists may conventionally focus on pure-strategy equilibria; then only one action is
realized in equilibrium play. But we need to determine all the off-path belief. So we adopt
the concept of sequential equilibrium: we introduce perturbation to strategies, which enables
us to wholly determine the belief by Bayes’ law. An equilibrium configuration of strategies
and belief is defined as the limit of a sequence of perturbed equilibria. The perturbation can
be seen as representing strategic uncertainty. Even though the players play and believe in the

1For the formal statement and the proof, see Fudenberg and Tirole (1991, Section 7.2) for instance. In the context
of mechanism design, see Diamantaras et al. (2009) for the revelation principles for dominant strategy equilibrium
and Baysian Nash equilibrium. Bester and Strausz (2001) prove a version for perfect Bayesian equilibrium with
renegotiation of a contract.

2For example, Bolton and Scharfstein (1990), Aghion et al. (2000), Poitevin (1989). They analyze the relationship
between financial contracts and competitive pressure in the framework of Bayesian games: they embed uncertainty
in the economy’s fundamental such as demand and cost functions and solve perfect Bayesian Nash equilibrium.
See Tirole (2006, Section 7.1) for the survey of such models.
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strategy profile in the sequential equilibrium, they fear possibility that the opponents could
deviate from it. Sequential equilibrium imposes robustness to such strategic uncertainty on
the equilibrium play.

Based on our version of revelation principle, we can extend the limited liability constraint
to our situation. As long as a message allows continuation of the project—even if this mes-
sage is never sent in the equilibrium play, the future profit and thus the liquidity holding are
uniquely inferred from the message. The limited liability constraint restricts the repayment
promised by such a message to within the liquidity holding inferred from this message. This can
be interpreted as if the lender and the borrower realize a possibility that the outsider could
take a non-equilibrium strategy and make the promised repayment still payable even if the
outsider deviates from the equilibrium strategy. In short, our version of limited liability con-
straint makes the contract robustly feasible under strategic uncertainty.

In the analysis of effects of product market competition on financial contracts, the core of
the analysis would be the condition for the borrower to successfully launch and continue his
business. In our terms, the most interesting case would be an equilibrium play in which the
agent continues the project. Precisely our truthful implementation requires truthful and direct
announcement only when the project continues, leaving his announcement unchanged from
the original equilibrium (possibly not truth telling) in the cases of termination. Besides, even
after applying the revelation principle, we may have multiple equilibria under our version of
the direct mechanism. But the revelation principle helps us to induce necessary conditions for
continuation of the project.

To show an example of application, we consider a financial contract of an entrant under
threat of predation. To enter the market, the entrant needs to borrow fixed costs from an in-
vestor, who cannot observe the intensity of predatory conduct by an incumbent. The predation
reduces both the incumbent’s and the entrant’s profits. However, by lowering the entrant’s
profitability, it may deter the entrant’s entry. From our revelation principle and limited liabil-
ity constraint, we can easily find that a positive equilibrium profit is not sufficient for the entrant
to borrow entry costs.

About complete information games, one might think of the revelation principle for corre-
lated equilibrium.3 In terms of contract theory, this version can be interpreted as if the principal
coordinates multiple agents’ actions according to some signaling procedure and the revelation
principle allows us to reduce the domain of such signaling to a direct mechanism in which each
agent directly reports one’s own action plan. In this version, the principal directly coordinates
actions over all the agents. In our situation, the outsider’s action is not directly controlled by
the principal, and the outsider does not send any message to the principal.

Gerardi and Myerson (2007) employ sequential equilibrium to analyze a Bayesian commu-
nication game with a non-full support on the type space. In their model, the agents’ actions
are perturbed while the type distribution is fixed. One might interpret the outsider’s action in
our model as the “type” of an agent in their communication game. Yet, their perturbation is
essentially different from ours, since we want to perturb the outsider’s action (the agent’s type
in this interpretation). Besides, while every player sends one’s own message in their commu-

3See Osborne and Rubinstein (1994, Proposition 47.1).
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nication game, the outsider does not send any message in our model. Hence we cannot apply
their results to our model.

The paper proceeds as follows. We formally set up the model in the next section and char-
acterize a sequential equilibrium under an arbitrary mechanism in Section 3. Our version of
revelation principle is verbally explained in Section 4, while a formal presentation is given
with the proof in Appendix. Based on this revelation principle, we propose the limited liabil-
ity constraint under strategic uncertainty in Section 5. In Section 6, we apply the revelation
principle to a financial contract of an entrant under threat of predation by an incumbent. The
last section concludes the paper.

2 The model

We imagine a situation in which the principal decides on whether or not the agent can continue
a project whose outcome is affected by an outsider. More specifically, the outsider chooses
action a from set A in period 1. In period 2, the principal decides on whether to continue the
project or quit it. Finally the agent pays d ∈ R to the principal. The principal cannot observe
the outsider’s action, while the agent can.

To induce information, the principal and the agent use a mechanism. A mechanism consists
of message space M, interim continuation schedule C : M → {0, 1}, and payment schedule
D : M → R. After observing the outsider’s action, the agent sends message m ∈ M to
the principal. Depending on m, the principal chooses continuation C(m) = 1 or termination
C(m) = 0 of the project. Then, the agent pays D(m) to the principal.

When the outsider’s action is a ∈ A and the promised payment is d ∈ R, The payoffs
are u1(a, d) for the agent, v1(a) for the outsider and w1(a, d) for the principal if the project
continues; if it terminates, they are u0(d), v0(a) and w0(a, d), respectively. We assume that the
outsider’s action is irrelevant to the agent’s payoff if the project terminates.

We assume that there are only finitely many, but at least two, feasible actions of the outsider.
Similarly we limit our attention to the mechanism in which the agent has only finitely many,
but at least two, available messages.

Example 1 (Financial contract under threat of predation). Consider a financial contract between
a new entrepreneur (the agent) and an investor (the principal). The entrepreneur is planning to
start a new business but needs the investor to pay for the entry cost F > 0. The incumbent (the
outsider) responds to the entrepreneur’s entry plan by predatory conducts such as capacity
expansion, excessive advertisement, or price cut. Denote by a the intensity of such conducts
and A ⊂ R be the set of feasible degrees. d is the repayment from the entrant to the investor
and can depend on the message.

Let U1(a) and V1(a) be the operating profits of the entrant and of the incumbent when the
degree of predation is a and the entrant still continues his business. Let V0(a) be that of the
incumbent when the entrant exists from the market, while the entrant’s operating profit is zero
in this case. We assume that U1 : A → R is a decreasing function and V0, V1 : A → R are
concave functions of a, and V0(a) > V1(a) for each a ∈ A. They are common knowledge and
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their values become certain once a is determined.4 But, a is not observable or verifiable to the
investor; so the investor has to rely on the entrepreneur’s voluntary report (the message) about
it.

In sum, the payoffs are u1(a, d) = U1(a) − d for the entrant, w1(a, d) = d − F for the in-
vestor, and v1(a) = V1(a) for the incumbent, if the entrant enters the market. If he quits, they
are u0(d) = −d, w0(a, d) = d and v0(a) = V0(a), respectively.

Later we impose the limited liability constraint on the financial contract: repayment d
should be within the anticipated liquidity holding. Suppose that the entrepreneur has no liq-
uidity before starting the business. So U1(a) is his liquidity holding if the entrant enters; it is
zero if the entry plan terminates.

3 Characterization of a sequential equilibrium

Given mechanism (M, C, D), the agent’s strategy is which message in M to send after observ-
ing the outsider’s action in A. The outsider’s strategy is the choice of an action from A. We
define the space of mixed (behavioral) strategies as follows.5

The outsider’s action strategy: σA ∈ ∆A.

The agent’s messaging strategy conditional on a ∈ A: σM(·|a) ∈ ∆M.

That is, the outsider takes action a with probability σA(a) and then the agent sends message
m with probablity σM(m|a). Let Σ be the space of feasible strategy profiles σ = (σA, σM) and
Σ̊ the set of completely mixed strategy profiles. Posterior belief µ(·|m) ∈ ∆A is a probability
measure onA, conditional on m ∈ M; receiving message m, the principal believes that the out-
sider chooses action a with probability µ(a|m). Below we define and characterize a sequential
equilibrium (σ∗, µ∗).

Definition 1 (Sequential equilibrium). Given a mechanism (M, C, D), the pair of a mixed strat-
egy profile σ∗ ∈ Σ and posterior belief µ∗ ∈ ∆A×M is a sequential equilibrium if there is a
sequence of completely mixed strategy profiles {σk}k∈N ⊂ Σ̊ that converges to σ∗ and satisfies
the following properties.

i) (Consistency of belief) µ∗ is the limit of Bayesian beliefs {µk}k∈R induced from {σk}k∈N:
for each a ∈ A and m ∈ M, µ∗ satisfies

µk(a|m) :=
σk

M(m|a)σk
A(a)

∑a′∈A σk
M(m|a′)σk

A(a)
−→ µ∗(a|m) as k→ ∞.

4This implies that we neglect possible fundamental uncertainty about the payoff functions and focus on strate-
gic uncertainty. This fits well with conventional brick-and-mortar local retailers and small commodity manufac-
turers such as local grocery stores, gas stations, and non-brand food/apparel manufacturers, rather than venture
companies in innovative industries.

5Throughout this paper, ∆X denotes the set of probability measures on set X. In particular, if X is a finite set,
∆X is an ]X-dimensional simplex, i.e., ∆X := {σ ∈ R

]X
+ |∑x∈X σ(x) = 1}. Let ∆̊X := {σ ∈ R

]X
++|∑x∈X σ(x) = 1}.

Then, σ ∈ Σ̊ means σA ∈ ∆̊A and σM(·|a) ∈ ∆̊M for all a ∈ A.
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ii) (Sequential rationality) For each a ∈ A, σ∗M(·|a) is the agent’s optimal messaging strategy
such that

max
σM(·|a)∈∆M

Em [C(m)u1(a, D(m)) + (1− C(m))u0(D(m))|a]

= ∑
m∈M
{C(m)u1(a, D(m)) + (1− C(m))u0(D(m))}σM(m|a).

σ∗A is the outsider’s optimal strategy such that

max
σA∈∆A

Em,a [C(m)v1(a) + (1− C(m))v0(a)]

= ∑
a∈A

∑
m∈M
{C(m)v1(a) + (1− C(m))v0(a)} σ∗M(m|a)σA(a).

Denote by M1(a) (M0, resp.) the set of the most desirable messages for the agent among
the available messages that let the project continue (terminate, resp.):

M1(a) := arg max
m∈M

u1(a, D(m)) s.t. C(m) = 1, M0 := arg max
m∈M

u0(D(m)) s.t. C(m) = 0. (1)

In the agent’s optimal messaging strategy, as long as message m is sent with some positive
probability, C(m) = 1 (C(m) = 0, resp.) implies m ∈ M1(a) (m ∈ M0, resp.). Let D1(a) (D0,
resp.) be the value of D(m) with m ∈ M1(a) (m ∈ M0, resp.).6

Given that the interim continuation schedule is binary, i.e., C(m) ∈ {0, 1}, we can classify
all the possibly sent messages into two sets:

M∗c := {m ∈ M|C(m) = c, ∃a ∈ A σ∗M(m|a) > 0} for each c ∈ {0, 1}.

M∗c is the set of messages that satisfy C(m) = c and are sent with a positive probability after
some a. Given a, let P∗(a) be the equilibrium ex-ante probability of continuation, i.e., the
probability of sending messages in M∗1 :

P∗(a) := ∑
m∈M

σ∗M(m|a)C(m) = ∑
m∈M∗1

σ∗M(m|a). (2)

A∗1 is the set of actions after which the project continues with a positive probability in the
equilibrium:

A∗1 := {a ∈ A|P∗(a) > 0}. (3)

From the above argument, the outsider’s payoff reduces to

∑
a∈A∗1

{
P∗(a)v1(a) + (1− P∗(a))v0(a)

}
σA(a) + ∑

a/∈A∗1

v0(a)σA(a). (4)

6If multiple values of d correspond to the maximum in (1), then we select any one of them.
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The agent’s payoff maximization reduces to

max
a

u1(a, D1(a)) ∑
m∈M∗1

σM(m|a) + u0(D0(a)) ∑
m∈M∗0

σM(m|a).

We categorize equilibria by possibly sent messages, i.e., the ones in M that are sent with
positive probability conditional on some a ∈ A.

1) a pooling-continuation equilibrium M∗0 = ∅: the project continues after any a, i.e., A∗1 =

A;

2) a pooling-termination equilibrium M∗1 = ∅: the project terminates after any a, i.e., A∗1 =

∅;

3) a separating equilibrium M∗0 , M∗1 6= ∅: continuation/termination depends on a, i.e., ∅ 6=
A∗1 ( A.

In a separating equilibrium, the agent sends only messages in the set M∗1 (M∗0 , resp.) with a
positive probability and P∗(a) is equal to one (zero, resp.) if u1(a, D1(a)) is greater (smaller,
resp) than u0(D0).

The above argument is summarized in the next lemma.

Lemma 1. Consider a sequential equilibrium strategy profile σ∗ under mechanism (M, C, D).7

(i) M∗1 ⊂ ∪a∈AM1(a), M∗0 ⊂ M0.

(ii) The outsider’s equilibrium strategy σ∗A maximizes (4), given P∗(a).

(iii) a) Furthermore, if M∗0 and M∗1 are nonempty (i.e., σ∗ is a separating equilibrium), the agent’s
messaging strategy σ∗M satisfies the following.

Case 1. If u1(a, D1(a)) > u0(D0), then
[
σ∗M(m|a) > 0⇒

{
m ∈ M∗1 and D(m) = D1(a)

}]
and thus P∗(a) = 1.

Case 2. If u1(a, D1(a)) > u0(D0), then
[
σ∗M(m|a) > 0⇒

{
m ∈ M∗0 and D(m) = D0

}]
and

thus P∗(a) = 0.

Case 3. Otherwise, then
[
σ∗M(m|a) > 0⇒

{
m ∈ M∗1 ∪M∗0 and D(m) = D1(a) = D0

}]
and

thus P∗(a) ∈ [0, 1]

b) If M∗0 = ∅ (a pooling-continuation equilibrium), M∗1 6= ∅ and P∗(a) = 1 for all a ∈ A.

c) If M∗1 = ∅ (a pooling-termination equilibrium), M∗0 6= ∅ and P∗(a) = 0 for all a ∈ A.

4 Revelation principle

From an analogy with the standard revelation principle in a Bayesian game, we expect an
arbitrary mechanism to reduce to a direct mechanism in which the agent reports directly his

7So far we do not rely on consistency of the belief to characterize the optimal strategies. These properties hold
without it, i.e., in any (weak) perfect Bayesian equilibria, not only in sequential equilibria.
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private information, namely, the outsider’s action a. But if the project terminates, a is no longer
related with the agent’s payoff. There may be no incentive for the agent to tell the outside’s
action. Hence, we may not expect the agent to report a if he foresees termination of the project.

Therefore, we need to modify the direct mechanism. First, the message space should be the
union of a set of the outsider’s actions A1 ⊂ A (possibly only a proper subset ofA or the entire
set A) and the set M0 of messages that may not directly tell the outsider’s action; either A1 or
M0 can be an empty set. The interim continuation schedule should let the project continue if
the agent reports any of messages in A1 and let it terminate if he announces any in M0. We call
such a mechanism a quasi-direct mechanism.

Definition 2 (quasi-direct mechanism). Mechanism (M, C, D) is a quasi-direct mechanism if

1) the message space M is decomposed as M = A1 ∪M0 with A1 ⊂ A and A1 ∩M0 = ∅;
and,

2) the principal approves continuation if the agent reports any ã ∈ A1, and rejects continu-
ation if he announces any m0 ∈ M0: i.e., C(ã) = 1 for any ã ∈ A1 and C(m0) = 0 for any
m0 ∈ M0.

We can convert any mechanism with an arbitrary message space M to a quasi-direct mech-
anism with M̂ = A∗1 ∪ M∗0 , while preserving the equilibrium outcome. This is our revela-
tion principle, which is summarized as follows. See the appendix for the formal statement
and proof. Note that mechanism (M, C, D) in a pooling-termination equilibrium is trivially
converted to a quasi-direct mechanism just by discarding unsent messages from the message
space.

Theorem 1 (Revelation principle). Consider a separating or pooling-continuation sequential equilib-
rium (σ∗, µ∗)—consequently, M∗1 6= ∅—in an arbitrary mechanism (M, C, D). Let P∗ be the ex-ante
continuation probability, derived in (2) from (σ∗, µ∗). We can truthfully implement the same P∗ in a
sequential equilibrium (σ̂∗, µ̂∗) under a quasi-direct mechanism (M̂, Ĉ, D̂), specified as below:

1) The message space is M̂ = A∗1 ∪M∗0 , where A∗1 6= ∅ and M∗0 are of the original equilibrium as in
(1) and (3).

2) The interim continuation schedule is Ĉ(m0) = 0 for any m0 ∈ M∗0 and Ĉ(ã) = 1 for any ã ∈ A∗1 .

3) The payment schedule is D̂(m0) = D0 for any m0 ∈ M∗0 and D̂(ã) = D1(ã) for any ã ∈ A∗1 .

4) The agent sends message m0 ∈ M∗0 with the same conditional probability as in the original equi-
librium: σ̂∗M(m0|a) = σ∗M(m0|a) for all a ∈ A and m0 ∈ M0. The posterior belief conditional
on m0 ∈ M∗0 is the same as the original mechanism: µ̂∗(a|m0) = µ∗(a|m0) for all a ∈ A and
m0 ∈ M0.

5) If the outsider takes action a ∈ A∗1 , the agent announces it truthfully, i.e., sends message a ∈ A∗1 ⊂
M̂ with probability P∗(a): that is, σ̂∗M(a|a) = P∗(a) if a ∈ A∗1 .8 The posterior belief after receiving

8Notice P∗(a) + ∑m0∈M∗0 σ∗M(m0|a) = 1 for any a ∈ A and P∗(a) = 0 if a /∈ A∗1 in the original equilibrium. The
former assures that the new equilibrium satisfies σ̂∗M(a|a) + ∑m0∈M∗0 σ̂∗M(m0|a) = 1 for any a ∈ A∗1 .
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message ã ∈ A∗1 assigns probability 1 to action ã: that is, µ̂∗(ã|ã) = 1 and µ̂∗(a|ã) = 0 for all
a 6= ã.

6) The outsider’s action strategy σ̂∗A is the same σ∗A as in the original equilibrium.

5 Limited liability

Because an arbitrary mechanism can reduce to a quasi-direct mechanism, it is legitimate to
formulate the limited liability constraint based on a quasi-direct mechanism. Denote by Lc(a)
the agent’s liquidity holding after the outsider makes action a and continuation c = 1 or ter-
mination c = 0 of the project has been determined but before the agent pays any money to the
principal.

Limited liability means that monetary payment D should be within the agent’s liquidity
holding at the time of payment; otherwise the monetary payment is not feasible. Generally
in the presence of asymmetric information, liquidity holding is not directly observed and has
to be inferred from the agent’s voluntary report. In standard financial contract theory where
private information is an exogenously given state ω, we usually presume truthful implemen-
tation under a direct mechanism thanks to revelation principle. Then, each message directly
tells the true state and thus uniquely pins down the amount of liquidity holding in the state.
The limited liability constraint just requires that, after the direct report of state ω, the promised
payment should be within the anticipated liquidity holding in state ω, say L(ω). This is legiti-
mate because the report of state ω is believed to be true and the agent is believed to really have
just L(ω).

By the same token, we impose D(a) ≤ L1(a) when the agent reports the outsider’s action
a ∈ A∗1 . What would be a legitimate form of the limited liability constraint if the agent sends
message m0 ∈ M∗0 ? Message m0 may not identify an action and several actions can still re-
main possible: there may be multiple actions a ∈ A s.t. µ∗(a|m0) > 0. The limited liability
constraint should be formulated as requiring D(m0) ≤ L(a) for any of such actions. Suppose
that this constraint is not satisfied at some action a. When the agent announces message m0,
the principal believes that this action a may have been taken with some positive probability.
She anticipates a possibility that liquidity holding L(a) cannot cover promised payment D(m0)

and thus the payment must be cut.9 So, the principal finds that D(m0) will not be the amount
of the actual payment.

In sum, we formulate limited liability constraint in a quasi-direct mechanism as

D(a) ≤ L(a) for each a ∈ A∗1 ; and

D(m0) ≤ L(a) whenever µ∗(a|m0) > 0 for each a ∈ A and m0 ∈ M∗0 .

9Furthermore, because the principal cannot tell which action is taken, the agent could insist that this a has been
taken and that the repayment should be cut, even if the true action was not a.
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6 Example: financial contract and predation

Now we apply the revelation principle to the financial contract in Example 1, and find the
condition for a pure-strategy sequential equilibrium in which the entrant eventually stays in
the market. Our revelation principle allows us to reduce the message space to A∗1 ∪M∗0 , where
A∗1 is the set of the incumbent’s actions that let the entrant’s business continue and M∗0 is the
set of the messages that let the entrant quit his business.

By linearity of u1 in d, property 3) in the revelation principle implies that the repayment
should be constant for any messages that induce the same interim continuation schedule. That
is, the payment schedule D is identified by two constants D0 and D1 such that

D(m0) = D0 for all m0 ∈ M∗0 , (5)

D(a) = D1 for all a ∈ A∗1 , (6)

Further, sequential rationality of the agent’s messaging strategy implies

U1(a)− D1 ≥ −D0 for all a ∈ A∗1 . (7)

Any of the incumbent’s actions in A∗1 should make the entrant willing to continue his busi-
ness. In truthful implementation under the quasi-direct mechanism, the entrant should an-
nounce the true value of a and thus he should be willing to pay D(a) = D1. To make this
announcement compatible with the entrant’s incentive, his payoff from this message should
not be smaller than what he could earn from other messages, especially any terminating mes-
sages in M∗0 . Condition (7) is indeed the incentive compatibility condition for the agent to
reveal private information in the standard financial contract.

The last condition (7) creates threat of predation. That is, the incumbent can drive the
entrant out of the market by raising the intensity of predatory conducts a so that U1(a) becomes
lower than D1 − D0. We are interested in the contract that discourages the incumbent from
predation. Let āP be the incumbent’s maximal intensity of predatory conducts that yields a
higher post-monopoly profit than the maximal duopoly profit:

āP := max
{

a ∈ A
∣∣V0(a) ≥ V1(a∗)

}
,

where a∗ is the incumbent’s optimal action in the case the entrant stays in the market: i.e.,
a∗ := arg maxa∈A V1(a) . Since V0(a) ≥ V1(a) for any a, we have āP ≥ a∗. To prevent the
entrant from being driven out, the entrant should be allowed to continue the project even after
this maximal intensity of predatory conduct takes place:

āP ∈ A∗1 . (8)

For feasibility of the repayment schedule, we impose the limited liability constraint:

D0 ≤ 0 for all m0 ∈ M∗0 , (9)
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D1 ≤ U1(ã) for all ã ∈ A∗1 . (10)

Finally, to agree on the contract, the investor should not suffer a loss in the equilibrium play.
That is, the repayment in the case of continuation of the business should cover the fixed costs:

D1 ≥ F. (11)

This is the participation (individual rationality) condition for the principal in the standard
financial contract.

Combining the non-predation condition (8) and the limited liability constraint (10) (for the
first inequality below) and then the participation condition (11) (for the second), we obtain a
necessary condition for an entrant to stay in the market in the equilibrium outcome:

U1(āP) ≥ D1 ≥ F, ∴ U1(āP) ≥ F.

The incumbent gives up predation and chooses a∗ only if this condition is met. Note that
āP ≥ a∗ and thus U1(a∗) ≥ U1(āP) Therefore, even if the entrant’s business could generate
a positive net profit U1(a∗) − F in the equilibrium outcome without threat of predation, the
entrant may not be able to finance the entry cost.

Zusai (2022) extends this model to allow the entrant to choose the scale of his own business
and also to raise precautionary liquidity upon the entry and discusses the relation between
threat of predation and excess demand of precautionary liqudity.

7 Concluding remarks

We prove the revelation principle for sequential equilibria in a specific class of complete but
imperfect information games. In our game, a principal makes a binary choice about contin-
uation of a project whose outcome is affected by an “outsider” of the contract. The contract
should be designed to elicit information from an agent who can observe the outsider’s action.
But the outsider himself is excluded from the contract, for example, because the outsider is
a competitor against the agent in product market competition. While we do not assume un-
certainty about payoff functions, we pay attention to strategic uncertainty that the outsider’s
action might deviate from equilibrium; so, we adopt sequential equilibrium as a solution con-
cept. Like other versions, our version of revelation principle allows us to focus on truthful
implementation in a (quasi-)direct mechanism without restricting implementable outcomes in
this setting.

In the paper, the agent is assumed to choose only a message to the principal. Our reve-
lation principle is straightforwardly applicable to a game in which the agent also makes an
action before the outsider does, as long as the agent’s action is observable and verifiable. for
the principal Furthermore, with the assumption of verifiablity of the agent’s action and some
trivial modifications of the proof, we can easily extend it to a game in which both the entrant
and the outsider simultaneously make actions.10

10Zusai (2012) considers a Cournot-competition version of the model in the last section and directly proves the
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In various situations, endogenous strategic uncertainty would be a central issue and have
more importance for its economic outcome than exogenous physical uncertainty. Predatory
pricing is one of such situations, though physical uncertainty has been added to preceding
models to formulate the situation as a Bayesian game. Our version of revelation principle
allows applied theorists to evaluate effects of strategic uncertainty on economic outcomes in a
simple model without complicated techniques.
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A Formal presentation and proof of the revelation principle

Theorem 1. Suppose that a mixed (behavioral) strategy profile σ∗ = {σ∗1 , σ∗A, σ∗M} is a sequential
equilibrium under mechanism (M, C, D) with message space M, interim continuation schedule c :
M→ {0, 1} and payment schedule D : M→ R.

If M∗1 6= ∅, there exists a sequential equilibrium (σ̂∗, µ̂∗) that results in the same strategy of the
outsider σ∗A and the same continuation probability P∗ : A → [0, 1] under a quasi-direct mechanism
(M̂, Ĉ, D̂) with message space M̂ = M∗0 ∪ A∗1 , interim continuation schedule Ĉ : M̂ → {0, 1} and
payment schedule D̂ : M̂→ R such as Ĉ(ã) = 1, D̂(ã) := D1(ã) for each ã ∈ A∗1 ,

Ĉ(m) = 0, D̂(m) := D0 for each m ∈ M∗0 .
(12)

The pair (σ̂∗, µ̂∗) is specified as follows:

(σ̂∗A) σ̂∗A(a) := σ∗A(a) for each a ∈ A;

(σ̂∗M)


σ̂∗M(ã|a) := 0 for each a ∈ A, ã ∈ A∗1 \ {a},

σ̂∗M(a|a) := P∗(a) for each a ∈ A∗1 ,

σ̂∗M(m|a) := σ∗M(m|a) for each a ∈ A, m ∈ M∗0 ,

(µ̂∗)

 µ̂∗(a|ã) := I(a, ã) for each a ∈ A, ã ∈ A∗1 ,

µ̂∗(a|m) := µ∗(a|m) for each a ∈ A, m ∈ M∗0 .

Here I(a, ã) is the indicator function for a = ã: i.e., I(a, ã) is 1 if a = ã and 0 otherwise.

Proof. We show that the strategy profile σ̂∗ = {σ∗A, σ̂∗M} specified in the theorem is a sequential
equilibrium under the belief µ̂∗.

Consistency of belief.

From the sequence of completely mixed strategy profiles {σk} converging to σ∗ in the original
sequential equilibrium, we define the sequence {σ̂k} and then prove the consistency of the
belief µ̂∗.

For each k ∈N, define φk : M0 → (0, #A] and Φk : M0 → (0, 1) as

φk(m) := ∑
a∈A

σk
M(m|a), Φk(m) := ∑

a∈A
σk
A(a)σk

M(m|a),

which converge to φ∗(m) := ∑a∈A σ∗M(m|a) ∈ [0, #A] and Φ∗(m) := ∑a∈A σ∗A(a)σ∗M(m|a) ∈
[0, 1], respectively, as k→ ∞. Let Φk

0 ∈ (0, 1) be Φk
0 := min{Φk(m)|m ∈ M∗0 }, which converges

to Φ∗0 := min{Φ∗(m)|m ∈ M∗0 } ∈ [0, 1].
For each k ∈N, define σ̂k

A ∈ (0, 1) as

σ̂k
A(a) :=

Φk
0√

k#A
+

(
1− Φk

0√
k

)
σk
A(a).
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Since σk
A → σ∗A and Φk

0 → Φ∗0 ∈ [0, 1], we have σ̂k
A → σ∗A = σ̂∗A as k→ ∞.

For each k ∈N, define σ̂k
M as

σ̂k
M(ã|a) :=

Φk
0

k#A∗1
+

(
1− Φk

0
k

)
I(a, ã)Pk(a) ∈ (0, 1),

σ̂k
M(m|a) :=

(
1− Φk

0
k

)
σk

M(m|a)1− I∗1 (a)Pk(a)
1− Pk(a)

∈ (0, 1)

for each a ∈ A, ã ∈ A∗1 , m ∈ M∗0 . Here Pk : A → (0, 1) is given by

Pk(a) := ∑
m′∈M/M∗0

σk
M(m′|a) ∈ (0, 1),

and I∗1 (a) is the indicator for a ∈ A∗1 : i.e., I∗1 (a) is 1 if a ∈ A∗1 and 0 otherwise. σ̂k
M(·|a) belongs

to the interior of ∆M̂ for all a ∈ A, since σ̂k
M(ã|a), σ̂k

M(m|a) ∈ (0, 1) and

∑
ã∈A∗1

σ̂k
M(ã|a) + ∑

m′∈M0

σ̂k
M(m′|a)

=
Φk

0
k

+

(
1− Φk

0
k

) ∑
ã∈A∗1

I(a, ã)Pk(a) + ∑
m∈M∗0

σk
M(m|a)1− I∗1 (a)Pk(a)

1− Pk(a)


=

Φk
0

k
+

(
1− Φk

0
k

){
I∗1 (a)Pk(a) + 1− I∗1 (a)Pk(a)

}
= 1.

Here we use the identities ∑ã∈A∗1 I(a, ã) = I∗1 (a) and Pk(a) + ∑m∈M∗0 σk
M(m|a) = 1. According

to Lemma 1 (iii), we obtain Pk → P∗ and thus σ̂k
M → σ̂∗M as k→ ∞.

The Bayesian belief µ̂k, determined from (σ̂k
A, σ̂k

M), actually converges to µ̂∗. For each a ∈
A, m ∈ M0, the belief is

µ̂k(a|m)

:=
σ̂k

M(m|a)σ̂k
A(a)

∑a∈A σ̂k
M(m|a)σ̂k

A(a)

=

(
1− Φk

0
k

)
σk

M(m|a) 1−I∗1 (a)Pk(a)
1−Pk(a)

{
Φk

0√
k#A +

(
1− Φk

0√
k

)
σk
A(a)

}
∑a′∈A

(
1− Φk

0
k

)
σk

M(m|a′) 1−I∗1 (a′)Pk(a′)
1−Pk(a′)

{
Φk

0√
k#A +

(
1− Φk

0√
k

)
σk
A(a′)

} =
Nk(a)

N̄k .

Here Nk(a) and N̄k are defined as

Nk(a) :=

[
σk

M(m|a)1− I∗1 (a)Pk(a)
1− Pk(a)

{
Φk

0√
k#A

+

(
1− Φk

0√
k

)
σk
A(a)

}]/[(
1− Φk

0√
k

)
Φk(m)

]

=

(
√

k#A)−1

(
1− Φk

0√
k

)−1
Φk

0
Φk(m)

σk
M(m|a) + µk(a|m)

 1− I∗1 (a)Pk(a)
1− Pk(a)

,

N̄k := ∑
a′∈A

Nk(a′) = ∑
a′∈A

(
√

k#A)−1

(
1− Φk

0√
k

)−1
Φk

0
Φk(m)

σk
M(m|a′) + µk(a′|m)

 1− I∗1 (a′)Pk(a′)
1− Pk(a′)

,
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= (
√

k#A)−1

(
1− Φk

0√
k

)−1
Φk

0
Φk(m)

φk(m) + ∑
a′/∈A∗1

σk
M(m|a′) Pk(a′)

1− Pk(a′)


+ 1 + ∑

a′/∈A∗1

µk(a′|m)
Pk(a′)

1− Pk(a′)
. (13)

First, calculate the limit of Nk. If a ∈ A∗1 , the fraction (1− I∗1 (a)Pk(a))/(1− Pk(a)) is equal
to 1 for all k ∈ N and thus converges to 1. Otherwise, the fraction is 1/(1 − Pk(a)) and
converges to 1/1 = 1. Since Pk(a) → P∗(a) = 0, the fraction converges to 1 in both cases.
Because Φk

0 ≤ Φk(m) by definition, we have

0 ≤ (
√

k#A)−1

(
1− Φk

0
k

)−1
Φk

0
Φk(m)

σk
M(m|a) ≤ (

√
k#A)−1

(
1− Φk

0
k

)−1

σk
M(m|a).

The RHS converges to 0 · 1 ·σ∗M(m|a) = 0 and so does the middle term. Therefore, Nk converges
to {0 + µ∗(a|m)} · 1 = µ∗(a|m).

Next, calculate the limit of Dk. Let r̄k := max{Pk(a)/(1− Pk(a))|a /∈ A∗1 }. This converges
to 0 because Pk(a)/(1− Pk(a))→ P∗(a)/(1− P∗(a)) = 0/1 = 0 for any a /∈ A∗1 . Because Φk

0 ≤

Φk(m) and ∑a′/∈A∗1 σk
M(m|a′) ≤ φk(m), the first term in (13) is at most (

√
k#A)−1

(
1− Φk

0√
k

)−1
(1+

r̄k)φk(m), which converges to 0 · 1 · 1 · φ∗(m) = 0; as this term is at least 0 for all k ∈ N, it also
converges to 0. Likewise, because ∑a′/∈A∗1 µk(a′|m) ≤ Φk(m), the third term in (13) is at most
r̄k, which converges to 0, and thus this term also converges to 0 as it is at least 0 for all k ∈ N.
Hence Dk converges to 0 + 1 + 0 = 1. Therefore, we have

lim
k→∞

µ̂k(a|m) = lim
k→∞

Nk/Dk = µ∗(a|m)/1 = µ∗(a|m) = µ̂∗(a|m).

For ã ∈ A∗1 , a ∈ A/{ã}, the belief is

µ̂k(a|ã) :=
σ̂k

M(ã|a)σ̂k
A(a)

∑a∈A σ̂k
M(ã|a)σ̂k

A(a)
=

Φk
0

k#A∗1
σ̂k
A(a)

Φk
0

k#A∗1
+
(

1− Φk
0

k

)
Pk(ã)σ̂k

A(ã)

=

[
1

σ̂k
A(a)

+

(
k

Φk
0
− 1

)
#A∗1

σ̂k
A(ã)

σ̂k
A(a)

Pk(ã)

]−1

<

[(
k

Φk
0
− 1

)
#A∗1

σ̂k
A(ã)

σ̂k
A(a)

Pk(ã)

]−1

=

( k
Φk

0
− 1

)
Φk

0 +
(√

k−Φk
0

)
#Aσk

A(ã)

Φk
0 +

(√
k−Φk

0

)
#Aσk

A(a)
Pk(ã)

−1

<

( k
Φk

0
− 1

)
#A∗1

Φk
0

Φk
0 +

(√
k−Φk

0

)
#A

Pk(ã)

−1

=

(
Φk

0

k−Φk
0
· 1

#A∗1
+

√
k−Φk

0

k−Φk
0
· #A

#A∗1

)
1

Pk(ã)
.

The first strict inequality comes from σ̂k
A(a) > 0 and the second is from σk

A(ã) > 0, σk
A(a) < 1
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and
√

k ≥ 1 > Φk
0. As µ̂k(a|ã) > 0 and P∗(ã) > 0 for any ã ∈ A∗1 , this implies

0 ≤ lim
k→∞

µ̂k(a|ã) ≤ 0 · 1
P∗(ã)

= 0,

∴ lim
k→∞

µ̂k(a|ã) = 0 = µ̂∗(a|ã).

Because this holds for all a ∈ A/{ã}, we have

lim
k→∞

µ̂k(ã|ã) = 1 = µ̂∗(ã|ã).

Therefore the belief µ̂∗ specified in (µ̂∗) is actually consistent with σ̂∗.

Sequential rationality.

We prove the optimality of strategy profile σ̂∗ given belief µ̂∗. First, we check the optimality of
the message strategy. Consider the optimal messaging strategy after a ∈ A∗1 . By definition, it
implies P∗(a) > 0; furthermore, by applying Lemma 1 (iii) to the original equilibrium, we find
u1(a, D1(a)) ≥ u0(D0). So, report of a is at least as good for the entrant as any other report.
In particular, if P∗(a) ∈ (0, 1), Lemma 1 (iii) suggests that u1(a, D1(a)) = u0(D0) and thus the
agent is indifference between report of a and report of any m ∈ M∗0 . On contrary, if a /∈ A∗1 ,
we have P∗(a) = 0 by definition and u1(a, D1(a)) ≤ u0(D0) by Lemma 1 (iii); report of any
m ∈ M∗0 is at least as good for the entrant as any other report. Therefore, σ̂∗M specified in (σ̂∗)
is an optimal strategy.

Given σ̂∗M, the continuation probability after each a is the same as P∗(a) in the original
equilibrium. Hence the outsider’s expected profit after action a remains the same. Therefore,
σ̂∗A ≡ σ∗A is still the optimal strategy in equilibrium (σ̂∗, µ̂∗).

We have established the consistency of belief µ̂∗ with σ̂∗ and the sequential rationality of
the strategy profile σ̂∗, and thus the profile (µ̂∗, σ̂∗) is a sequential equilibrium under quasi-
direct mechanism (M̂, Ĉ, D̂).
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