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Abstract

In this note, we consider dynamically optimal pricing of a network good, when con-
sumers’ demand adjusts only gradually. We find a Lyapunov function that characterizes
where and how the platform size converges under the dynamically optimal pricing. Given
the current platform size, we compare the value of the Lyapunov function with the profit
under static pricing that keeps this current size at a Nash equilibrium of consumers’ entry
game. We show that the difference between them can be interpreted as adjustment costs
and we justify this interpretation by regarding a myopic pricing scheme as an approxima-
tion. This justification suggests that recurrent adjustment of the myopic pricing scheme
brings the platform to the same size in the long run as the dynamically optimal pricing.
Keywords: entry game, platform, adjustment costs, dynamic optimization, network exter-
nality
JEL classification: D9, L1
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1 Introduction

It is common for a dynamic optimization problem to have a stationary state different from
static optimum. Solow’s modified golden rule in macroeconomic growth theory is a classic
example. In that theory, the difference is explained from intertemporal discounting of future
consumption. Different models need different interpretations suitable to their contexts.

Dhebar and Oren (1985) is a seminal paper on dynamically optimal pricing of a network
good. Here we revisit their model.1 An owner of a proprietary platform dynamically adjusts
the fee level to maximize the discounted total profit. The dynamic nature comes from the
assumption that the platform size changes only gradually toward a temporary equilibrium
given the current fee level. We find a Lyapunov function for the dynamic of the platform size:
its maximum coincides with the platform size at the stationary point under the dynamically
optimal pricing and the function’s value grows over time. The function can be interpreted
as the discounted total profit in the case that the platform size immediately shifts to a Nash
equilibrium, plus an additional term.

The additional term explains the difference between the static optimum and the stationary
point under the dynamically optimal pricing. To interpret this term, we clarify the source of
gradual adjustment of the platform size. We construct the platform dynamic from the aggre-
gate best response dynamic of heterogeneous agents, using the result in Ely and Sandholm
(2005). Then, we can decompose the fee into the gross revenue from exploitation of the utility
of participation and the cost to attract target agents. In the BRD, agents change their decisions
only occasionally and thus the actual size moves to the target size only gradually. There is a
time lag between when the owner changes the fee to target a certain mass of agents and when
they actually enter the platform and yield the revenues to the owner. Such an inertial entry
process causes a loss of the exploitation revenues, which is seen as “adjustment costs.”

To formalize this idea of adjustment costs and connect it mathematically with the additional
term in the Lyapunov function, we consider a simplified fee scheme in which the platform
owner fixes the target platform size forever while adjusting the fee level to exploit participants’
utilities that grow with the platform size. Fixing the target size, it becomes clearer how much
of the exploitation revenue is lost by inertia in the entry process. Furthermore, the derivative
of the owner’s discounted total revenue in this fee scheme with respect to the target size is
proportional to the derivative of the Lyapunov function. In particular, the owner keeps the
target size at the initial platform size in this fee scheme if and only if this initial size coincides
with the maximum of the Lyapunov function, i.e., the size in the stationary state under the
dynamically optimal pricing. This suggests that, even if the platform owner is myopic about
future change in the target size, recurrent adjustment of the target size brings the platform
size to the same stationary size as the dynamically optimal pricing by a fully rational platform
owner.

The paper proceeds as follows. We set up the model and the dynamic optimization problem
in the next section. The dynamically optimal pricing is characterized and the Lyapunov func-
tion is given in Section 3. In Section 4, we present interpretation of adjustment costs through

1The recent variation of the model includes Mesak et al. (2011), and Fruchter and Sigué (2013), for example.
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the fixed target fee scheme and a theorem to connect it with the Lyapunov function and the
dynamically optimal pricing. The proof of the theorem is in Section 5.

2 The Model

In Dhebar and Oren (1985), the platform owner maximizes the discounted total revenue:

max
{(Pt,nt)}t∈R+

∫ ∞

0
e−ρtPtntdt s.t. ṅt = W(Pt, nt),

where ρ > 0 is the discount rate, Pt is the fee charged to each participant of the platform at
time t ∈ R+ and nt is the number of participants. We assume a unit mass of infinitely many
agents (potential participants) and thus allow nt to take any real number in [0, 1].

It is useful for interpretation of the fee scheme to reformulate the platform dynamic from
aggregation of individual agents’ decision making. We suppose that individual decision fol-
lows the best response dynamic (Gilboa and Matsui, 1991; Hofbauer, 1995). At each moment
of time t ∈ R+, an agent gets utility u(nt) − Pt if he participates in the platform and utility
θ if not. Gross utility of participation u : [0, 1] → R is an increasing function, which reflects
positive network externality. We also assume differentiability and strict concavity of u. Utility
of no participation θ ∈ [0, θ̄] varies among agents, and thus we call it an agent’s type. Let F be
the cumulative distribution function of agents’ types with density f : F(θ) is the mass of agents
whose types are not higher than θ. We assume that f is continuous and the support of F is
[0, θ̄].

In the best response dynamic, each agent only occasionally revises whether or not to par-
ticipate: a revision opportunity follows a Poisson process with arrival rate 1 and, if an agent
gets an opportunity at time t, he chooses the best action based on the current state (Pt, nt).
So the individual decision process exhibits inertia and it is based on myopic optimization.2

According to Ely and Sandholm (2005), the aggregate best response dynamic reduces to

ṅt = F(u(nt)− Pt)− nt.

Note that an agent whose type is lower (higher, resp.) than u(nt)− Pt should choose to partic-
ipate (not to participate, resp.) if he gets an opportunity to revise his decision. So, we can say
that F(u(nt)− Pt) is the platform size in a temporary equilibrium in a static entry game given
pt, as we will clarify soon. In the aggregate BRD, the platform size gradually moves toward
the temporary equilibrium at each moment of time.

We call the type equal to u(nt)− Pt the target type and F(u(nt)− Pt) the target platform
size at time t. Setting the target type at θ̂t means the fee being set at Pt = u(nt)− θ̂t. We can
rewrite the optimization problem in terms of target type θ̂t and current platform size nt:

max
{(θ̂t,nt)}t∈R+

∫ ∞

0
e−ρt(u(nt)− θ̂t)ntdt s.t. ṅt = F(θ̂t)− nt. (1)

2Dhebar and Oren (1985) consider such a myopic entry process less formally and introduce the concept of the
target customers (“marginal customers” in their words). What we add here is the quasi-linear form, which allows
us to decompose the fee to the exploitation revenue and the fee deduction as in Section 4.
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For comparison, consider a static entry game and the corresponding static optimum. In the
static game, after the owner sets the fee, each agent simultaneously decides on whether or not
to join the platform. In a Nash equilibrium given fee p, platform size n satisfies F(u(n)− p) =
n: every agent whose type is lower than the target type participates in the platform and a
higher type does not.3 In other words, the owner has to set the fee at p = u(n)− F−1(n) to
implement platform size n in a Nash equilibrium. So, if agents immediately play such a Nash
equilibrium, the owner should implement platform size n∗ that maximizes her equilibrium
revenue:

Π̂(n) := {u(n)− F−1(n)}n.

We assume that Π̂ is concave and has an interior maximum n∗ ∈ (0, 1). The statically optimal
platform size n∗ satisfies

V ′(n∗)− F−1(n∗)− n∗
f ◦ F−1(n∗) = 0,

where V(n) := u(n)n is the aggregate gross utility of participants. The statically optimal fee
level is p∗ := u(n∗)− F−1(n∗).

3 The dynamically optimal pricing

It is easy to verify that the Hamiltonian of (1) is strictly concave in target type θ̂ if F is concave,
i.e., f ′ < 0.4 The solution of (1) is thus characterized by the following first-order conditions
with costate variable µ ∈ R:

θ̂ =


θ̄ if µ > 0, n < µ f (θ̄),

f−1(n/µ) if µ > 0, n ≥ µ f (θ̄),

0 if µ ≤ 0,

(2a)

ṅ = F(θ̂)− n, (2b)

µ̇ = (1 + ρ)µ + θ̂ − V ′(n). (2c)

We impose the transversality condition to select the solution path:

lim
t→∞

e−ρtµtnt = 0. (3)

The saddle path is the only solution path that satisfies all these conditions. (See Figure 1.)
Let (n$, µ$) be the stationary point such that ṅ = µ̇ = 0. Assume that n$ ∈ (0, 1). The

platform size n$ satisfies

V ′(n$)− F−1(n$)− (1 + ρ)
n$

f ◦ F−1(n$)
= 0,

3As is typical of such an entry game with positive network externality, there are multiple equilibria: n = 0 is
always an equilibrium. It is one of theoretical reasons to introduce a dynamic into the entry game.

4Zusai (2015) solves the dynamically optimal pricing problem for a convex F.
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These are typical phase diagrams. In either case, 
the existence of a saddle path is confirmed from 
the Hessian of (ṅ ,μ̇)  at (n$ ,μ$).

(A) is the graph of n=μ f (θ̄).The target type θ̂
is θ̄  if (n ,μ)  is above (A), f −1(n/μ)  if it is 
between (A) and μ=0,  and 0  if it is below μ=0.

μ

0 n

ṅ=0

a) The slope of μ̇=0  is positive at any n∈(0,1).

1

the saddle path

n$

μ$

(A)

μ̇=0

μ

0 n

ṅ=0

̇=0

1

the saddle path

n$

μ$

(A)

b) The slope of μ̇=0  is positive if n  is close to n$ .

μ

0 n

ṅ=0

̇=0

1

the saddle path

n$

μ$

(A)

c) The slope of μ̇=0  is negative at any n∈(0,1).

Figure 1: Phase diagram of (n, µ) under the dynamically optimal pricing. Dotted arrows are
paths going to n = 0 or n = 1 and violating (3).
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with µ$ := n$/ f ◦ F−1(n$). It is the maximum of function Π̃ρ : [0, 1] → R given by

Π̃ρ(n) :=
1
ρ

Π̂(n)−
(

nF−1(n)−
∫ n

0
F−1(ν)dν

)
.

Note that f ′ < 0 and concavity of Π̂ imply strict concavity of Π̃ρ, which further implies the
existence of a saddle path. Along the saddle path, nt monotonically converges to n$ and thus
Π̃ρ increases to its maximum. So Π̃ρ is a Lyapunov function of the dynamic of the platform
size under the dynamically optimal pricing.

The Lyapunov function Π̃ρ shows difference between the stationary point and the static
optimum, which maximizes Π̂ and equivalently Π̂/ρ—the discounted total revenue in the case
that the platform size immediately shifts to Nash equilibrium. It follows that the stationary size
n$ is smaller than the statically optimal size n∗. Even if the initial platform size coincides with
the static optimum n∗, the dynamically optimal pricing shrinks it to n$ < n∗. This pattern
is common with a classical growth model, in which the capital stock in Solow’s golden rule
shrinks to the modified golden-rule level. In the growth model, the difference is explained
from discounting of future consumption. As the discounting itself has been considered in
maximization of Π̂/ρ, there remains a difference between Π̃ρ and Π̂/ρ. One might attempt
to explain the difference in our problem by arguing adjustment costs. We elaborate such an
interpretation in the next section.

4 Adjustment Costs

We attempt to interpret the difference between Π̂/ρ and Π̃ρ as “adjustment costs” caused by
the inertial entry process. For clearer formulation of this idea, consider a much simplified fee
scheme in which the target type is fixed at θ̂⊙ since time 0. The fee level should be adjusted
accordingly at each moment of time as

Pt = u(nt)− θ̂⊙ for each t ∈ [0, ∞).

We call such a fee scheme the fixed target fee scheme. Note that the fee consists of two parts:
the gross revenue from exploitation of a participant’s gross utility u(nt), and the fee deduction to attract
target type θ̂⊙. The platform size grows as

nt = Ψt(n⊙; n0) := e−tn0 + (1 − e−t)n⊙ for each t ∈ [0, ∞). (4)

We verify the relationship between the discounted total profit under this fee scheme and the
Lyapunov function Π̃ρ.

Theorem 1. Suppose that the platform owner keeps the target type at θ̂⊙ since time 0. Denote by
Π̆(n⊙; n0) the discounted sum of the owner’s profits in the whole period (0, ∞).

Π̆ρ(n⊙; n0) :=
∫ ∞

0
e−ρt

{
V(Ψt(n⊙; n0))− F−1(n⊙)Ψt(n⊙; n0)

}
dt.
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n0)

⊙)

Figure 2: Breakdown of the platform owner’s instantaneous profit into exploitation revenues
and fee deducions.

Then, we have

Π̆ρ(n0; n0) = Π̃ρ(n0) =
1
ρ

Π̂(n0),
∂Π̆
∂n⊙

(n0; n0) =
1

1 + ρ
Π̃′

ρ(n0).

Proof. See Section 5.

We can identify the source of the “adjustment costs” in Π̃ρ from the construction of Π̆ρ.
Suppose that, while initial platform size n0 was in a Nash equilibrium in the static entry game
given θ̂0 := F−1(n0) before time 0, the owner sets larger target size n⊙ > n0 and thus higher
target type θ̂⊙ > θ̂0 since time 0. The per-agent fee deduction increases to θ̂⊙ immediately after
this policy change, i.e., at time 0. The aggregate increase in the fee deductions for incumbent
participants n0 is indicated by C0 in Figure 2.

In contrast, a participant’s gross utility u(nt) is determined by current platform size nt.
Thus, the aggregate exploitation revenue u(nt)nt increases gradually with the current size, not
immediately with the target size. First, as the platform grows, new participants nt − n0 yield
additional exploitation revenues R1 for the platform owner, while there are also fee deductions
C1 for them. Hence, the net profit directly earned from new participants R1 − C1 is realized
gradually with growth of the platform. Second, by positive network externality, each incumbent
participant’s gross utility increases as the platform size grows. This lets the owner earn more
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revenue from incumbent participants n0. The revenue R0 is realized gradually at the same
speed as the realization of R1 − C1.

If the platform size jumps to new equilibrium n⊙ = F(θ⊙) at the moment of the policy
change, all of these changes take place immediately. Then, C0 and R1 − C1 + R0 are equally
discounted by ρ; the discounted sum of these terms equals to

1
ρ


C0︷ ︸︸ ︷

{F−1(n⊙)− F−1(n0)}+

R1−C1︷ ︸︸ ︷
{u(n0)− F−1(n0)}(n⊙ − n0) +

R0︷ ︸︸ ︷
{u(n⊙)− u(n0)}n0


≈1

ρ

[
n⊙ − n0

f ◦ F−1(n0)
n0 + {u(n0)− F−1(n0)}(n⊙ − n0) + u′(n0) · (n⊙ − n0)n0}

]
=

1
ρ

Π̂′(n0) · (n⊙ − n0).

In contrast, under the BRD, the platform size changes toward the target size only gradually.
The additional profit R1 − C1 + R0 is realized so slowly that it is discounted by ρ(1 + ρ).5 On
the other hand, the fee deductions for incumbent participants C0 are realized at time 0 and
then discounted by the original discount rate ρ. The discounted sum puts more weight on C0,
like Π̃′

ρ:

1
ρ

C0︷ ︸︸ ︷
{F−1(n⊙)− F−1(n0)}+

1
ρ(1 + ρ)


R1−C1︷ ︸︸ ︷

{u(n0)− F−1(n0)}(n⊙ − n0) +

R0︷ ︸︸ ︷
{u(n⊙)− u(n0)}n0


≈1

ρ

n⊙ − n0

f ◦ F−1(n0)
n0 +

1
ρ(1 + ρ)

[
{u(n0)− F−1(n0)}(n⊙ − n0) + u′(n0) · (n⊙ − n0)n0}

]
=

1
1 + ρ

Π̃′
ρ(n0) · (n⊙ − n0).

In short, inertia in agents’ decisions delays realization of the exploitation revenues, while
the amount of fee deductions changes immediately after change in the target type. The loss
of the exploitation revenues due to delayed realization is interpreted as the adjustment costs,
which cause the platform size to shrink from the statically optimal size to the stationary size
under the dynamically optimal pricing.

Theorem 1 implies the equivalence among the maximum of Π̆ρ, that of Π̃ρ, and the station-
ary point under the dynamically optimal pricing. Further, it suggests that even if the owner
is myopic and not fully rational in the sense that she does not take into account future change
in the target size, she adjusts the target size in the same direction as under the dynamically
optimal pricing: the myopic owner chooses to expand the platform if and only if the fully ra-
tional one also chooses expansion. Although the exact choice of the target size and thus the
convergence speed may be different, myopic but recurrent adjustment under the fixed target
fee scheme eventually results in the same stationary size in the long run as the dynamically op-
timal pricing. While it is beyond the scope of this paper to rigorously formulate such a myopic
pricing dynamic, we state it as a less formal proposition.

5As nt − n0 = (1 − e−t)(n⊙ − n0), the realized additional profit is (1 − e−t)(R1 − C1 + R0) at time t. Its
discounted sum is

∫ ∞
0 e−ρt(1 − e−t)(R1 − C1 + R0)dt = (R1 − C1 + R0)/{ρ(1 + ρ)}.
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Corollary 1. For any discount rate ρ > 0 and platform size n0, the following statements are equivalent.

1. Given initial platform size n0, target size n⊙ = n0 maximizes the discounted total profit Π̆ρ

under the fixed target fee scheme.

2. The Lyapunov function Π̃ρ is maximized at n0.

3. n0 is the platform size in the stationary state under the dynamically optimal pricing.

Proposition 1. Consider a myopic pricing dynamic where the owner occasionally revises the target size
to optimize the fixed target fee scheme given the platform size at the moment of revision. The platform
size converges to the same platform size as in the dynamically optimal pricing.

Remark. One might argue that ∂Π̆ρ/∂n⊙ is only proportional to Π̃′
ρ and they do not coincide

exactly. To fill the gap, define ∆̄ψ : R → R as a function of n⊙ by

∆̄ψ(n⊙) :=
∫ ∞

0
e−ρt(Ψt(n⊙; n0)− n0)dt, given n0.

This ∆̄ψ(n⊙) can be read as the discounted total change in the platform size under the fixed
target fee scheme with target size n⊙. It reduces to (n⊙ − n0)/(1 + ρ) by (4). Let Πρ(∆̄n; n0)

be the discounted total profit under the fixed target fee scheme in which the discounted total
change is ∆̄n and the initial size is n0:

Πρ(∆̄n; n0) := Π̆ρ(∆̄ψ−1(∆̄n); n0) = Π̆ρ(n0 + (1 + ρ)∆̄n; n0).

Then, by chain rule, we find that Π̃ρ provides a first-order approximation of Πρ(·; n0) in the
following sense:

Πρ(∆̄n; n0) ≈ Π̃ρ(n0) + Π̃′
ρ(n0)∆̄n if ∆̄n ≈ 0.

Corollary 2. For each n0, we have

Πρ(0; n0) = Π̆ρ(n0; n0) = Π̃ρ(n0),
∂Πρ

∂∆̄n
(0; n0) = (1 + ρ)

∂Π̆ρ

∂n⊙
(n0; n0) = Π̃′

ρ(n0).

5 Proof of Theorem 1

Proof. Let ∆n := n⊙ − n0. By linear approximations of V and F−1 around n0, we obtain

V(nt) = V(n0) + V ′(n0)(nt − n0) + OV(nt − n0),

θ̂⊙ = F−1(n⊙) = F−1(n0) +
∆n

f ◦ F−1(n0)
+ Oθ̂(∆n),

where OV(∆n)/∆n, Oθ̂(∆n)/∆n → 0 as ∆n → 0. The owner’s instantaneous profit at time t is
thus approximated as

Ptnt =V(nt)− θ̂⊙nt

=
{

V(n0) + V ′(n0)(1 − e−t)∆n + OV((1 − e−t)∆n)
}
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−
{

F−1(n0) +
∆n

f ◦ F−1(n0)
+ Oθ̂(∆n)

}
(n0 + (1 − e−t)∆n)

=Π̂(n0) + {V ′(n0)− F−1(n0)}(1 − e−t)∆n +
n0∆n

h ◦ H−1(n0)
+ Ot(∆n),

where Ot(∆n)/∆n → 0 as ∆n → 0 for each t.
Hence the discounted sum of the owner’s profits in the entire period (0, ∞) is

Π̆ρ(n0 + ∆n; n0)

=
∫ ∞

0
e−ρtPtntdt

=
∫ ∞

0
e−ρt

[
Π̂(n0) + {V ′(n0)− F−1(n0)}(1 − e−t)∆n +

n0∆n
f ◦ F−1(n0)

+ Ot(∆n)
]

dt

=
Π̂(n0)

ρ
+

{
V ′(n0)− F−1(n0)

} ∆n
ρ(1 + ρ)

− n0

f ◦ F−1(n0)

∆n
ρ

+
∫ ∞

0
e−ρtOt(∆n)dt.

It is immediate from this to see Π̆ρ(n0; n0) = Π̂(n0)/ρ. The partial derivative of Π̆ρ with
respect to n⊙ at (n⊙, n0) = (n0, n0) is

∂Π̆ρ

∂n⊙
(n0; n0) = lim

∆n→0

Π̆ρ(n0 + ∆n; n0)− Π̆ρ(n0; n0)

∆n

=
{

V ′(n0)− F−1(n0)
} 1

ρ(1 + ρ)
− n0

f ◦ F−1(n0)

1
ρ
+

∫ ∞

0
e−ρt

(
lim

∆n→0

Ot(∆n)
∆n

)
dt

=
1

1 + ρ
Π̃′

ρ(n0).
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