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Evolutionary dynamics in heterogeneous populations:

a general framework for an arbitrary type distribution

Dai ZUSAI*

May 11, 2021

Abstract

We present a general framework of evolutionary dynamics under persistent hetero-
geneity in payoff functions and revision protocols, allowing continuously many types in
a game with finitely many strategies. Unlike the preceding literature, we do not assume
anonymity of the game or aggregability of the dynamic. The dynamic is rigorously for-
mulated as a differential equation of a joint probability measure of types and strategies.
To establish a foundation of this framework, we clarify regularity assumptions on the re-
vision protocol, the game and the type distribution to guarantee the existence of a unique
solution trajectory as well as those to guarantee the existence of an equilibrium in a het-
erogeneous population game. We further verify equilibrium stationarity in general and
stability in potential games under admissible dynamics. Our framework exhibits a wide
range of possible applications, including equilibrium selection in Bayesian games and spa-
tial evolution.
Keywords: evolutionary dynamics; heterogeneity; continuous space; potential games
JEL classification: C73, C62, C61.

1 Introduction

Evolutionary dynamics formulate off-equilibrium adjustment processes of agents’ choices in
games, allowing various decision rules (revision protocols) such as exact optimization, bet-
ter reply based on pairwise comparison of payoffs, imitation, etc. Despite a wide range of
applications to social and economic problems and also a potential role to challenge a con-
ventional equilibrium-based approach, evolutionary dynamics have not fully captured one
common staple of mathematical models of the economy/society: that is, heterogeneity of
agents. It is a common practice in applied or empirical studies to assume continuous types of
agents—especially, in many of applied economic models (e.g. auctions, aggregate demand1),
in econometric estimation of discrete choice models (e.g. logit regression) and in theoretical

*Graduate School of Economics and Management and Policy Design Lab, Tohoku University. E-mail:
ZusaiDPublic@gmail.com.

1Dynamic demand of myopic consumers is considered in the literature on dynamic monopoly pricing: Rohlfs
(1974); Dhebar and Oren (1985, 1986) are seminal papers. They assume a continuous type distribution to define a
continuous dynamic of the aggregate demand, though they implicitly assume aggregability. Employing the aggre-
gability result in Ely and Sandholm (2005), Zusai (2015) justifies the aggregate demand dynamic as an aggregate
obtained from the standard best response dynamic.
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investigations of game experiments (quantal response equilibria). To embed heterogeneity to
evolutionary dynamics, we typically assume that there are only finitely many types so they
can be formulated as distinct populations (or genes); it requires some technical twists for dis-
crete approximation of a continuous type space and also leaves non-negligible impacts of each
individual type on others.

There are a few studies that deal with a continuous range of payoff heterogeneity in evo-
lutionary dynamics. But, these studies focus on anonymous games—payoffs depend on oth-
ers’ choices only up to the aggregate strategy (Example 1)—and rely on aggregability of the
dynamic—the change in the aggregate strategy is wholly determined from the current state of
the aggregate distribution alone, independently of the underlying correlation between strat-
egy choices and payoff types.2 Aggregability may be assumed as in Blonski (1999) or may
be derived from some specific form of the agents’ strategy revision processes as in Ely and
Sandholm (2005). Anyway, aggregability is a demanding restriction for games and dynam-
ics; heterogeneous choices of agents cannot have an impact on payoffs or dynamics through
something beyond their average, for example through the variance or distribution of strategies
over different types. It is virtually the same as having just one “representative/average” type
of agents and thus cannot capture impacts persistent heterogeneity among agents (or “fixed
effects” in discrete choice regression) on evolution of their strategies.

In this paper, we provide a general framework to extend evolutionary dynamics to het-
erogeneous population games without requiring aggregability or restricting to a finite type
space. We allow agents not only to have different payoff functions but also to follow different
decision rules. Besides, our framework does not require anonymity and thus covers a wider
range of games such as Bayesian games (Example 2) and spatial evolution (Example 3). To
allow continuously many types in our framework, we face technical difficulty in dealing with
continuous dimensions. The state of an evolutionary dynamic is the strategy distribution over
different types; the dimension of the dynamic is just as large as the number of types. Without
averaging off heterogeneity or assuming a finite type space, we need to deal with a dynamic
system on infinite dimension. Therefore, we start from carefully defining evolutionary dy-
namics with a measure theoretic formulation of the state space, following the literature on
evolution in games with continuously many strategies, especially Oechssler and Riedel (2001,
2002) and Cheung (2014).3

Even the unique existence of a solution trajectory cannot be simply granted for infinite di-
mensional dynamics. We clarify the regularity conditions on games and individual decision
rules to assure it (Theorem 1): if individual agents respond to changes in payoffs in a Lipschitz-
continuous way (L-continuous revision protocols in Definition 1) and the switching rates are
uniformly bounded over all types (Assumption 2), the dynamic has a unique solution trajec-

2Hummel and McAfee (2018) apply (a generalized version of) replicator dynamics to formulate the demand
dynamic in the monopoly pricing problem, as argued in footnote 1. While the replicator dynamic is not aggregable
as argued in Zusai (2017), they obtain an explicit solution for the differential equation that represent the demand
dynamic, thanks to their specification of functions (especially in their Lemma 1). Since the demand dynamic is
only a part of the monopolist’s dynamic optimization, equilibrium stationarity or stability is not discussed in their
paper. (Actually, terms like ‘equilibrium’ or ’stability’ do not appear in their paper, except the bibliography in their
paper.)

3To name a few more, see also Hofbauer et al. (2009), Friedman and Ostrov (2013), Lahkar and Seymour (2013),
Lahkar and Riedel (2015) and Cheung (2016).
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tory from an arbitrary initial state in the heterogeneous setting. If an agent takes only the exact
best response strategy (exact optimization protocols in Definition 2) just as in the best response
dynamic, the individual revision protocol exhibits discontinuity when the transition of the
strategy distribution triggers a switch of the agent’s best response strategy through changes in
payoffs. To mitigate discontinuity at the individual level and retain the unique existence of a
solution trajectory, we additionally impose a kind of Lipschitz continuity on the distribution
of the types whose best response strategies change with such a transition (Assumption 3).

We then confirm that standard properties of evolutionary dynamics can be extended from
the homogeneous setting to the heterogeneous setting. First, if the individual decision rule as-
sures stationarity of Nash equilibrium in the homogeneous setting, it also assures equilibrium
stationarity in heterogeneous population games (Theorem 3). We also obtain the condition for
the existence of an equilibrium (Theorem 4). Combining them, we can guarantee the existence
of a stationary state in heterogeneous evolutionary dynamics. While stability of equilibrium
is not granted generally even in a homogeneous population game, it is known that potential
games assure equilibrium stability over a wide range of homogeneous evolutionary dynam-
ics. With a rigorous formulation of heterogeneous potential games (Definition 5), we verify
that equilibrium stability is extended to the heterogeneous setting (Theorem 5). In particular, a
local maximum of the potential function is locally stable under any admissible dynamics. Pro-
vided that the equilibrium is isolated, the converse is true: once we find a locally stable equi-
librium in a potential game under some particular admissible dynamic, it is a local maximum
of the potential of the game and thus the local stability carries over any admissible dynamics
(Corollary 3). Furthermore, we consider perturbation of a game by introducing payoff hetero-
geneity (Example 1), incomplete information (Example 2) and an uneven spatial structure of
interactions (Example 3)). We confirm that the potential function of a base game can be nat-
urally extended under such modifications (Theorem 6) and local stability in the base game is
robust (Corollary 4).

In the next section, we define a heterogeneous population game and then build a hetero-
geneous evolutionary dynamic from an individual agent’s revision protocol. Next we present
our main results. In Section 3, we study the regularity conditions to guarantee the existence
of a unique solution path. In Section 4, we extend equilibrium stationarity in general and
equilibrium stability of potential games to the heterogeneous setting. Until this section, we
consider heterogeneity only in payoff functions and focus on non-observational evolutionary
dynamics, in which an agent’s switching rate depends only on the payoff vector for the agent
but not on other agents’ strategies. In Section 5, we consider heterogeneity in revision proto-
cols and observational dynamics such as imitative dynamics and excess payoff dynamics; we
confirm that the theorems in this paper are robust to these extensions. We conclude the paper
in Section 6 with a summary of the positive results in this paper and discussion on their im-
plications and limitations. Appendices provide the proofs and a few technical details on the
measure-theoretic construction of heterogeneous dynamics.
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2 The base model

2.1 Heterogeneous population games

We first set up the game played in a heterogeneous population; here we quickly introduce
essential components for our analysis, while we provide a complete illustration of the measure-
theoretic formulation in Appendix A.1.

The society consists of a continuous population of agents, each of whom chooses a strategy
from the same strategy set S = {1, · · · , S}. Each agent is assigned to type θ ∈ Θ, where type
space Θ is closed in R.4 Types may represent heterogeneity in assessments of payoffs (possibly
due to private information) as we focus in this base model, or heterogeneity in revision pro-
tocols as we discuss in Section 5, or both. If there are only finitely many types, these “types”
could be formulated as different populations (or species in a biological context) in a conven-
tional approach; however, we may have continuously many types in our model. Let B the set
of Borel sets over Θ, and µ be the measure over the type space Θ: for any Borel set B ∈ B of
types, µ(B) is the mass of agents whose types belong to B. We assume that the total mass of
agents in the society is 1, i.e., µ(Θ) = 1; so, µ is a probability measure.

The social state is described by the strategy distribution X = (Xs)s∈S , a joint distribution
of strategies and types such that the marginal distribution of types coincides with µ. For each
strategy s ∈ S and each Borel set B ∈ B of types, Xs(B) is a mass of strategy-s players whose
types belong to B. For each B, the strategy distribution X = (Xs)s∈S must satisfy ∑s∈S Xs(B) =
µ(B). Denote by X the space of strategy distributions.

Since X satisfies Xs(B) ≤ µ(B) for each s ∈ S , each Xs is absolutely continuous with
respect to µ; see (A.1) in Appendix A.1. We denote this relationship of the absolute continuity
by µ � X. By Radon-Nikodym theorem, the absolute continuity guarantees the existence of
a density function xs : Θ → R+ of Xs such that Xs(B) =

∫
B xsdµ. Then, strategy density

function x = (xs)s∈S is defined by collecting the density functions xs over all s ∈ S ;5 we
abbreviate the relationship between X and its density x as X =

∫
xdµ. Notice x(θ) ∈ ∆S :=

{z ∈ RS
+ : ∑s∈S zs = 1} for each type θ ∈ Θ.6 The density xs(θ) ∈ [0, 1] can be interpreted

as the population share of strategy-s players in the subpopulation of type-θ agents. Denote by
FX the set of strategy density functions.7 Strategy density function x is (µ-almost) uniquely
determined from strategy distribution X by Radon-Nikodym theorem, and vice versa. In this
sense, we can regard X as equivalent to FX .

Let Fs[X](θ) be a type θ-agent’s payoff from strategy s when the strategy distribution is X.
Thus, F[X](θ) = (Fs[X](θ))s∈S ∈ RS is the payoff vector for type θ given strategy distribution

4This is just to simplify exposition in the main body. All the theorems are applicable to any type space Θ as
long as it is Polish (complete, separable, and metrizable).

5In an incomplete information game with a finite number of players, X is essentially a distributional strategy
and x is a behavioral strategy in Milgrom and Weber (1985). Ely and Sandholm (2005) call x a Bayesian strategy.

6We denote R+ = [0,+∞) and R++ = (0,+∞). Consider a |U |-dimensional real space, each of whose co-
ordinate is labeled with one element of U = {1, . . . , |U |}. For set S ⊂ U , we define an |S|-dimensional simplex

∆|U |(S) as ∆U (S) :=
{

x ∈ R
|U |
+ : ∑k∈S xk = 1 and xl = 0 for any l ∈ U \ S

}
. When S is the whole space U

itself, we omit |U | and denote it by ∆U .
7Two strategy density functions x, x′ ∈ FX are considered as identical, i.e., x = x′, if x(θ) = x′(θ) for µ-almost

all θ ∈ Θ. They indeed yield the same strategy distribution.
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X. Given X, F[X] : Θ→ RS specifies the payoff vector F[X](θ) for each type θ ∈ Θ; thus we call
F[X] the payoff vector profile. We assume that F[X] belongs to C, the set of continuous functions
from Θ to RS. Payoff function F : X → C maps a strategy distribution X ∈ X to a payoff vector
profile F[X] ∈ C. A heterogeneous population game is defined by (S , (Θ,B, µ), F), which we
represent by F.

Let SBR(π
0) ⊂ S be the set of best response strategies given payoff vector π0 = (π0

s )s∈S ∈
RS: i.e., SBR(π

0) := argmaxs∈S π0
s . Denote by ∆(SBR(π

0)) the set of strategy distributions that
assign positive probabilities only to the best response strategies given π0: i.e., ∆(SBR(π

0)) =

{y ∈ ∆S : ys > 0 ⇒ s ∈ SBR(π
0)}.

In heterogeneous population game F, SF
BR[X](θ) := SBR(F[X](θ)) collects the best response

strategies given payoff vector F[X](θ) for type θ; namely, it is the set of type-θ’s best response
strategies to X in game F. Let ΘF

s∈BR[X] be the set of types for which strategy s is a best response
to X, and ΘF

s=uniqBR[X] the set of types for which strategy s is the unique best response to X: i.e.,

ΘF
s∈BR[X] := {θ ∈ Θ : s ∈ SF

BR[X](θ)} ⊃ ΘF
s=uniqBR[X] :=

{
θ ∈ Θ : {s} = SF

BR[X](θ)
}

.

In a Nash equilibrium, (almost) every agent correctly predicts strategy distribution X and
takes the best response to it. Correspondingly, strategy distribution X ∈ X with density x ∈
FX is an equilibrium strategy distribution in game F, if

x(θ) ∈ ∆(SF
BR[X](θ)) for µ-almost all θ ∈ Θ, (1)

or equivalently,

xs(θ) =

1 if θ ∈ ΘF
s=uniqBR[X]

0 if θ /∈ ΘF
s∈BR[X]

for all s ∈ S and µ-almost all θ ∈ Θ. (1’)

That is, if s is the unique best response for type θ, (almost) all the agents of this type should
take it; if s is not a best response, (almost) none of these agents should take it. We leave
indeterminacy of xs(θ) in an equilibrium when there are multiple best response strategies for
θ and s is just one of them. Note that (1) is equivalent to

µ(ΘF
s=uniqBR[X] ∩ B) ≤ Xs(B) ≤ µ(ΘF

s∈BR[X] ∩ B) for all s ∈ S and B ∈ B. (2)

Among types in B, all those who have s as the unique best response must choose this strategy s
in equilibrium; thus Xs(B) must be at least µ(ΘF

s=uniqBR[X] ∩ B). On the other hand, those who
have s as one of the best responses may or may not add to strategy-s players and thus Xs(B) is
at most µ(ΘF

s∈BR[X] ∩ B).

Examples of heterogeneous population games

Example 1 (Anonymous game). Denote by x̄s := Xs(Θ) =
∫

xsdµ ∈ [0, 1] the mass of agents
who take strategy s ∈ S in the entire population over all types in Θ. We call x̄ := (x̄s)s∈S ∈
∆S the aggregate strategy. If each type’s payoff function F(θ) : X → RS depends only on
aggregate strategy, that is, F satisfies F[X](θ) = F[X′](θ) for any type θ ∈ Θ under any pair of
two strategy distributions X, X′ ∈ X that yields the same aggregate strategy X(Θ) = X(Θ′),
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then we call the game an anonymous game.8

Especially, in the context of discrete choice models such as in Anderson et al. (1992), it is
common to introduce payoff heterogeneity in an additively separable manner. That is, the
payoff function is additively separated to the common part and the idiosyncratic part: with
type space Θ ⊂ RS, type θ = (θs)s∈S ∈ RS is defined as the idiosyncratic payoff vector for
this type, which varies among agents but does not change over time regardless of the state of
the population. Given aggregate strategy x̄, F0(x̄) = (F0

s (x̄))s∈S ∈ RS is the common payoff
vector, shared by all the agents in the entire population. Thus, at each strategy distribution
X ∈ X , the payoff vector for a type-θ agent is

F[X](θ) = F0(X(Θ)) + θ. (3)

We call an anonymous game with such additively separable idiosyncratic payoffs an addi-
tively separable anonymous game (ASAG). We can regard an ASAG as an extension of a
homogeneous population game F0 to a heterogeneous setting.

Example 2 (Bayesian game). A Bayesian game can be fit into our framework. Let Σ be the set
of possible states and PΣ be the prior belief over Σ with BΣ the set of measurable sets. State
σ ∈ Σ determines the distribution PΘ|σ of types (signals) and payoff function Fσ = (Fσ

s )s∈S :
X → RS, while the strategy (action) set S is common over all states.

Receiving signal θ ∈ Θ, an agent forms the posterior belief PΣ|θ such as

PΣ(BΣ|θ) =
∫

σ∈BΣ
PΘ(dθ|σ)PΣ(dσ)∫

σ∈Σ PΘ(dθ|σ)PΣ(dσ)
for each BΣ ∈ BΣ.

Based on this, the type-θ agent assesses the expected payoff from action s ∈ S given strategy
distribution X ∈ X as

Fs[X](θ) =
∫

σ∈Σ
Fσ

s (X)PΣ(dσ|θ).

Note that x(θ) indicates agents’ choices of strategies s conditional on receiving signal θ; thus
x corresponds to a Bayesian strategy. The prior distribution of signals PΘ such as PΘ(B) =∫

B PΘ|σ(dθ|σ)PΣ(dσ) is regarded as the type distribution µ.

Example 3 (Structured population game). We could interpret a type just as a “population” in
a conventional model in evolutionary game theory, while we allow continuously many pop-
ulations. Then, a type represents an affiliation to a certain subgroup of agents in the society;
so, Θ is a set of subgroups. Let a base game be a two-population game F0 : ∆S × ∆S → RS;
an agent chooses a strategy, say s, from S and then receives payoff F0

s (x, x′) given the strat-
egy distribution (density) in the agent’s own population x ∈ ∆S and that in the opponent’s
population x′ ∈ ∆S . When the society is divided into many subgroups, their connections may
not be uniform. Say, an agent in subgroup θ assigns weight g(θ, θ′) ∈ R to the game with
subgroup θ′. For example, the society may be geographically split to subgroups by locations;
then, θ represents a location and g(θ, θ′) may be determined from the distance or commuting

8Notice the difference from an aggregative game (Corchón, 1994; Jensen, 2018). The payoff depends only on the
population-weighted sum of strategies ∑s∈S sx̄s in a linearly aggregative game, or a scalar-valued summary g(x̄) ∈
R in a generalized aggregative game; to make sense, strategies must be some quantities. Cournot competition
where strategy s is the quantity of production is a canonical example of an aggregative game. An aggregative
game is a special case of anonymous games, since the latter does not require the aggregate strategy x̄ ∈ RS to
reduce to a scalar.
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cost between two locations θ and θ′ (e.g. Hwang et al. (2013)). Or, a subgroup may be defined
by racial or social identity, which may exhibit continuous gradation. Then, g(θ, θ′) represents
the frequency of interactions between the identity groups θ and θ′ or the subjective weight for
θ on interactions with θ′.9

Assuming that an agent must apply the same strategy to any opponent subgroups, the total
payoff for an agent in subgroup θ from strategy s given the strategy distribution X is

Fs[X](θ) :=
∫

Θ
F0

s (x(θ), x(θ′))g(θ, θ′)µ(dθ′).

This defines a population game F, which Wu and Zusai (2019) call a structured population game10

2.2 Evolutionary dynamics

In an evolutionary dynamic, an agent occasionally changes the strategy over a continuous time
horizon R+, following a Poisson process. The timing of a switch and the choice of which strat-
egy to switch to are determined by revision protocol ρ = (ρss′)s,s′∈S : RS → RS×S

+ , a collection
of switching rate functions ρss′ : RS → R+ over all the pairs (s, s′) ∈ S × S of two strategies.
An economic agent should base the switching decision on the payoff vector that the agent is
facing. Let π0 ∈ RS be the payoff vector for the agent. The switching rate ρss′(π

0) ∈ R+ is a
Poisson arrival rate at which this agent switches to strategy s′ ∈ S conditional on that the agent
has been taking strategy s ∈ S so far and currently faces payoff vector π0. The analysis in this
paper is applicable to observational dynamics, in which the switching rates also depend on the
strategy distribution; e.g. the replicator dynamic and excess payoff dynamics. In addition, all
our theorems hold even when different types of agents follow different revision protocols. We
confirm applicability to these extensions in Section 5, while we focus on heterogeneity only in
payoff functions and thus assume that all the types of agents share the same revision protocol
ρ until that section.

In the heterogeneous setting, different types of agents may face different payoff vectors.
Let π : Θ → RS be a payoff vector profile that specifies payoff vector π(θ) of each type θ.
From revision protocol ρ : RS → RS×S

+ , we construct an evolutionary dynamic of strategy
density function x ∈ FX with function v = (vs)s∈S : RS × ∆S → RS as

ẋs(θ) = vs(π(θ), x(θ)) := ∑
s′∈S

xs′(θ)ρs′s(π(θ))− xs(θ) ∑
s′∈S

ρss′(π(θ)) (4)

for each type θ ∈ Θ and each strategy s ∈ S , i.e., ẋ(θ) = v(π(θ), x(θ)). In an infinitesimal
length of time dt ∈ R, ∑s′∈S xs′(θ)ρs′s(π(θ))dt is approximately the mass of type-θ agents who
switch to strategy s from other strategies s′ ∈ S , namely, the gross inflow to xs(θ); similarly,
xs(θ)∑s′∈S ρss′(π(θ))dt is the gross outflow from xs(θ). Thus, vs(π(θ), x(θ))dt is the net flow

9The weight g(θ, θ′) can be negative, which implies that an agent has a reversed preference in interactions with
subgroup θ′. For example, if a base game is a coordination game, an agent may want to coordinate to the same
action with a ‘friend’; but, with agents in an ‘enemy’ subgroup, the agent wants to take a different action. See
Example 1 in Wu and Zusai (2019).

10They restrict attention to finitely many subgroups of agents who play a linear game (with no influence of the
own population) such as F0(x, x′) = U0x′ with an S× S matrix U0, while they consider both the “medium run”
dynamic where an agent’s affiliation is fixed exogenously (as in our model) and the “long run” dynamic where an
agent can change both strategy and affiliation (not covered in this present paper).
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to xs(θ) in this period of time dt.
Embedding a heterogeneous population game F : x 7→ π into the evolutionary dynamic

v : (π, x) 7→ ẋ, we obtain an autonomous dynamic vF : x 7→ ẋ of strategy density function
x ∈ FX by

ẋ(θ) = vF[x](θ) := v(F[X](θ), x(θ)) ∈ RS for each type θ ∈ Θ, where X =
∫

xdµ.

By collecting vF[x] over types, we can further define the heterogeneous dynamic VF of strategy
distribution in X as

Ẋ(B) = VF[X](B) :=
∫

B
vF[x](θ)µ(dθ) for each B ∈ B. (5)

When we distinguish vF (or VF) from v, we call the former a combined dynamic, i.e., a dy-
namic obtained from combination of v and F. (See Footnote 22.) Note that (4) implies the
forward invariance of X , i.e., X0 ∈ X ⇒ Xt ∈ X ∀t > 0 in any solution trajectory of VF with
any F, since ∑s∈S vs(π(θ), x(θ)) = 0 and [xs(θ) = 0 ⇒ vs(π(θ), x(θ)) ≥ 0] for any π, x. Note
that an agent’s type θ is persistently fixed over time: each agent draws its type θ from Θ at time
0 and keeps it forever.

Examples of evolutionary dynamics

To make a concrete image of revision protocols, here we review major evolutionary dynam-
ics.11 In particular, we separate the dynamics based on optimization from others because they
need different regularity conditions to guarantee the existence of a unique solution trajectory.

L-continuous revision protocols. Under an L-continuous revision protocol ρ, the switching
rate function ρss′ is a Lipschitz continuous function of the payoff vector.

Definition 1 (L-continuous revision protocols). In an L-continuous revision protocol ρ, the
switching rate function ρss′ : RS → R+ of each pair of strategies s, s′ ∈ S is Lipschitz continu-
ous:12 there exists Lρ > 0 such that

|ρss′(π)− ρss′(π
′)| ≤ Lρ|π −π′| for any s, s′ ∈ S , π, π′ ∈ RS.

Example 4. In a class of pairwise comparison dynamics, the switching rate ρss′(π) increases
with the payoff difference πs′ − πs. In particular, the revision protocol ρss′(π) = [πs′ − πs]+

defines the Smith dynamic (Smith, 1984).13

Example 5. Because of continuity of a switching rate function, we see smooth best response
dynamics (Fudenberg and Kreps, 1993) as constructed from continuous revision protocols.
For example, the logit dynamic (Fudenberg and Levine, 1998) is constructed from ρss′(π) =

exp(µ−1πs′) / ∑s′′∈S exp(µ−1πs′′) with noise level µ > 0.
This revision protocol can be obtained from perturbed optimization: upon the receipt of

each revision opportunity, an agent draws each random perturbation in each strategy s’s pay-

11Readers who are familiar with major evolutionary dynamics may just scan this subsection quickly and jump
to Definitions 1 and 2.

12We adopt the L1- norm as a norm on a finite-dimensional real space, which we denote by | · |: for vector
v = (vi)

I
i=1 ∈ RI , |v| := ∑I

i=1 |vi|.
13[·]+ is an operator to truncate the negative part of a number: i.e., [π̆]+ is π̆ if π̆ ≥ 0 and 0 otherwise.
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off εs from a double exponential distribution14 and then switches to the strategy that maximizes
πs + εs among all strategies s ∈ S . In general, a smooth best response dynamic can be con-
structed from such perturbed optimization under some admissibility condition: see Hofbauer
and Sandholm (2002); Hofbauer et al. (2007). Note that, upon the receipt of a revision oppor-
tunity and a draw of ε ∈ RS, an agent always switches to the best response strategy, however
small the payoff gain by this switch is.

Note that payoff perturbation ε = (εs)s∈S is transient : a different value of ε will be drawn
at each revision opportunity from an i.i.d. distribution. So, there is no (ex ante) heterogeneity
in ε. In contrast, the idiosyncratic payoff type θ in our heterogeneous dynamics is persistent.

Exact optimization protocols. In an exact optimization protocol, an agent switches only to
the best response given the current payoff vector: if strategy s′ does not yield the maximal
payoff among π = (π1, . . . , πS), then ρss′(π) = 0 regardless of the agent’s current strategy s.
We allow the switching rate to a best response strategy to vary with π and s, s′ ∈ S . Denote by
Qss′(π) the conditional switching rate from s to s′, provided that s′ is already designated as the
new strategy. In the definition below, we extend the domain of Qss′ to RS while assuming its
continuity over the whole domain. The actual switching rate ρss′ is defined as the truncation
of Qss′ when s′ is not a best response; the truncation causes discontinuity.

Definition 2 (Exact optimization protocols). In an exact optimization protocol, the switching
rate function ρss′ : RS → R+ of each pair of strategies s, s′ ∈ S is expressed as15

ρss′(π) =

0 if s′ /∈ argmaxs′′∈S πs′′ ,

Qss′(π) if {s′} = argmaxs′′∈S πs′′ ,

with a Lipschitz continuous function Qss′ : RS → R+.

Example 6. In the standard best response dynamic (BRD) as defined by Hofbauer (1995b);
Gilboa and Matsui (1991), a revising agent always switches to the best response strategy that
maximizes the current payoff with probability 1, however small the payoff gain by this opti-
mization is. That is, the standard BRD is constructed from an exact optimization dynamic with
Qss′ ≡ 1. The heterogeneous version is considered in Ely and Sandholm (2005); they prove that
the aggregate strategy distribution in the heterogeneous standard BRD follows a homogenized
smooth BRD, i.e., the BRD of a single representative population of homogeneous agents whose
payoff types θ is transient.

Example 7. Consider a version of BRD in which the switching rate to the unique best response
Qss′ depends on the payoff difference (the payoff deficit) between the current strategy s and
the best response s′, i.e., Qss′(π) = Q(πs′ − πs) whenever s′ ∈ argmaxs′′∈S πs′′ . Function
Q : R+ → [0, 1] is called a tempering function and assumed to be continuously differentiable
and satisfy Q(0) = 0 and Q(q) > 0 whenever q > 0. Then this revision protocol yields

14Given the noise level µ, the cumulative distribution function of the double exponential distribution is P(εs ≤
c) = exp(− exp(−µ−1c− γ)) where γ ≈ 0.5772 is Euler’s constant.

15When argmaxs′′∈S πs′′ is not a singleton, this definition does not specify ρss′ (π) for a best response s′ ∈
argmaxs′′∈S πs′′ . However, we later imposes Assumption 3 and this implies the uniqueness of the best response for
almost all types.
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the tempered BRD; Zusai (2018) constructs this revision protocol from optimization with a
stochastic switching cost whose cumulative distribution function is Q.

3 Existence of a unique solution trajectory

We verify Lipschitz continuity of a heterogeneous dynamic to guarantee the existence of a
unique solution trajectory from an arbitrary initial strategy distribution by using a version of
Picard-Lindelöf theorem (Theorem 2). To apply this theorem, we prove the Lipschitz con-
tinuity of heterogeneous dynamic VF with respect to the variational norm ‖ · ‖∞ (see Ap-
pendix A.2), as in (6) in Appendix B.

For this, we assume that payoff function F is Lipschitz continuous and switching rate func-
tion ρ is bounded.

Assumption 1 (Lipschitz continuity of the payoff function). For µ-almost every type θ ∈ Θ,
F(θ) : X → RS is Lipschitz continuous with Lipschitz constant LF(θ):

|F[X](θ)− F[X′](θ)| ≤ LF(θ)‖X− X′‖∞ for any X, X′ ∈ X .

In addition, L̄F :=
∫

Θ LF(θ)µ(dθ) < ∞.16

Assumption 2 (Uniformly bounded switching rates). There exists ρ̄ ∈ R+ such that17

ρss′(F[X](θ)) ≤ ρ̄ for any s, s′ ∈ S and µ-almost all θ ∈ Θ, and any X ∈ X .

Note that the keys in these assumptions specifically for a heterogeneous setting are bound-
edness of the Lipschitz constant L(θ) and uniformness of ρ̄ over all types. If there are only
finitely many types, these assumptions are trivially satisfied as long as each type θ’s payoff
function F(θ) is Lipschitz continuous.18

One might attempt to merge Assumption 2 into Assumption 1 by strengthening the latter to
impose a common Lipschitz constant L̂F over all types θ. But this does not imply Assumption
2. For example, consider a binary ASAG with S = {I, O} such that FI [X](θ) = F0

I (X(Θ)) and
FO[X](θ) = θ for each X ∈ X . Assumption 1 holds as long as F0

I is Lipschitz continuous. But,
FO is not bounded unless Θ is bounded; hence ρss′(F[X](θ)) may not be bounded, for example,
if ρss′(π) grows unboundedly with the payoff difference |π I −πO|; e.g. ρss′(π) = [πs′ − πs]+.

These two assumptions are sufficient for the Lipschitz continuity of VF if all types follow
an L-continuous revision protocol thanks to continuity of the protocol itself. However, an
exact optimization protocol essentially involves discontinuity. One may recall that, in a homo-
geneous setting (i.e., a single type), the standard BRD is a discontinuous dynamic (and thus
formulated as a differential inclusion, not a differential equation) and its solution trajectory is
typically not unique. Actually, it is rather natural to assume a continuous type distribution for

16Note that we do not need a uniform bound on LF(θ). Assumption 1 is satisfied in an ASAG, as long as the
common payoff function F0 : RS → RS is Lipschitz continuous.

17Assumption 2 is satisfied in an ASAG, if the type distribution µ has a bounded support and the common
payoff function F0 is continuous, even if the switching rate function itself is not bounded over the whole domain
RS like the Smith dynamic.

18Then, the population-wide Lipschitz constant L̄F is finite and thus Assumption 1 holds. For Assumption 2,
recall continuity of ρss′ for L-continuous revision protocols and Qss′ for exact optimization revision protocols.
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smoothing out the discontinuity. Now we specify about what aspect of the type distribution
we should assume continuity.

For this, we start from clarifying the cause of discontinuity in an exact optimization proto-
col. We have indeed assumed Lipschitz continuity of Qss′ . Why cannot it guarantee Lipschitz
continuity of revision protocol ρss′? It is due to truncation when the best response strategy
changes. The continuity of Qss′ assures continuous change in switching rate ρss′ with the pay-
off vector, when strategy s′ remains to be the unique best response. However, payoff changes
may cause changes in the best responses, which trigger discontinuous changes in the switch-
ing rates: the switching rate ρss′ to the new best response strategy changes from zero to some
positive rate Qss′ and the switching rate to the old one changes from positive to zero.

In the next assumption we consider a change in the strategy distribution from X to X′.
We look at agents whose types belong to both ΘF

s∈BR(X) and ΘF
s′∈BR(X

′). These agents’ best
responses change from s to s′. The left hand side µ(. . .) in the assumption collects the mass of
such agents. The assumption requires that this mass grows only (at rapidest) proportionally
with the distance between the old and new strategy distributions ‖X− X′‖∞. This assumption
implies that, despite discontinuous changes in individual agents’ switching rates, the sum of
these changes over all the agents is continuous.

Assumption 3 (Continuous changes in best responses). If revision protocol ρ : RS → RS×S
+ is

an exact optimization protocol, then there exists LBR ∈ R+ such that

µ(ΘF
s∈BR(X) ∩ΘF

s′∈BR(X
′)) ≤ LBR‖X− X′‖∞

for any two distinct strategies s, s′ ∈ S such that s 6= s′ and any X, X′ ∈ X .

Remark 1. In an ASAG, Assumption 3 is satisfied if the cumulative distribution of differences
in idiosyncratic payoffs between every two strategies satisfies a Lipschitz-like continuity in the
following sense: let ∆ss′(d) = µ({θ ∈ Θ : θs′ − θs ≤ d}), i.e., ∆ss′ is a c.d.f. of the difference in
idiosyncratic payoffs between strategies s and s′. Then, there exists m̄ ∈ R such that |∆ss′(d′)−
∆ss′(d)| ≤ m̄|d′ − d| for any s, s′ ∈ S and any d, d′ ∈ R.

Assumption 3 implies that the best response is unique for µ-almost all types (let X = X′).
Note that this assumption imposes the condition on the type distribution only if the revision
protocol is an exact optimization protocol; L-continuous revision protocols do not need any
such assumption on the type distribution for the existence of a unique solution trajectory.

Theorem 1 (Lipschitz continuity of VF). Consider a heterogeneous dynamic VF in a population
game F. Then, function VF is Lipschitz continuous in variational norm ‖ · ‖∞, if (i) VF is built upon an
L-continuous revision protocol and satisfies Assumptions 1 and 2, or (ii) it is upon an exact optimization
protocol and satisfies Assumption 3 as well as Assumptions 1 and 2.

Corollary 1 (Existence of a unique solution trajectory). If VF satisfies the assumptions for Theo-
rem 1, then there exists a unique solution trajectory {Xt}t∈R+ ⊂ X of Ẋt = VF[X] from any initial
strategy distribution X0 ∈ X .

For (homogeneous) evolutionary dynamics on a continuous strategy space, Oechssler and
Riedel (2001) and Cheung (2014) prove the existence of a solution trajectory by applying Picard-
Lindelöf theorem as well. While both ours and theirs deal with the dynamic of probability
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measure on a (possibly) continuous space, our assumptions and details in the proof are unique
to our mathematical problem that involves continuity in a type space and also aims to offer a
general framework to cover various dynamics/revision protocols, especially exact optimiza-
tion protocols. We discuss these differences below.

Remark 2. One of the differences comes from the essential defining nature of heterogeneous
dynamics that each agent is born with a certain type θ and posses it persistently; so Xs(B) can
never exceed µ(B) for any B ∈ B, s ∈ S . As argued in Section 2, this assures µ � X, i.e.,
the absolute continuity of X with respect to µ. This enables us to obtain a strategy density
function x as a density of X w.r.t. µ and to interpret xs(θ) as a proportion of strategy-s players
among type-θ agents. Since an agent’s strategy revision crucially depends on the own type,
it is natural to construct dynamic v of strategy density function x(θ) at each θ, as in (4); then,
dynamic V of strategy distribution X is just derived from v, as in (5).

On the other hand, in continuous-strategy evolutionary dynamics, an agent is assumed
to be homogeneous and thus has no persistent characteristic. When these dynamics need a
distribution that dominates the strategy distribution to obtain absolute continuity, they create
some ad hoc distribution artificially from the strategy distribution.19 A continuous-strategy
evolutionary dynamic typically defines the transition of the measure (the mass of players in a
Borel set of strategies) directly; they obtain a density only to prove Lipschitz continuity. Thus,
a dominating distribution for absolute continuity is only an artificial addition to continuous-
strategy evolutionary dynamics, not an essential component of games or dynamics.

Remark 3. Another difference is that we cover exact optimization dynamics such as the stan-
dard and tempered BRDs, whose revision protocols ρ are discontinuous. As far as the author
is aware of, the studies on continuous-strategy evolutionary dynamics focus on L-continuous
revision protocols: imitative dynamics (Oechssler and Riedel, 2001; Cheung, 2016), the BNN
dynamic (Hofbauer et al., 2009), the gradient dynamic (Friedman and Ostrov, 2013), payoff
comparison dynamics (Cheung, 2014) and the logit dynamic (Lahkar and Riedel, 2015).

Sketch of the proof of Theorem 1

For the existence of a unique solution path, we use a version of Picard-Lindelöf theorem as
below.

Theorem 2 (adopted from Ely and Sandholm 2005, Theorem A.3.). Suppose that a dynamic ẋt =

vF[xt] with vF : FX → TFX := {ẋ : Θ→ RA} satisfies

• Lipschitz continuity in L1 norm on FX ;

• forward invariance of FX , i.e., ∑s∈S vF
s [x](θ) = 0 and [xs(θ) = 0 ⇒ vF

s [x](θ) ≥ 0] for any
x ∈ FX and θ ∈ Θ; and

• uniform boundedness of vF, i.e., there exists M > 0 s.t. |vF[x](θ)| ≤ M for any x ∈ FX and
θ ∈ Θ.

19For example, see Oechssler and Riedel (2001, p.159) and Cheung (2014, p.2 in Online Appendix).
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Consider a Lipschitz continuous extension of vF from FX to an affine space F̃X := {x : Θ → RA :

∑s∈S xs(θ) = 1 for any θ ∈ Θ}. Then, there exists a unique solution path {xt}t∈R+ from any initial
state x0 ∈ FX . It is Lipschitz continuous with respect to x0 and remains in FX for all time t ∈ R+.

Forward invariance is guaranteed from our construction of an evolutionary dynamic as
in (4). Given x(θ) ∈ ∆A, it is easy to see Assumption 2 guarantees a uniform bound on vF.
The remaining is Lipschitz continuity. Since the variational norm on X is equivalent to the L1

norm on FX , Lipschitz continuity of vF on FX is equivalent to that of VF on X .20 Similarly,
the conclusion of this theorem reduces to the existence of a unique solution path of Ẋ = VF[X]
and its Lipschitz continuity in (X , ‖ · ‖∞).

In Appendix B, we prove Lipschitz continuity of VF by finding LF
V > 0 such that

‖VF[X]−VF[X′]‖∞ ≤ LF
V‖X− X′‖∞ for any X, X′ ∈ X . (6)

For an L-continuous revision protocol, the Lipschitz continuity of VF is a natural consequence
of the Lipschitz continuity of switching rate function ρθ and of payoff function F.

On the other hand, an exact optimization protocol is discontinuous. If the best response
strategies for some type of agents have changed by a change in the strategy distribution from
X to X′, these agents should experience discontinuous changes in the switching rates. How-
ever, these discontinuous changes in their switching rates are bounded thanks to Assumption
3. The assumption also implies that the mass of agents who belong to such types increases
only Lipschitz-continuously with the change in the strategy distribution.21 As a result, the
aggregate change in their switching rates grows only continuously. This mitigation of dis-
continuity in an exact optimization protocol by continuity of the type distribution marks the
second difference from the preceding studies on continuous-strategy evolutionary dynamics.

4 Equilibrium stationarity and stability

Our heterogeneous dynamics could be seen as an extension of evolutionary dynamics in a sin-
gle homogeneous population to (possibly) continuously many heterogeneous subpopulations,
though the existence of a unique solution trajectory requires careful formulation of the state
space. It is natural to expect that stationarity and stability of Nash equilibria are extended to
equilibrium strategy distributions in the heterogeneous setting.

We first define the properties of evolutionary dynamic v that induce stationarity and sta-
bility of equilibria, separately from the population game.22 This separation is useful because
both homogeneous and heterogeneous dynamics stem from the same evolutionary dynamic

20Since we will argue the measure of types who experience changes in the best response strategies, it is indeed
clearer to work with measure-based VF on X than density-based vF on FX .

21Note that this assumption also restricts the mass of types who have multiple best responses to a null set (zero
measure) in µ.

22This separation accords with the view proposed by Sandholm (2010). Sandholm (2010, especially, Sec. 1.2.2
and Ch.4) proposes to construct an evolutionary dynamic v from agents’ revision protocol ρ, separately from a
game F, and thus has guided our attention to individual decision rules behind the collective population dynamic.
Note that, to clarify that Definition 3 defines a property of V, independently of specification of a game (especially
whether the population is homogeneous or heterogeneous), we name it best response stationarity; Nash station-
arity (Sandholm, 2010), which refers to stationarity of VF at Nash equilibria, makes sense only after specifying a
game.
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v (constructed from the same revision protocol ρ). Their difference lies only in the difference
in the population game played by agents, namely the difference between F : X → C and
F0 : ∆S → RS.

In the homogeneous setting, the stationarity of a Nash equilibrium under vF0
is an imme-

diate consequence of best response stationarity under v; the evolutionary dynamic stays at a
strategy distribution if and only if agents are taking the best response to the current payoffs.

Definition 3 (BR stationarity of evolutionary dynamic). Evolutionary dynamic v : ∆S ×RS →
RS satisfies best response (BR) stationarity if, for any π0 ∈ RS, x0 ∈ ∆S,

v(π0, x0) = 0 ⇐⇒ x0 ∈ ∆(SBR(π
0)). (7)

All the evolutionary dynamics mentioned in Section 2.2, except smooth BRDs, satisfy BR
stationarity.23 In a homogeneous population game, the best response stationarity implies the
stationarity of a Nash equilibrium and non-stationarity of non-equilibrium states.

The key property of evolutionary dynamics for equilibrium stability is positive correlation
(PC): each strategy’s payoff and the net increase in the mass of the strategy’s players are pos-
itively correlated and the correlation is strictly positive unless the strategy distribution is un-
changed. Major evolutionary dynamics, except smooth BRDs, satisfy PC.

Definition 4 (Positive correlation of evolutionary dynamic). Evolutionary dynamic v : ∆S ×
RS → RS satisfies positive correlation (PC) if

π0 · v(π0, x0)

≥ 0 for any π0 ∈ RS, x0 ∈ ∆S;

> 0 if v(π0, x0) 6= 0.
(8)

While stability of a Nash equilibrium is not generally guaranteed even in the homoge-
neous setting, it is assured for potential games under a wide class of evolutionary dynamics.
In the homogeneous setting, population game F0 : ∆S → RS is a potential game if there is
a differentiable function f 0 : ∆S → R, called a potential function, such that ∇ f 0 ≡ F0.24

PC immediately implies that the value of f 0 increases over time until it reaches a stationary
point, since the definition of a potential function implies ḟ 0(x0) = ∇ f 0(x0) · ẋ0 = F0(x0) · ẋ0 =

F0(x0) · v(F0(x0), x0). Hence, the homogeneous potential function f 0 works as a Lyapunov func-
tion commonly in these evolutionary dynamics and thus PC assures stability of local maxima
of f 0 (Sandholm, 2001).

If a dynamic satisfies BR stationarity and PC, we call it an admissible dynamic. Pairwise
comparison dynamics and exact optimization dynamics are admissible dynamics.25

23In the homogeneous version of exact optimization dynamics, BR stationarity needs to assume ρss′ (π) = 0
when the current strategy s is a best response to π; this was not assumed in our definition in cases of multiple best
responses. In the heterogeneous setting, this concern on multiple best responses is eliminated by Assumption 3.
Hence, this assumption replaces the assumption of ρss′ (π) = 0 for best response s to π.

24Having a potential function is equivalent to externality symmetry: the change in the payoff of a strategy by a
change in the mass of another strategy’s players is symmetric between these two strategies. The class of potential
games includes random matching in common interest games, binary games and nonatomic congestion games.
Sandholm (2010, Chapter 3) provides further explanation and examples.

25Smooth BRDs satisfy analogous properties of Nash stationarity and PC for perturbed payoffs; see Sandholm
(2010, §6.2.4). For observational dynamics such as the replicator dynamic and excess payoff dynamics, see Sec-
tion 5.1. See Sandholm (2010, Chapter 5) for summary of the relationship between dynamics and the two properties
in this section.
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4.1 Equilibrium stationarity in general

In the heterogeneous setting, the best response stationarity applies to each type: the strategy
distribution of a particular type θ remains unchanged if and only if almost all agents of this
type choose the best response to the current payoff for this type. Thus, it is straightforward that
the best response stationarity implies the stationarity of an equilibrium strategy distribution
and non-stationarity of non-equilibrium strategy distributions.

Theorem 3 (Equilibrium stationarity in a population game). Suppose that evolutionary dynamic
v satisfies BR stationarity (7). Then, in any heterogeneous population game F, an equilibrium strategy
distribution is stationary under the heterogeneous combined dynamic VF derived from these v and F,
and vice versa:26

VF[X] = O ⇐⇒ X is an equilibrium strategy distribution in F. (9)

This theorem implies that the existence of a stationary point is equivalent to that of an
equilibrium state. Following the outline of the proof for the existence of a distributional equi-
librium in an incomplete information game of finitely many players by Milgrom and Weber
(1985), we can guarantee the existence of an equilibrium strategy distribution in a heteroge-
neous population game that exhibits a kind of uniform continuity and boundedness over types
of the payoff function.

Theorem 4 (Existence of equilibrium in a population game). Suppose that F : X → C satisfies
Assumption 1, equicontinuity over types (with respect to the weak topology metrized by Prokhorov
metric dPr),27 i.e., for any X ∈ X , ε > 0, there exists δCt[X] > 0 such that

dPr(X, X′) < δCt[X] =⇒
[
|Fs[X](θ)− Fs[X′](θ)| < ε for any s ∈ S and µ-almost all θ ∈ Θ

]
,

and near-boundedness over types, i.e., for any X ∈ X , ε > 0, there exists F̄[X] ≥ 0 such that∫
Θ

∑
s∈S

[|Fs[X](θ)| − F̄[X]]+ · µ(dθ) < ε.

Then, there exists an equilibrium strategy distribution in the heterogeneous population game F.

Corollary 2. Under the assumptions for Theorems 3 and 4, heterogeneous dynamic VF has a stationary
state.

If F[X] : Θ→ RS is bounded over Θ, i.e., there exists F̄[X] ∈ R+ such that |Fs[X](θ)| ≤ F̄[X]
for any s ∈ S and µ-almost any type θ, then it is nearly bounded over types. The near-
boundedness allows F[X] to be unbounded as long as |Fs[X](θ)| exceeds F̄[X] only in a suf-
ficiently small mass of agents. It is satisfied as long as the expected value of |Fs[X]| over types
exists, i.e.,

∫
|Fs[X](θ)|µ(dθ) < ∞ for each s ∈ S . In an ASAG, this reduces to

∫
|θs|dµ < ∞; so,

it holds, for example, if θ follows the double-exponential distribution just as assumed in the
logit choice model.

Just like Milgrom and Weber (1985), we use Glicksberg’s fixed point theorem (Aliprantis
and Border, 2006, Corollary 17.55), since an equilibrium strategy distribution can be formu-
lated as a fixed point of the “distributional” best response correspondence (check B[X] in Ap-
pendix C.2). But the objective function in the best response correspondence is different from

26O = (Os)s∈S ∈ M denotes a zero measure such as Os(B) = 0 for any B ∈ B, s ∈ S .
27See Appendix A.1 for the weak topology and Prokhorov metric dPr.
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theirs because of difference in the player set and in the strategy set. Thus, we need to prove
continuity of the objective function specifically for our population-game setting.

4.2 Equilibrium stability in potential games

Heterogeneous (weighted) potential games

For a game played in large population, a potential game is defined as a game in which payoff
vector can be derived as the derivative of some scalar-valued function, i.e., a potential function.
By generalizing this idea to a function defined on the (possibly infinite-dimensional) space of
strategy distributions, we define a heterogeneous potential game.

Definition 5 (Heterogeneous potential game). Heterogeneous population game F : S → C is
called a heterogeneous weighted potential game if there are a continuous function w : Θ →
R++ and a scalar-valued Fréchet-differentiable function f : X → R that is continuous in
the weak topology on X and whose Fréchet derivative coincides with wF: at each strategy
distribution X ∈ X , the payoff vector function F[X] ∈ C satisfies28

f (X′) = f (X) + 〈wF[X], X′ − X〉+ o(‖X′ − X‖∞) for any X′ ∈ X .

We call f a (heterogeneous) w-weighted potential function for F. If w ≡ 1, f is called an (exact)
potential function and F an (exact) potential game.

Both in the homogeneous and heterogeneous settings, all local maxima and interior local
minima of a potential function, and indeed all the solutions of the Karush-Kuhn-Tucker first-
order condition for maxima are equilibria in a potential game; see Sandholm (2001) for the
proof for Nash equilibria in a homogeneous potential game and Sandholm (2005, Appendix
A.3) for equilibrium strategy distributions in a heterogeneous potential game.

Stability and potential maximization

In the heterogeneous setting, PC of v implies a positive correlation between the payoffs and
the strategy distribution among each type of agents. Thus, by the same token as in a homo-
geneous potential game, this guarantees that the heterogeneous potential function f works as
a Lyapunov function for equilibrium stability in a heterogeneous potential game F. Hence,
part i) in the theorem below is a natural extension of equilibrium stability in a homogeneous
potential game (Sandholm, 2001) to a heterogeneous setting. Part ii) verifies the opposite rela-
tionship; that is, stability of an equilibrium in any admissible dynamic implies local maximum
of the potential. Our proof applies to a homogeneous setting, though the result has not been
mentioned in the literature even in a homogeneous setting as far as the author is aware of.

28Here, operator 〈·, ·〉 is defined as 〈π, ∆X〉 =
∫

Θ π(θ) · ∆X(dθ) and wF : X → C is defined as (wF[X])(θ) =
w(θ)F[X](θ). The norm ‖ · ‖∞ is the variational norm on X to metrize the strong topology; see Appendix A.2.
Fréchet differentiability is defined for the strong topology and thus continuity in the weak topology (stronger than
continuity in the strong topology) is additionally required. Note that Fréchet differentiation is a generalization
of total differentiation, while another differentiation in a Banach space, Gateaux differentiation, generalizes direc-
tional differentiation. Since ẋ may not stay in the same direction, we need total differentiation.
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Theorem 5 (Equilibrium stability of heterogeneous potential games). Suppose that evolutionary
dynamic v satisfies PC (8) as well as Assumptions 1 to 3. Then, in any heterogeneous potential game F,
the following holds.

i) The set of stationary strategy distributions {X ∈ X : VF[X] = O} is globally attracting under
VF. A local maximum (local strict maximum, resp.) of f is Lyapunov stable (asymptotically stable,
resp.).

ii) Let X∗ be an isolated stationary strategy distribution in the sense that, in a neighborhood X∗ of
X∗ in the space X , there is no other stationary strategy distribution than X∗. a) If it is (locally)
asymptotically stable, then it is a local strict maximum of f . b) Further assume that γ : X → R

defined as γ(X) = 〈wF[X], VF[X]〉 is continuous in weak topology.29 If X∗ is Lyapunov stable,
then it is a local maximum of f .

Since equilibria and potential maximizers can be found solely from F independently of the
dynamic v, Theorems 3 and 5 imply that the set of stationary states and the set of locally stable
states are common to all admissible dynamics.

Corollary 3. Consider admissible dynamic V in a heterogeneous population game F that satisfies As-
sumptions 1 to 3.30

i) Strategy distribution X∗ is an equilibrium in F, if and only if it is stationary in any those dynamics.

ii) Further, suppose that F is a heterogeneous potential game. Then, the set of equilibrium strategy
distributions is globally attracting under any those dynamics. Isolated equilibrium strategy distri-
bution X∗ is a local maximum of potential function f , if and only if it is Lyapunov stable under
any those dynamics; strictness of a local maximum is equivalent to asymptotic stability.

That is, just like in the homogeneous setting, specification of evolutionary dynamics do not
matter in a heterogeneous potential game to assure global stability of the Nash equilibrium
set or to tell which equilibrium is locally stable. This commonality of equilibrium stability is
appealing to applications; see Example 9.

Naturally in our canonical three examples, if the base game is a potential game, then its
heterogeneous versions are also potential games.

Example 1′. Recall Example 1. Assume that the base homogeneous game F0 is a potential game
with potential function f 0 : ∆S → R such that ∇ f 0 ≡ F0. Then, the ASAG is a heterogeneous
potential game, with potential function f : X → R such as31

f (X) = f 0(X(Θ)) +
∫

Θ
θ · X(dθ) for each X ∈ X .

29Continuity of γ in weak topology is assured if continuity of F (Assumption 1) and V (Definition 1 and as-
sumption 3) are strengthened to that in weak topology; assumptions in Footnote 16 and assumption 3 suffice it in
an ASAG. γ is continuous in strong topology if F and VF are continuous in strong topology, which is guaranteed
by Assumption 1 and Theorem 1. But continuity in weak topology is stronger than that in strong topology, since
convergence in the former is weaker than that in the latter (and then the value of a “continuous” function must
approach arbitrarily close to a limit).

30In each of the two claims i,ii), the former condition (equilibrium/potential maximum) is sufficient for the latter
(stationarity/stability) to hold under all admissible heterogeneous dynamics, while the latter under any (single)
admissible dynamic is sufficient for the former.

31This function f appears in the study of evolutionary implementation by Sandholm (2005, Appendix A.3). But
it was used there only to characterize an equilibrium as a solution of the KKT condition for local maxima and
minima of f .
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Example 2′. Recall Example 2.32 Assume that, with continuous weighting function w : Θ →
R++ common over all states σ ∈ Σ, f σ : X → R is a w-weighted potential function for base
game Fσ : X → RS in each state σ ∈ Σ in the sense that, for any X =

∫
xdµ, X′ =

∫
x′dµ,

f σ(X′) = f σ(X) +
∫

w(θ)Fσ[X] · {x′(θ)− x(θ)}dPΘ|σ(dθ|σ) + ‖X′ − X‖∞.

Then, the Bayesian game F is a w-weighted potential game with w-weighted potential function
f : X → R such that

f (X) :=
∫

σ∈Σ
f σ(X)PΣ(dσ) for each X ∈ X .

Example 3′. Recall Example 3. Now assume that the base game is a weighted potential game
with potential function f 0 : ∆S × ∆S → R, i.e., ∇1 f 0(x, x′) = w1F0(x, x′),∇2 f 0(x, x′) =

w2F0(x′, x), where wi ∈ R++ is a positive constant and∇i f 0 is the gradient vector of f 0 with re-
spect to the strategy distribution in the i-th argument. (Recall the first argument is the strategy
distribution in the own population and the second is that in the opponent.) Further, assume
that the weight function g is symmetric: g(θ, θ′) = g(θ′, θ). Then, the structured population
game is an (exact) potential game, with potential function f : X → R such that

f (X) =
1

w1 + w2

∫
(θ,θ′)∈Θ2

f 0(x(θ), x(θ′))g(θ, θ′)µ(dθ)µ(dθ′) for each X =
∫

xdµ ∈ X .

Theorem 6. The heterogeneous population games in the above examples are potential games.

The following corollary makes a bridge between stability in a base game and that in a
modified heterogeneous game. The claim in each part can be immediately proven from the
above construction of the potential functions.

Corollary 4. i) Consider Example 2′. Assume that f 0 is locally concave around x̄∗: that is, f 0 is
concave in some neighborhood of x̄∗. Then f is locally concave around any X∗ such that X∗(Θ) =

x̄∗.

ii) Consider Example 2′. Assume that X∗ attains a local (locally strict, resp.) maximum of f σ in base
game Fσ commonly over all the states σ. Then, X∗ attains a local (locally strict, resp.) maximum
of f in the Bayesian game F.

iii) Consider Example 3′.Suppose that symmetric strategy profile (x̄∗, x̄∗) is a local (locally strict,
resp.) maximizer of f 0 in the two-population base game F0. Let X∗ be constructed from strategy
density function x∗ ∈ FX such as x(θ) = x̄∗ for µ-almost all θ. Then, X∗ attains a local (locally
strict, resp.) maximum of f in the structured potential game F.

This corollary suggests that local stability is robust to the introduction of payoff pertur-
bation, incomplete information and uneven interaction structure as long as the base game
exhibits a potential function and the dynamic is admissible. Parts ii) and iii) straightforwardly
suggests that local stability of an equilibrium in the base game carries over to that of the cor-
responding equilibrium in the modified game. About part i), assume that x̄∗ in the claim
is indeed a Nash equilibrium in the base game; under the local concavity assumption in the

32van Heumen et al. (1996) define a Bayesian potential game in a normal form with finitely many players. See
Ui (2009) for examples of such games, including team production problems. As suggested by Ui, the continuous-
population game studied by Angeletos and Pavan (2007) is a Bayesian potential game.

18



proposition, it must be a local maximum of f0 and thus Lyapunov stable. Further, consider
a neutral payoff perturbation in the sense that the ASAG F under the perturbation keeps an
equilibrium strategy distribution X∗ that aggregates to x̄∗. Then, part ii) implies that X∗ is
also Lyapunov stable. Furthermore, if x̄∗ is asymptotically stable and thus a strict maximum
of f0, then the set of such equilibrium strategy distributions that aggregates to x̄∗ is also asymp-
totically stable.

Applications

If X∗ attains a local strict maximum, then it must be asymptotically stable in any admissible
dynamics. Thus, once we establish asymptotic stability of X∗ under some particular admissible
dynamic in a potential game, then it holds robustly over specifications of the dynamic, as
long as agents’ choices meet the two intuitive assumptions, i.e., best response stationarity and
positive correlation. We see below applications of this positive result to ASAGs.

Example 8 (Convergence to a free-entry equilibrium.). Consider a binary homogeneous game
S = {I, O} with negative externality: F0

I (x̄I) decreases with x̄I ∈ [0, 1] and F0
O ≡ 0. Then,

the potential function f 0 : [0, 1] → R is given by f 0(x̄I) =
∫ x̄I

0 F0
I (ȳ)dȳ and strictly concave.

With the boundedness of the domain [0, 1], the strict concavity of f 0 implies that the global
maximum exists uniquely and there is no other local maximum of f 0. The global maximum of
f 0 is the only equilibrium of this game.

For an example in microeconomic theory to fall into this class of games, consider an entry-
exit game played by suppliers in a particular industry. To make entry and exit symmetric, it is
conventionally assumed that fixed costs exist but they are not sunk: fixed costs are paid only
to maintain production capacities and they are revocable when the supplier becomes inactive.
Further, the choice of entry or exit is conventionally regarded as a “long run” decision while the
choice of the quantity supplied is a “short run” decision (as well as the underlying consumers’
decisions on the demand side); thus, it is commonly assumed that the market is settled to a
market equilibrium (the state where the demand equals to the total supply) at each moment
of time, given the mass (number) of active suppliers at the moment. A free-entry or so-called
“long run” equilibrium is characterized in the homogeneous setting as a state in which the
gross profit for an active producer is equal to the fixed cost.

One may want to introduce heterogeneity in the suppliers’ fixed costs; it not only sounds
realistic but also eliminates indeterminacy of individual choices of entry or exit at a free-entry
equilibrium. Under heterogeneity in fixed costs, a free-entry equilibrium should be redefined
as a state in which all the active producers have smaller fixed costs than the gross profit and
all the inactive ones have greater fixed costs.

Under perfect competition in a standard setting as in Mas-Colell et al. (1995, Section 10.F),
the instantaneous market-equilibrium profit of an active supplier decreases with the number
of active suppliers. We can regard F0

I (x̄I) as the gross profit at this instantaneous competitive
equilibrium given the current mass x̄I of active suppliers and θO(ω) as the fixed costs of sup-
plier ω, while setting F0

O ≡ 0 and θI ≡ 0 for all agents; then, the choice between entry and exit
in perfect competition falls into an ASAG with negative externality.

Thanks to our stability result, we can justify the free-entry equilibrium as the globally stable
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state in an evolutionary dynamic; indeed it is so strengthened to be stable in any admissible
dynamics. As argued in Zusai (2018), the tempered BRD can be regarded as a version of the
BRD in which a revising agent pays a stochastic switching cost.33 Thus, the stability of the
free-entry equilibrium under the tempered BRD suggests in this context that, even if entry and
exit incur sunk costs to build or scrap the production capacity, the “long-run” equilibrium is
indeed the long-run limit state under such an entry-exit dynamic.

By the same token, we can justify a free-entry equilibrium in the standard (static) monop-
olistic competition model such as Dixit and Stiglitz (1977) as a dynamically stable state under
an arbitrary admissible dynamic.

Example 9 (Dynamic implementation of the social optimum.). Imagine a central planner whose
goal is to maximize the total payoff of agents in an ASAG:∫

Θ
F[X](θ) · X(dθ) = F0(x̄) · x̄ +

∫
Θ

θ · X(dθ) with x̄ = X(Θ).

To help the central planner achieve this goal, we introduce a monetary transfer to the agent’s
payoff: now a type-θ agent’s payoff from strategy s ∈ S is F̃T

s [x](θ) := Fs[x](θ)− Ts[x̄], where
function T = (Ts)s∈S : ∆S → RS is a pricing scheme to determine the amount of the mone-
tary transfer (in terms of payoff) from the agent to the planner for taking each strategy given
aggregate strategy x ∈ ∆S .

Sandholm (2002, 2005) proposes the dynamic Pigouvian pricing scheme such as

Ts[x̄] = − ∑
s′∈S

x̄s′
∂F0

s′

∂x̄s
(x̄) for each x̄ ∈ ∆S.

Notice that this pricing scheme does not require the central planner to know agents’ revision
protocols, the type distribution, or even the current strategy distribution; the observation of
aggregate strategy x̄ is enough for the planner to update Ts.

Strictly speaking, in a setting where there are finitely many payoff types, Sandholm (2002)
verify that, with T being the above dynamic Pigouvian pricing scheme, F̃T has a potential
function f̃ T being the total payoff:

f̃ T(X) =
∫

Θ
F[X](θ) · X(dθ).

In particular, if the common payoff function F0 exhibits negative externality, f̃ T is concave
and thus the unique social optimum is achieved in the long run through this pricing scheme
regardless of the initial state. Thanks to Theorem 5, now we can extend this claim to the games
with infinitely many payoff types.34

33For this, we regard Q as a cumulative distribution function of switching costs (with Q scaled to meet
limq→∞ Q(q) = 1). Then, the revision protocol of the tempered BRD is obtained by having a revising agent first
draw a stochastic switching cost q from Q and then switch to the best response strategy only if the payoff gain from
the switch, the difference between the maximal payoff and the current payoff, exceeds q.

34Sandholm (2005, p.903) speculated it by referring to Ely and Sandholm (2005), which allows us to reduce the
heterogeneous standard BRD to a homogeneous smooth BRD of agents by treating persistent heterogeneity in the
former as transitory perturbation, i.e., letting an agent draw a new θ from µ at each revision opportunity. How-
ever, Zusai (2017) finds that heterogeneous evolutionary dynamics generically cannot reduce to a homogeneous
dynamic, except the standard BRD and the smooth BRDs.
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5 Extensions

5.1 Observational dynamics

In some of major evolutionary dynamics, an agent observes other agents’ strategies and the
observation influences the agents’ switching decision. For example, an agent may imitate other
agents’ strategies or the switching rate may depend on the relative payoffs compared to the
average payoff of the observed population. We can generalize these dynamics as observational
dynamics by having the strategy distribution among observed agents x̃ ∈ ∆S , not only payoff
vector π ∈ RS, in the argument of revision protocol ρ.

Example 10. With an excess payoff protocol, a revising agent calculates the average payoff
x̃ ·π and switches to strategy s′ with the rate that increases with the excess payoff of the new
strategy πs′ − x̃ · π. In particular, the revision protocol ρss′(π, x̃) = [πs′ − x̃ · π]+ defines the
Brown-von Neumann-Nash (BNN) dynamic (Hofbauer, 2001).35

Example 11. With an imitative protocol, a revising agent randomly samples another agent’s
strategy s′ according to x̃ and switches to it with the rate Iss′(π) ∈ R+: the overall switching
rate is ρss′(π, x̃) = x̃s′ Iss′(π). There are several imitative protocols that yield the replicator
dynamic (Taylor and Jonker, 1978): imitative pairwise comparison Iss′ = [πs′ − πs]+ (Schlag,
1998), imitation driven by dissatisfaction Iss′ = π̄ − πs with constant π̄ ∈ R (Björnerstedt and
Weibull, 1996), and imitation of success Iss′ = πs′ − π with constant π ∈ R (Hofbauer, 1995a).

They fall into the class of L-continuous revision protocols and satisfy Assumption 2.36

(Note that Assumption 3 is not needed for L-continuous revision protocols.) We can read-
ily extend all the positive results, i.e., Theorems 1, 3 and 5, to observational dynamics, if we
assume that an agent observes the strategy distribution of the same type: a type-θ agent ob-
serves x(θ) ∈ ∆S .37 This assumption of within-type observability matches with an assumption
on imitative dynamics in the society of finitely many subpopulations where a member of each
subpopulation imitates the behavior of those in the same subpopulation; for example, Hum-
mel and McAfee (2018) adopt this assumption.38 The proofs of these theorems in the appendix
are indeed written explicitly to include x(θ) as an argument of revision protocol ρ.

To maintain the existence of a unique solution trajectory (Theorem 1) and stationarity of
an equilibrium strategy distribution (Theorem 3), this assumption of within-type observability

35 Excess payoff dynamics allow for innovation of a new strategy, while imitative dynamics do not. Thus,
stationarity and stability of equilibria are restricted to the interior of the strategy space for the latter dynamics
while they are not for the former.

36Precisely for observational dynamics, ρ̄ is an upper bound on ρss′ (F[X](θ), x(θ)). As ρ has two arguments,
its Lipschitz continuity should mean the existence of Lρ such as |ρss′ (π, x̃)− ρss′ (π

′, x̃′)| ≤ Lρ|(π, x̃)− (π′, x̃′)| =
Lρ(|π − π′| + |x̃ − x̃′|) for any s, s′ ∈ S , π, π′ ∈ RS, x̃, x̃′ ∈ ∆S . (See footnote 12 for our choice of the L1 norm
of finite-dimensional vectors.) Technically, we can allow ρ·· to depend on X ∈ X , not only on x̃ ∈ ∆S . Then, this
Lipschitz continuity condition is simply generalized as |ρss′ (π, X)− ρss′ (π

′, X′)| ≤ Lρ(|π −π′|+ ‖X− X′‖∞). We
can easily confirm that the proof for Theorem 1 needs no change, just by glancing over calculation in the proof.

37Corollary 3 holds for excess payoff dynamics. In the homogeneous setting, imitative dynamics such as the
replicator dynamic satisfy the best response stationarity only if x0 is in the interior of ∆S ; thus Corollary 3 holds
for a solution trajectory of an imitative dynamic starting from the interior of X .

38However, Hummel and McAfee (2018) simply apply a general formula of the replicator dynamic and do not
construct the dynamic from a revision protocol; thus they do not explicitly discuss imitation.
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can be replaced with an alternative assumption that an agent of any type θ observes the ag-
gregate strategy x̄ = X(Θ), instead of x(θ), as x̃(θ) and the agent’s own current payoff vector
F[X](θ) as π(θ). But, then PC may not be extended from the homogeneous setting to the het-
erogeneous setting. If observations are sampled from the entire population, stability analysis
becomes essentially different from how we have investigated stability in this paper.39

5.2 Heterogeneity in revision protocols

All of our results are robust to heterogeneity in revision protocols. Now, let Θ be the type
space and each type θ of agents not only have its peculiar payoff function F(θ) but also follow
its own revision protocol ρθ .40 In the case of an exact optimization protocol, this should be
constructed from the conditional switching rate function (Qθ

ss′)(i,j)∈S2 . The mean dynamic vθ :
RS × ∆S → ∆S is defined by tagging θ to (4) as

ẋs(θ) = vθ
s (π(θ), x(θ)) := ∑

s′∈S
xs′(θ)ρ

θ
s′s(π(θ))− xs(θ) ∑

s′∈S
ρθ

ss′(π(θ)) for each s ∈ S .

Then, heterogeneous dynamic vF is defined in the same fashion as ẋ(θ) = vF[x](θ) := vθ(F[X](θ), x(θ)).
Again, these notations are explicitly shown in the proofs in the appendix. Theorems 3 and 5 hold
as long as the assumptions in each theorem are satisfied with vθ of (almost) every type θ ∈ Θ.

The existence of a unique solution trajectory (Theorem 1) is also guaranteed, though we
should clarify what modifications of the assumptions are needed to include heterogeneous
revision protocols. For this, let ΘC be the set of types that adopt any of L-continuous revision
protocols and ΘE be the set of those who use exact optimization protocols with any conditional
switching rate functions. Then, the assumptions for Theorem 1 should read as follows.

Definition 1 There should be a common Lipschitz constant L̄ρ of the switching rate function
over almost all the types in ΘC: |ρθ

ss′(π)− ρθ
ss′(π

′)| ≤ L̄ρ|π−π′| for any s, s′ ∈ S , π, π′ ∈
RS and µ-almost all θ ∈ ΘC.

Definition 2 There should be a common Lipschitz constants L̄Q of the conditional switching
rate functions Qθ

ss′ over almost all the types in ΘE: |Qθ
ss′(π)−Qθ

ss′(π
′)| ≤ L̄Q|π−π′| for

any s, s′ ∈ S , π, π′ ∈ RS and µ-almost all θ ∈ ΘE.

Assumption 1 Since this is about payoff function F, this needs no modification.

Assumption 2 There should be a common upper bound ρ̄ on the switching rate functions ρθ
ss′

over almost all the types: ρθ
ss′(F[X](θ)) ≤ ρ̄ for any strategy distribution X ∈ X , any

s, s′ ∈ S and, µ-almost all θ ∈ Θ.

39About unobservable heterogeneity in aspiration levels in imitative dynamics (i.e., π̄ or π in Example 11), Sawa
and Zusai (2014) verify that, although the dynamic becomes more complicated and basic properties such as PC do
not hold, long-run outcomes are robust to the unobservable heterogeneity. For this, they verify that the difference in
the aggregate strategy between under the heterogeneous dynamic and under the homogeneous dynamic vanishes
in the long run in any game, whether the dynamic converges to equilibrium or not.

40As noted in footnote 4, all our theorems hold for any Polish (complete, separable, and metrizable) space as the
type space Θ. A revision protocol ρθ is mathematically a function ρθ from payoff vector π ∈ RS to switching rates
between two strategies ρθ(π) ∈ RS×S

+ . Then, Θ is a space of “admissible” revision protocols, where admissibility
is defined so as to make Θ Polish; e.g. continuity of ρθ with respect to π.
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Assumption 3 This is an assumption about F and µ, not about ρθ or vθ . It is needed as long as
µ(ΘE) > 0; otherwise, it is not needed.

Of course, this extension to heterogeneous revision protocols cover observational dynam-
ics. While we assume within-type observability for Nash stationarity and stability, it is not
needed for the existence of a unique solution trajectory. Thus, our existence theorem would
provide the most fundamental starting point to study the effect of both observable and unob-
servable heterogeneity of revision protocols on population dynamics and equilibrium stability.

Example 12. Under the modificaction of Definitions 1 and 2 and assumptions 1 to 3 as above,
Theorem 1 holds when different types of agents follow different revision protocols.

6 Concluding remarks

In this paper, we extend evolutionary dynamics to allow for (possibly) continuously many
types under persistent heterogeneity in payoff functions and revision protocols. With a rigor-
ous formulation of a heterogeneous evolutionary dynamic as a differential equation over the
space of probability measures, we clarify the regularity conditions on the revision protocol, the
game and the type distribution to guarantee the existence of a unique solution path from an
arbitrary initial state. We extend equilibrium stationarity in general and equilibrium stability
in potential games from the homogeneous setting to the heterogeneous setting.41 This study
establishes the foundation to study evolution in heterogeneous populations and opens up a
wide field of applications, including spatial evolution and Bayesian games.

Our result on extension of equilibrium stability in potential games suggests that any ad-
missible dynamics share global stability of the equilibrium set and also local stability of each
local potential-maximizing equilibrium. In contrast, different admissible dynamics may yield
different basins of attraction to each locally stable equilibrium and thus they may converge
to different locally stable equilibria when starting from the same initial state. Especially, in
anonymous games, the preceding studies (Ely and Sandholm, 2005; Blonski, 1999) assume ag-
gregability in the sense that the dynamic of aggregate state is completely predictable from its
current state, independently of the underlying strategy distribution over different types. How-
ever, Zusai (2017) argues that evolutionary dynamics are generically not aggregable, except the
standard and smoothed BRDs, even in anonymous games. On the positive side, Zusai (2017)
proposes to use nonaggregability to select equilibria by requiring robustness of stability to any
distortion in the underlying strategy distribution under nonaggregable dynamics.

In an application to dynamic implementation of the social optimum, the dependency of the
aggregate transition on the underlying strategy distribution suggests that a bang-bang con-
trol results in excessive instability generally in the heterogeneous setting, though it achieves
the fastest convergence in the homogeneous setting. Yet, the dynamic Pigouvian pricing, pro-
posed by Sandholm (2002, 2005), still guarantees convergence to the social optimum, while not

41Zusai (2020) provides a universal (and economically intuitive) proof for equilibrium stability of a stable game
under a wide range of “(cost-benefit) rationalizable” dynamics (see the paper for its definition) by discovering
a universal formula of a Lyapunov function; for a stable game, we need to create a Lyapunov function for each
dynamic, as listed in Hofbauer and Sandholm (2009). The universal proof suggests that the stability holds robustly
under heterogeneous populations, though Zusai (2020) restricts attention to finitely many populations.
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requiring any ex-ante information about the underlying dynamic or type distribution. Never-
theless, there might be a better pricing scheme that lies between the bang-bang control and the
dynamic Pigovian pricing and achieves faster convergence than the Pigovian pricing without
requiring too much information. Actually, nonaggregability also suggests that the direction
of the transition in the aggregate strategy distribution is related with the underlying strategy
distribution. If we can find a way to extract the information of the strategy distribution from
the transition of the aggregate state, it could be used to improve the pricing scheme.42
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A Appendix to Section 2

A.1 Measure-theoretic definition of strategy distribution

This subsection provides a mathematically rigorous definition of a strategy distribution based
on measure theory. Let Ω := [0, 1] ⊂ R be the set (population) of agents. We define a (prob-
ability) measure µΩ : BΩ → [0, 1] as the Lebesgue measure so µΩ(Ω) = 1. Denote by BΩ

the Lebesgue σ-field over Ω. Let s(ω) ∈ S denote the strategy taken by agent ω. We restrict
strategy profile s : Ω→ S to a BΩ-measurable function.

Let θ(ω) ∈ Θ be the type of agent ω ∈ Ω; assume that type space Θ is a Polish (separable
completely metrizable) space, more general than in the main text. Denote by B be the Borel σ-
field on this space. Agents’ type profile θ : Ω→ RT is assumed to be measurable with respect
to BΩ. Then, it induces probability measure µ : B → [0, 1] by µ(B) := µΩ({ω ∈ Ω : θ(ω) ∈ B})
for each B ∈ B.

Combination of strategy profile s : Ω → S and type profile θ : Ω → Θ generates a finite
measure Xs : B → R+ for each s ∈ S from PΩ:

Xs(B) := µΩ({ω ∈ Ω : s(ω) = s and θ(ω) ∈ B}) for each B ∈ B.

Xs(B) represents the mass of strategy-s players whose types belong to set B. The strategy
distribution X is a collection of these measures Xs, i.e., X = (Xs)s∈S . We can see this vector
measure as a joint probability measure over the product space S ×Θ. 43 The space of strategy
distributions X is thus the set of probability measures over S × Θ such that the marginal

42? considers a heterogeneous congestion game where payoff heterogeneity is not additively separable and the
social planner does not exactly know its distribution, and proposes a modified Pigouvian pricing that is combined
with estimation of the distribution.

43Abusing notation, we could say that X defines a measure of a Borel set BSΘ on the product space S ×Θ by

X(BSΘ) := ∑
s∈S

Xs({θ ∈ Θ : (a, θ) ∈ BSΘ}) = µΩ({ω ∈ Ω : (s(ω), θ(ω)) ∈ BSΘ}).
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distribution of types coincides with µ, i.e., ∑s∈S Xs(B) = µ(B) for each B ∈ B. Let BSΘ be the
Borel σ-field on the product space S ×Θ.

Since X must satisfy Xs(B) ≤ µ(B) for each s ∈ S , Xs is dominated by µ in the sense that

µ(B) = 0 =⇒ Xs(B) = 0 for each B ∈ B. (A.1)

Denote by Xs � µ this dominance relation, i.e., absolute continuity of Xs with respect to µ.
It follows by Radon-Nikodym theorem that there exists a B-measurable nonnegative function
xs : Θ → R+ such that Xs(B) =

∫
B xs(θ)µ(dθ) for any B ∈ B. xs is the density function

of measure Xs. The density is determined uniquely in the sense that, if another measurable
function x′s satisfies Xs(B) =

∫
B x′s(θ)µ(dθ) for all B ∈ B, then x′s(θ) = xs(θ) for µ-almost all

θ ∈ Θ.
X is dominated by µ in the sense that Xs � µ for all s ∈ S ; we abuse notation to denote this

domination by X � µ. The dominance of strategy distribution X by the type distribution µ is
peculiar to heterogeneous dynamics, making a difference in the proof of Lipschitz continuity
of the dynamic from the one for continuous strategy dynamics. See Remark 2 in Section 3.

The collection of Radon-Nikodym densities x = (xs)s∈S : Θ → RS
+ is the strategy density

function corresponding to X. From the fact that ∑s∈S Xs(B) = µ(B) and Xs(B) ≥ 0 for any
B ∈ B and s ∈ S , we can confirm that x(θ) is a probability vector, i.e., x(θ) ∈ ∆S, for µ-almost
all types θ ∈ Θ. Thus, the space of strategy density functions FX is a set of B-measurable
vector functions from Θ to ∆S.

A.2 Topology of the space of strategy distributions

Choice of a topology is a sensitive issue when we argue dynamics of a measure over a con-
tinuous space. We follow the convention in the literature on evolutionary dynamics over a
continuous strategy space, such as in Cheung (2014). That is, we use the strong topology to
prove the existence of a unique solution path with Picard-Lindelöf theorem (Theorem 2) and
the weak topology to obtain stability of equilibrium strategy distribution with Lyapunov stabil-
ity theorem (Theorem 6). See Cheung (2014, Section 4) for a detailed explanation on the strong
and weak topology in evolutionary dynamics on a continuous space.

Below we define these two topologies on the space of finite signed measuresM over S ×Θ.
X and its tangent space TX are subsets of this space. The strong topology is metrized by the
variational norm ‖ · ‖∞ defined as ‖X‖∞ = supg

∣∣∫
θ∈Θ g(θ) · X(dθ)

∣∣ where the sup is taken
over the set of measurable functions g = (gs)s∈S on (S ×Θ,BSΘ) that are bounded by 1, i.e.,
sup(a,θ)∈S×Θ |gs(θ)| ≤ 1. According to Oechssler and Riedel (2001, Theorem 5 ), the variational
norm on X is equivalent to the L1-norm on FX in the sense that, for any strategy distribution
X =

∫
xdµ ∈ X ,44

‖X‖∞ =
∫

Θ
∑
s∈S
|xs(θ)|dµ(θ).

Under the weak topology on the set of measures over space S × Θ, a mappingM → R

such as µ 7→
∫
S g · dX is continuous for any bounded and continuous function g : Θ → RS.

Note that convergence in strong topology implies that in weak topology. The product space

44This formula extends to any absolutely continuous finite signed measures.
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S ×Θ is separable with metric dSΘ : (S ×Θ)2 → R+ given by45

dSΘ((s, θ), (s′, θ′)) := 1{s 6= s′}+ d(θ, θ′),

where d is a metric under which Θ is complete. Then, the weak topology is metrized by
Prokhorov metric dPr :M×M→ R+ such that46

dPr(X, X′) := inf{ε > 0 : X(BSΘ) ≤ X′(Bε
SΘ) + ε

and X′(BSΘ) ≤ X(Bε
SΘ) + ε for all BSΘ ∈ BSΘ},

where Bε
SΘ is defined from BSΘ as Bε

SΘ := {(s, θ) ∈ S ×Θ : dSΘ((s, θ), (s′, θ′)) < ε with some (s′, θ′) ∈
BSΘ}.47 Under the weak topology, the space of probability measures, i.e., the space of strat-
egy distributions becomes compact. Then, we can apply the Lyapunov stability theorem, as in
Cheung (2014, Thm. 6). See Theorem 6 in Appendix C.3.

B Appendix to Section 3

Proof of Theorem 1. Below we consider two strategy distributions X =
∫

xdµ, X′ =
∫

x′dµ ∈
X . Let ρF

s′s(θ) := ρθ
s′s(F[X](θ), x(θ)) and ρ′s′s

F(θ) := ρθ
s′s(F[X

′](θ), x′(θ)). Denote ∆vF
s (θ) :=

vF
s [X](θ)− vF

s [X′](θ). We divide Θ by the two classes of revision protocols: let ΘC be the set of
the types of agents who follow L-continuous revision protocols and ΘE be the set of the types
who follow exact optimization protocols; we have ΘC ∪ΘE = Θ and ΘC ∩ΘE = ∅. First we
prove Lipschitz continuity of the transition of the strategy distribution in each of these sets of
types. Then, we merge them to get Lipschitz continuity of the transition of the entire strategy
distribution.
1◦: L-continuous revision protocols. Now we focus on ΘC. Let L̄ρ > 0 be the upper bound
on the Lipschitz constants of functions ρθ

s′s over all pairs of strategies s, s′ ∈ S and all types
θ ∈ ΘC. The Lipschitz continuity of ρθ

s′s (Definition 1) and F (Assumption 1) implies

|ρF
s′s(θ)− ρ′s′s

F(θ)| ≤ L̄ρ|(F[X](θ), x(θ))− (F[X′](θ), x′(θ))|

= L̄ρ

{
|F[X](θ)− F[X′](θ)|+ |x(θ)− x′(θ)|

}
≤ L̄ρ

(
LF(θ)‖X− X′‖∞ + |x(θ)− x′(θ)|

)
. (B.2)

From the definition of vF+
s , we have

|vF+
s [X](θ)− vF+

s [X′](θ)| ≤ ∑
s′∈S
|ρF

s′s(θ)xs′(θ)− ρ′s′s
F(θ)x′s′(θ)|

≤ ∑
s′∈S

{
|ρF

s′s(θ)− ρ′s′s
F(θ)| |xs′(θ)|+ |ρ′s′sF(θ)| · |xs′(θ)− x′s′(θ)|

}
≤ ∑

s′∈S

[
L̄ρ

(
LF(θ)‖X− X′‖∞|+ |x(θ)− x′(θ)|

)
+ ρ̄|x(θ)− x′(θ)|

]
45The metric dSΘ is a product metric constructed from the discrete norm on S and metric d on Θ. Notice S < ∞

and Θ is separable; so the product metric dSΘ makes S ×Θ separable. Here 1{s 6= s′} is an indicator function and
takes 1 if s 6= s′ and 0 otherwise.

46If there is no payoff heterogeneity, i.e., Θ = {θ0}, then strategy distribution X can be simply represented by
an S-dimensional vector (x̄s)s∈S ∈ RS such that x̄s = Xs({θ0}). Then, dPr(X, X′) = ε is equivalent to sups∈S |x̄s −
x̄′s| = ε. So, the metric dPr reduces to the sup norm on RS.

47If ε < 1, the condition for (s, θ) ∈ Bε
SΘ is equivalent to the existence of θ′ ∈ Θ such that d(θ, θ′) < ε and

(s, θ′) ∈ BSΘ. Thus, provided that BSΘ = ∪s∈S{s} × BsΘ with each BsΘ ∈ B, we have Bε
SΘ = ∪s∈S{s} × Bε

sΘ with
each Bε

sΘ = {θ ∈ Θ : d(θ, θ′) < ε for some θ ∈ BsΘ} for each s ∈ S .
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≤ S
{

L̄ρLF(θ)‖X− X′‖∞ + (L̄ρ + ρ̄)|x(θ)− x′(θ)|
}

(B.3)

Here the third inequality comes from (B.2), Assumption 2 and |xs′(·)| ≤ 1. Similarly, we get

|vF−
s [X](θ)− vF−

s [X′](θ)| ≤ S
{

L̄ρLF(θ)‖X− X′‖∞ + (L̄ρ + ρ̄)|x(θ)− x′(θ)|
}

.

Therefore, we have∫
ΘC

∑
s∈S
|∆vF

s (θ)|µ(dθ) ≤
∫

ΘC
∑
s∈S

(
|vF+

s [X](θ)− vF+
s [X′](θ)|+ |vF−

s [X](θ)− vF−
s [X′](θ)|

)
µ(dθ)

≤
∫

ΘC

[
∑
s∈S

2A
{

L̄ρLF(θ)‖X− X′‖∞ + (L̄ρ + ρ̄)|x(θ)− x′(θ)|
}]

µ(dθ)

=2S2 · L̄ρ‖X− X′‖∞

∫
ΘC

LF(θ)µ(dθ) + 2S2(L̄ρ + ρ̄)
∫

ΘC

|x(θ)− x′(θ)|µ(dθ)

≤2S2(L̄ρ L̄F + L̄ρ + ρ̄)‖X− X′‖∞. (B.4)

The last inequality comes from
∫

ΘC
LF(θ)µ(dθ) ≤ ELF = L̄F by LF(θ) ≥ 0.

2◦: exact optimization protocols. Now we focus on ΘE. In an exact optimization protocol, the
dynamic reduces as the following: if strategy b is the unique maximizer of Fs[X](θ) among all
strategies s ∈ S , i.e., the unique best response to X for type θ, then

vb(θ)[X] = ∑
s′∈S\{b}

Qs′b(F[X](θ))xs′(θ), vs(θ)[X] = −Qsb(F[X](θ))xs(θ) for any s ∈ S \ {b}.

Since Assumption 3 implies that the best response is unique for almost every type, this deter-
mines the heterogeneous dynamic without ambiguity.

Let L̄Q > 0 be an upper bound on Lipschitz constants of functions Qθ
ss′ over all pairs of

strategies s, s′ ∈ S and all the types θ ∈ ΘE. Let N be the set of types who have multiple best
responses to either X or X′ or both. Assumption 3 implies µ(N) = 0. Define partitions of Θ \N
by

∩βb := ΘF
b=uniqBR(X) ∩ΘF

b=uniqBR(X
′) ∩ΘE, ∆βbb′ := ΘF

b=uniqBR(X) ∩ΘF
b′=uniqBR(X

′) ∩ΘE

for each b, b′ ∈ S with b′ 6= b. Let ∩β :=
⋃

b∈S ∩βb and ∆β :=
⋃

b∈S
⋃

b′∈S\{b} ∆βbb′ .
Denote QF

s′s(θ) := Qθ
s′s(F[X](θ)) and Q′Fs′s(θ) := Qθ

s′s(F[X
′](θ)). Similarly to (B.2), the Lips-

chitz continuity of Qθ
s′s (Definition 2) and F (Assumption 1) implies

|QF
s′s(θ)−Q′Fs′s(θ)| ≤ L̄Q

(
LF(θ)‖X− X′‖∞ + |x(θ)− x′(θ)|

)
(B.5)

for all s, s′ ∈ S , and µ-almost all θ ∈ ΘE. Note that, if θ ∈ ΘF
b=uniqBR(X), then Assumption 2

assures the existence of an upper bound ρ̄ on Qθ
·b(θ) such as QF

sb(θ) = ρθ
sb(F[X](θ)) ≤ ρ̄ for any

s ∈ S and θ ∈ ΘE.

i) Consider ∩βb for an arbitrary b ∈ S . Fix θ ∈ ∩βb: strategy b is the best response strategy
for this type θ both in the state X and the state X′. Then, similarly to (B.3), Assumption 2 and
(B.5) imply

|∆vb(θ)| ≤ ∑
s′∈S\{b}

|QF
s′b(θ)xs′(θ)−Q′Fs′b(θ)x′s′(θ)|

≤ (S− 1)
{

L̄QLF(θ)‖X− X′‖∞ + (L̄Q + ρ̄)|x(θ)− x′(θ)|
}

.
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For strategy s 6= b,

∆vs(θ) =
(
−QF

sb(θ)xs(θ)
)
−
(
−Q′Fsb(θ)xs(θ)

)
= −{QF

sb(θ)−Q′Fsb(θ)}xs(θ)−Q′Fsb(θ){xs(θ)− x′s(θ)}.

(B.5) implies

|∆vs(θ)| ≤ L̄Q
(

LF(θ)‖X− X′‖∞ + |x(θ)− x′(θ)|
)
|xs(θ)|+ Q′Fsb(θ)|x(θ)− x′(θ)|

≤ L̄QLF(θ)‖X− X′‖∞ + (L̄Q + ρ̄)|x(θ)− x′(θ)|.

The second inequality comes from boundeness of Qθ .
Therefore, we have

∑
s∈S
|∆vs(θ)| ≤ 2(S− 1)

{
L̄QLF(θ)‖X− X′‖∞ + (L̄Q + ρ̄)|x(θ)− x′(θ)|

}
and thus∫

∩β
∑
s∈S
|∆vs(θ)|µ(dθ) ≤ 2(S− 1)

∫
∩β

{
L̄QLF(θ)‖X− X′‖∞ + (L̄Q + ρ̄)|x(θ)− x′(θ)|

}
µ(dθ)

≤2(S− 1)(L̄Q L̄F + L̄Q + ρ̄)‖X− X′‖∞. (B.6)

The second inequality comes from µ(∩β) ≤ µ(Θ) = 1,
∫
∩β LFdµ ≤

∫
LFdµ = L̄F, and

∫
∩β |x−

x′|dµ ≤ ‖X− X′‖∞.

ii) Consider ∆βbb′ for two arbitrary distinct strategies b, b′ ∈ S with b 6= b′. Fix θ ∈ ∆βbc:
strategy b is the best response strategy for this type θ in the state X and c is the optimal in the
state X′. Then,

0 ≤ ∑
s′∈S\{b}

QF
s′b(θ)xs′(θ)−

(
−Q′Fbb′(θ)x′b(θ)

)
= ∆vb(θ) ≤ ∑

s′∈S\{b}
ρ̄ ·+ρ̄· = Sρ̄.

Similarly, we have 0 ≥ ∆vb′(θ) ≥ −Sρ̄. For s 6= b, b′,

∆vs(θ) =
(
−QF

sb(θ)xs(θ)
)
−
(
−Q′Fsb(θ)x′s(θ)

)
.

Since Qθ(·) ∈ [0, ρ̄] and x·(·) ∈ [0, 1], we have

|∆vs(θ)| ≤ |QF
sb(θ)xs(θ)|+ |Q′Fsb(θ)x′s(θ)| ≤ 2ρ̄.

Therefore,

∑
s∈S
|∆vs(θ)| ≤ 2Sρ̄ + (S− 2) · 2ρ̄ = 4(S− 1)ρ̄.

By Assumption 3, we have∫
∆βbb′

∑
s∈S
|∆vs(θ)|µ(dθ) ≤ 4(S− 1)ρ̄µ(∆βbb′) ≤ 4(S− 1)ρ̄LBR‖X− X′‖∞

and thus∫
∆β

∑
s∈S
|∆vs(θ)|µ(dθ) = ∑

b∈S
∑

b′∈S\{b}
|∆vs(θ)|µ(dθ) ≤ 4S(S− 1)2ρ̄LBR‖X− X′‖∞.

3◦: Merge them. Since Θ is a union of ΘC,∩β, ∆β and N and µ(N) = 0, we have

‖V[X]−V[X′]‖∞ =
∫

ΘE
∑
s∈S
|∆vs(θ)|µ(dθ) +

∫
∩β

∑
s∈S
|∆vs(θ)|µ(dθ) +

∫
∆β

∑
s∈S
|∆vs(θ)|µ(dθ).
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(B.4), (B.6) and (B.7) imply (6), namely ‖V[X]−V[X′]‖∞ ≤ LV‖X− X′‖∞ with

LV := 2S2(L̄ρ L̄F + L̄ρ + ρ̄) + 2(S− 1){L̄Q L̄F + (L̄Q + ρ̄)}+ 4S(S− 1)2ρ̄LBR.

Proof of Corollary 1. We leave only the boundedness of the dynamic; it comes from Assumption
2. Since it implies |vF

s [X](θ)| ≤ 2(S− 1)ρ̄, we obtain ‖VF[X]‖∞ = ∑s∈S
∫

Θ |v
F
s [X]|dµ ≤ 2S(S−

1)ρ̄ for all X ∈ X . Then, Theorem 2 implies the existence of a unique solution path of the
dynamic onM. Notice that X is forward invariant under VF. Therefore, if the initial state X0

lies in X ⊂M, then the unique solution that passes X0 at time 0 should remain in X .

C Appendix to Section 4

C.1 Proof of Theorem 3

Proof. First of all, strategy distribution X =
∫

xdµ being an equilibrium (1) means x(θ) ∈
∆SF

BR[X](θ) for µ-almost all types θ. Then, for such θ, x(θ) ∈ ∆SF
BR[X](θ) is equivalent to

vF[x](θ) = 0 by (7). It holds for µ-almost all types θ, which means the stationarity of strategy
density function x. This is equivalent to stationarity of strategy distribution X, i.e., VF[X] =
O.

C.2 Proof of Theorem 4

First of all, notice that an equilibrium strategy distribution is a fixed point of the “distributional
strategy” best response correspondence B : X ⇒ X defined as

B[X] := argmax
Y∈X

∫
Θ

F[X](θ) · Y(dθ) for each X ∈ X .

Below we prove that the assumptions in Theorem 4 assures that the maximized function∫
Θ F[X] · dY is continuous in (X, Y) ∈ X 2.

Proof of continuity of
∫

Θ F[X] · dY. Fix ε > 0 and (X, Y) ∈ X 2 arbitrarily. By equicontinuity of
F, we have some δCt[X] > 0 such that, whenever dPr(X′, X) < δCt[X], we have |Fs[X′](θ) −
Fs[X](θ)| < 0.5ε for any s ∈ S and µ-almost all θ. The latter statement implies, for any Y′ ∈ X ,∣∣∣∣∫Θ

(
F[X′](θ)− F[X](θ)

)
· Y′(dθ)

∣∣∣∣ ≤ ∫Θ
∑
s∈S

∣∣Fs[X′](θ)− Fs[X](θ)
∣∣Y′s(dθ)

<
∫

Θ
∑
s∈S

0.5εY′s(dθ) = 0.5ε
∫

Θ
P(dθ) = 0.5ε.

Near-boundedness of F implies that, for any ε > 0, there exists a combination of F̄[X] ≥ 0
and δ1

Bd[X] > 0 such that for any Y, Y′ ∈ X 48

dPr(Y, Y′) < δ1
Bd[X] =⇒

∣∣∣∣∣
∫

Θ
∑
s∈S

[|Fs[X](θ)| − F̄[X]]+ · (Y
′
s(dθ)−Ys(dθ))

∣∣∣∣∣ < 0.25ε.

For each s ∈ S , define set Θε
s ⊂ Θ and function gε

s[X] : Θ→ R+ by

Θε
s := {θ : |Fs[X](θ)| > F̄[X]}, gε

s[X](θ) := 1{θ ∈ Θε
s}F̄[X] + 1{θ /∈ Θε

s}|Fs[X](θ)|.

48Here [·]+ is an operator such as [z]+ = max{0, z}.
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Notice that gε
s[X](θ) + [|Fs[X](θ)| − F̄[X]]+ ≡ |Fs[X](θ)| for any θ ∈ Θ. Since Fs[X] : Θ → R

is measurable, Θε
s is a measurable set and gε

s[X] is a measurable function on Θ. This func-
tion is bounded by definition and also continuous; so is the vector-valued function gε[X] =
(gε

s[X])s∈S : Θ → RS
+. Hence, under the weak topology,

∫
Θ gε[X](θ) · ∆Y(dθ) is a continuous

function of finite signed measure ∆Y ∈ M; thus, there exists δ2
Bd[X] > 0 such that

dPr(Y′, Y) < δ2
Bd[X] =⇒

∣∣∣∣∣
∫

Θ
∑
s∈S

gε
s[X](θ)

(
Y′s(dθ)−Ys(dθ)

)∣∣∣∣∣ < 0.25ε.

Therefore, if Y′ satisfies dPr(Y′, Y) < δBd[X] := min{δ1
Bd[X], δ2

Bd[X]}, then∣∣∣∣∫Θ
F[X](θ) ·

(
Y′(dθ)− Y(dθ)

)∣∣∣∣ =
∣∣∣∣∣
∫

Θ
∑
s∈S

Fs[X](θ)
(
Y′s(dθ)−Ys(dθ)

)∣∣∣∣∣
≤
∣∣∣∣∣
∫

Θ
∑
s∈S
|Fs[X](θ)|

(
Y′s(dθ)−Ys(dθ)

)∣∣∣∣∣ =
∣∣∣∣∣
∫

Θ
∑
s∈S

(
gε

s[X](θ) + [|Fs[X](θ)| − F̄[X]]+
) (

Y′s(dθ)−Ys(dθ)
)∣∣∣∣∣

≤
∣∣∣∣∣
∫

Θ
∑
s∈S

gε
s[X](θ)

(
Y′s(dθ)−Ys(dθ)

)∣∣∣∣∣+
∣∣∣∣∣
∫

Θ
∑
s∈S

[|Fs[X](θ)| − F̄[X]]+ · (Y
′
s(dθ)−Ys(dθ))

∣∣∣∣∣
≤0.25ε + 0.25ε = 0.5ε.

In sum, if a pair of (X′, Y′) ∈ X 2 satisfies dPr(X′, X) < δCt[X] and dPr(Y′, Y) < δBd[X]∣∣∣∣∫Θ
F[X′](θ) · Y′(dθ)−

∫
Θ

F[X](θ) · Y(dθ)

∣∣∣∣
≤
∣∣∣∣∫Θ

(
F[X′](θ)− F[X](θ)

)
· Y′(dθ)

∣∣∣∣+ ∣∣∣∣∫Θ
F[X](θ) ·

(
Y′(dθ)− Y(dθ)

)∣∣∣∣
<0.5ε + 0.5ε = ε.

That is,
∫

Θ F[X] · dY is continuous with respect to weak topology in X 2 at each (X, Y) ∈ X 2.

Proof of Theorem 4. To show the existence of a fixed point of the “mixed strategy” best response
correspondence B : X ⇒ X , we use Glicksberg’s fixed point theorem (Aliprantis and Border,
2006, henceforth AP; Corollary 17.55). First, we confirm the assumptions on domain X . The
type space Θ is a complete separable metric space. Since the domain X is regarded as the set of
distributional strategies over the product of this type space Θ and the finite strategy space S ,
we can borrow the result in Milgrom and Weber (1985) about X :49 X is a nonempty, compact
and convex subspace ofM, which is convex and Hausdorff under the weak topology.

With nonemptiness and compactness of X , continuity of the maximized function
∫

Θ F[X] ·
dY implies by Berge’s maximum theorem (AP, Theorem 17.31) that B is nonempty, compact-
valued and upper hemicontinuous. In the Hausdorff metric space, this further implies by AP
Theorem 17.10 that B has a closed graph. Since

∫
Θ F[X] · dY is a linear function of Y, B is

convex-valued. From the aforementioned properties of X and these properties of B, Glicks-
berg’s theorem guarantees the existence of a fixed point of B (as well as compactness of the set
of fixed points).

49We could interpret
∫

Θ F[X] · dY as the “payoff” from distributional strategy X in their finite-player model.
However, this is different from their payoff function, which is constructed from a normal-form game and thus is
bilinear in X and Y.
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C.3 Proof of Theorem 5

For stability, we use the weak topology and apply the Lyapunov stability theorem as below.

Theorem 6 (Cheung, 2014: Theorems 5–6, Corollary 2). Let Z ⊂ X be a closed set and let Y ⊂ X
be a neighborhood of Z in the weak topology on X . Let L : Y → R be a decreasing Lyapunov function
for dynamic V: that is, L is continuous with respect to the weak topology and Fréchet-differentiable
with L̇(X) = 〈∇L(X), V[X]〉 ≤ 0 for all X ∈ Y. Then, the following holds.

i) Any solution path starting from Y converges to the set {X ∈ Y : L̇(X) = 0} with respect to the
weak topology; i.e., this set is attracting under V.

ii) If L−1(0) = Z, Z is Lyapunov stable under V with respect to the weak topology. Furthermore, if
L̇(X) < 0 whenever X ∈ Y \ Z, then Z is asymptotically stable under V.

Part i) holds for an increasing Lyapunov function; part ii) is retained by defining Z as an
isolated set of local maxima.

Proof of Theorem 5. i) Since f is a w-weighted potential function for F, we have

ḟ (X) = 〈∇ f (X), Ẋ〉 = 〈wF[X], VF[X]〉 =
∫

Θ
w(θ)F[X](θ) · vF[x](θ)µ(dθ),

for any X =
∫

xdµ ∈ X .
Since vF[x](θ) = vθ(F[X](θ), x(θ)), the first part of PC (8) implies F[X](θ) · vF[x](θ) ≥ 0 for

all θ and thus
ḟ (X) =

∫
Θ

w(θ)F[X](θ) · vF[x](θ)µ(dθ) ≥ 0.

Suppose X is not a stationarity state under dynamic VF, which is equivalent to vF[x](θ) 6= 0
for µ-almost all types θ . For a type with vF[x](θ) 6= 0, the second part of PC (8) implies
F[x̄](θ) · vF[x](θ) > 0. Since this holds for a positive mass of types and w(θ) ∈ R++ for all θ,
we find that the above equation on ḟ (X) holds with a strict inequality.

Therefore, f is a strictly increasing Lyapunov function and the set {X ∈ X : ḟ (X) = 0} is
the set of stationary states, i.e.,{X ∈ X : VF[X] = O}. By Theorem 6, this implies that the set
of stationary states is globally attracting; a local maximum (local strict maximum, resp.) of f is
Lyapunov stable (asymptotically stable, resp.).

ii) a) Suppose that the corresponding isolated stationary strategy distribution X∗ is asymp-
totically stable, with a (nonempty) basin of attraction X 0 ⊂ X∗. Take an arbitrary strategy dis-
tribution X0 6= X∗ from X 0 and let {Xt}t∈R+ be a solution trajectory under the heterogeneous
dynamic VF from X0. Since f is a strictly increasing Lyapunov function, it must be the case
that ḟ (Xt) > 0 as long as Xt has not reached exactly X∗. Thus, f (X∗) = f (X0) +

∫ ∞
0 ḟ (Xt)dt >

f (X0). Since X0 is taken arbitrarily from X 0, this verifies that X∗ strictly maximizes f in this
neighborhood X 0.

b) We prove the claim by contradiction. Assume that, while X∗ is Lyapunov stable, X∗

is not a local maximum of f . Take an open neighborhood X̃ ∗ of X∗ such that cl X̃ ∗ ⊂ X∗.
Let X 1 := f−1(( f (X∗) − h, f (X∗) + h)) ∩ X̃ ∗ with an arbitrarily fixed constant h > 0; since
f is continuous, X 1 is an open neighborhood of X∗. By Lyapunov stability of X∗, there exists
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another open neighborhood X 0 ⊂ X 1 of X∗ such that any solution trajectory starting from
X 0 stays in X 1 at any moment of time. As X∗ is not a local maximum, there exists another
strategy distribution X† ∈ X 0 such that f (X†) > f (X∗); note that f (X†) < f (X∗) + h since
X† ∈ X 0 ⊂ X 1.

Let X̄ 2 = f−1([ f (X∗)− h, f (X∗) + h]) ∩ cl X̃ ∗; X 1 ⊂ X̄ 2 and this is closed in X and thus
compact, as X is compact. Consider a solution trajectory {Xt}t∈R+ starting from X†; it stays in
X 1 and thus in X̄ 2. By PC, f (Xt) is weakly increasing in t and thus f (Xt) ≥ f (X0) = f (X†) >

f (X∗). As X∗ is the only stationary point in X∗ ⊃ X̄ 2, this implies that the trajectory {Xt}
does not arrive at or even converge to a stationary point; thus, PC further implies f (Xt) strictly
increases in t. Since f (Xt) ∈ [ f (X†), f (X∗) + h] (the upper bound obtained by Xt ∈ X̄ 2) for all
t, f (Xt) must converge to some finite value f̄ ∈ [ f (X†), f (X∗) + h].

On the other hand, the value of the potential f (Xt) is expressed as

f (Xt) =
∫ t

0
ḟ (Xt)dt =

∫ t

0
γ(Xt)dt

with γ(X) = 〈wF[X], VF[X]〉.
Define γ̃ : R+ → R by γ̃(t) = γ(Xt). As γ(X) is continuous in X and Xt is continuous in t,

γ(Xt) is continuous in t. With the convergence of f (Xt) =
∫ t

0 γ̃(τ)dτ, this implies there exists a
sequence {tn}n∈N such that tn → ∞ and γ̃(tn)→ 0.50 As {Xtn}n∈N is contained in compact set
X̄ 2, there further exists a subsequence {t′m}m′∈N ⊂ {tn}n∈N such that Xt′m converges to some
X∞ ∈ X̄ 2 ⊂ X∗ as m → ∞. Since γ̃(t′m) → 0 and γ is continuous, we have γ(X∞) = 0, which
implies by PC of v that X∞ ∈ X∗ is a stationary point. Since X∗ is the only stationary point
in X∗, this limit point X∞ must be X∗. However, as f (Xt′m) → f̄ as t′m → ∞ and f is also
continuous, we have f (X∞) = f̄ > f (X∗) and thus X∞ 6= X∗, a contradiction.

C.4 Proof of Theorem 6

Proof for Example 1′. As f (X) = f 0(X(Θ)) +
∫

Θ θ ·X(dθ), weak continuity of f is obtained from
continuity of f 0 and the dominated convergence theorem. By applying the definition of f to
X + ∆X, we have

f (X + ∆X) = f 0(x̄ + ∆x̄) +
∫

Θ
θ · (X + ∆X)(dθ)

=
{

f 0(x̄) +∇ f 0(x̄) · ∆x̄ + o(|∆x̄|)
}
+

{∫
Θ

θ · X(dθ) +
∫

Θ
θ · ∆X(dθ)

}
= f (X) + F0(x̄) · ∆x̄ +

∫
Θ

θ · ∆X(dθ) + o(|∆x̄|) = f (X) +
∫

Θ
(F0(x̄) + θ) · ∆X(dθ) + o(|∆x̄|).

Here x̄ = X(Θ) and ∆x̄ = ∆X(Θ). The second equality comes from differentiability of f 0; the
third is from the assumption that f 0 is a potential function of F0 and the definition of f applied

50Consider continuous function g : R+ → R+ that always takes a non-negative value. Improper integral∫ ∞
0 g(τ)dτ is well-defined (i.e., converges to a finite real number) if and only if, for any ε > 0, there exists T ≥ 0

such that |
∫ t′

t g(τ)dτ| < ε for any t′ > t > T; fix T to the one that satisfies this for ε = 1. Define a sequence {tn}n∈N

by letting tn be the moment of time to attain the minimum value of g in close interval of time [T + 2n + 1, T + 2n+1],
i.e., g(tn) = minτ∈[T+2n+1,T+2n+1] g(τ); this minimum exists and tn → ∞, since g is continuous and we have tn ≤

T + 2n+1 ≤ T + 2n+1 + 1 ≤ tn+1. For each n ∈ N, this tn satisfies 0 ≤ (2n+1 − 2n − 1)g(tn) ≤
∫ T+2n+1

T+2n+1 g(τ)dτ =

|
∫ T+2n+1

T+2n+1 g(τ)dτ| < 1; hence, 0 ≤ g(tn) ≤ 1/(2n+1 − 2n − 1) = 1/(2n − 1). This implies g(tn) → 0 as n → 0 and
thus tn → ∞.

32



to X. Then, we should recall F[X(Θ)](θ) = F0(X(Θ)) + θ. So the second term is 〈F[X(Θ)], ∆X〉.
About the third error term, note that |∆x̄| = |∆X(Θ)| ≤ ‖∆X‖. Therefore, we obtain

f (X + ∆X) = f (X) + 〈F[X(Θ)], ∆X〉+ o(‖∆X‖).

Thus, f is (Fréchet) differentiable with derivative ∇ f (X) ≡ F[X(Θ)]. So, we have verified that
f is a potential function of the game F defined on X .

Proof for Example 2′. Let ∆X =
∫

Θ ∆xdµ and ∆X′ =
∫

Θ ∆x′dµ. Then, we have

f (X + ∆X)− f (X) =
∫

Σ
{ f σ(X + ∆X)− f σ(X)}PΣ(dσ)

=
∫

Σ

{∫
Θ

w(θ)Fσ[X] · ∆x(θ)P(dθ|σ) + o(‖∆X‖∞)

}
PΣ(dσ)

=
∫

Θ

∫
Σ

w(θ)Fσ[X] · ∆x(θ)PΣ(dσ|θ)P(dθ) + o(‖∆X‖∞)

=
∫

Θ
w(θ)

(∫
Σ

Fσ[X]PΣ(dσ|θ)
)
· ∆x(θ)P(dθ) + o(‖∆X‖∞)

Since F[X](θ) =
∫

Σ Fσ[X]PΣ(dσ|θ), this verifies that F[X] is the Fréchet derivative of f and thus
f is a potential function of F.

Proof for Example 3 ′. Let ∆X =
∫

Θ ∆xdµ and ∆X′ =
∫

Θ ∆x′dµ. Then, since f 0 is the potential
function for F and g(θ1, θ2) = g(θ2, θ1) for any (θ1, θ2) ∈ Θ2, we have∫

Θ2
∇i f 0(x(θ1), x(θ2))∆x(θi)g(θ1, θ2)µ(dθ1)µ(dθ2)

=
∫

Θ2
wiF0(x(θi), x(θj))∆x(θi)g(θ1, θ2)µ(dθ1)µ(dθ2)

=wi

∫
Θ2

F0(x(θi), x(θj))g(θi, θj)µ(dθj)∆x(θi)µ(dθi)

=wi

∫
Θ

F[X](θi) · ∆x(θi)µ(dθi) = wi

∫
Θ

F[X](θi) · ∆X(dθi) for each i ∈ {1, 2}, j 6= i.

Therefore, we have

f (X + ∆X)− f (X)

=
1

w1 + w2

∫
Θ2

{
∇1 f 0(x(θ), x(θ′))∆x(θ) +∇2 f 0(x(θ), x(θ′))∆x(θ′)

}
g(θ, θ′)µ(dθ)µ(dθ′) + o(‖∆X‖∞)

=
1

w1 + w2

(
w1

∫
Θ

F[X](θ) · ∆X(dθ) + w2

∫
Θ

F[X](θ′) · ∆X(dθ′)

)
+ o(‖∆X‖∞)

=
∫

Θ
F[X](θ) · ∆X(dθ) + o(‖∆X‖∞) = 〈F[X], ∆X〉+ o(‖∆X‖∞).

That is, F[X] is the Fréchet derivative of f and thus f is a potential function of F.
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