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Abstract

This paper proposes a novel framework for modeling time series of

probability density functions by extending auto-regressive moving av-

erage (ARMA) models to density-valued data. The method is based on

a transformation approach, wherein each density function on a com-

pact domain [0, 1]d is approximated by a B-spline mixture represen-

tation. Through generalized logit and softmax mappings, the space

of density functions is transformed into an unconstrained Euclidean

space, enabling the application of classical time series techniques. We

define ARMA-type dynamics in the transformed space. Estimation is

carried out via least squares for density-valued AR models and Whit-

tle likelihood for ARMA models, with asymptotic normality derived

under the joint divergence of the time horizon and basis dimension.

The proposed methodology is applied to spatio-temporal human pop-

ulation data in Tokyo, where meaningful temporal structures in the

distributional dynamics are successfully captured.

Keywords:B-spline basis; Density-valued time series; Logit function; Mix-

tures; Sieve MLE; Softmax function;

MOS subject classification: 62M10; 62M30.

1 Introduction

This paper focuses on modeling the dynamic behavior of density functions

defined on the unit cube Id = [0, 1]d. In many real-world applications, par-
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ticularly those involving two indexing dimensions such as time and space,

it is desirable to analyze the variation of distributions over time. For ex-

ample, spatio-temporal data may naturally be regarded as a time series of

density functions. Figure 1 in Section 6 illustrates this concept using human

population density in central Tokyo observed at three different time points,

demonstrating the notion of density-valued time series.

The space of density functions on Id is not a linear space in the tra-

ditional sense. Although it can be endowed with a metric structure (e.g.,

Hellinger distance), operations such as the addition or scalar multiplication

of densities generally fall outside the space of densities, as they may violate

key constraints:

∀x ∈ Id = [0, 1]d, f(x) ≥ 0,

∫
Id

f(x) dx = 1.

Consequently, conventional techniques from functional data analysis cannot

be directly applied to density functions. This motivates the development of

alternative approaches that preserve the fundamental structure of densities

while enabling dynamic modeling.

Several approaches to modeling density functions have been proposed

in the literature. A comprehensive overview is provided by Petersen et al.

(2022), who distinguish between transformation-based and object-oriented

methods. Transformation-based methods involve mapping density functions

into a Hilbert space, allowing for the application of linear tools. Notable

examples include the log-hazard and log-quantile density transformations

introduced by Petersen and Müller (2016). The key idea is to establish

an explicit bijection between the space of densities and the representation

space.

In contrast, object-oriented approaches employ geometric frameworks,

such as those using the Wasserstein metric (Panaretos and Zemel, 2020) or

Fisher–Rao metric (Srivastava et al., 2007), to endow the space of densities

with a Riemannian manifold structure. This allows for defining models via

tangent spaces associated with chosen metrics. Recent developments in this

category include the Wasserstein autoregressive model proposed by Zhang
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et al. (2022), which defines temporal dependence of densities through opti-

mal transport maps and establishes a theoretical foundation for stationarity

and inference in the Wasserstein space.

Our proposed methodology falls under the transformation-based frame-

work. Specifically, we approximate a given density function f on Id using a

normalized J-term B-spline basis expansion:

f(s) =
J∑

j=1

φjB̃j(s), s ∈ [0, 1]d, φj ≥ 0,
J∑

j=1

φj = 1,

where B̃j(s) denotes the normalized j-th B-spline basis function. The vector

of coefficients φ = (φ1, . . . , φJ) lies in the standard probability simplex:

HJ =

⎧⎨⎩φ ∈ RJ

∣∣∣∣∣∣ φj ≥ 0,
J∑

j=1

φj = 1

⎫⎬⎭ .

To handle potential numerical issues caused by boundary values (e.g., zeros),

we extend this to a relaxed simplex:

H̃J =

⎧⎨⎩φ ∈ RJ

∣∣∣∣∣∣ φj ≥ −1,
J∑

j=1

φj = 1

⎫⎬⎭ .

We then construct a bijective mapping from H̃J to RJ−1 using generalized

logit or softmax-like transformations. This representation space enables the

use of conventional statistical modeling tools such as autoregressive moving

average (ARMA) models. We refer to the resulting models as density-valued

ARMA models.

In practice, density functions are rarely observed directly. Instead, we

typically observe independent and identically distributed (i.i.d.) samples

s1, . . . , sn ∈ Id drawn from an unknown density. To estimate the B-spline

coefficients φj from the sample, we adopt a sieve maximum likelihood esti-

mation (MLE) framework (Chen, 2007). This can be interpreted as a form

of nonparametric MLE over a sieve space. Following the general theory of
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Shen and Wong (1994), we derive sufficient conditions under which our sieve

MLE is consistent and attains optimal convergence rates.

Assuming observations {sit}ni=1 for time points t = 1, . . . , T , we estimate

the coefficient vector φt ∈ HJ at each time t using sieve MLE. We then fit

ARMA models (Box et al., 1994) to the resulting sequence {φt}Tt=1 in the

transformed representation space RJ−1. Parameter estimation is conducted

via standard methods such as least squares for AR models and Whittle like-

lihood for ARMA models, as detailed in the classical reference by Brockwell

and Davis (1991). We also analyze the asymptotic behavior of the estima-

tors under joint divergence of T and J (i.e., as both the number of time

points and the number of basis functions increase).

The remainder of the paper is organized as follows. Section 2 introduces

the B-spline mixture framework and the sieve MLE for density estimation.

Section 3 develops the transformation between the B-spline coefficient space

and the representation space. Section 4 proposes ARMAmodels in the trans-

formed space. Section 5 provides an empirical analysis of human population

density data. Section 6 concludes.

2 B-spline mixtures

2.1 B-spline basis expansions on [0, 1]d

B-spline functions are piecewise polynomials that form a basis on Id = [0, 1]d.

They can approximate functions in Lp(Id) for p ≥ 1 under the Lp metric us-

ing piecewise polynomials. We briefly summarize the univariate case (d = 1)

and extend it to the multivariate case, following the treatment by Schumaker

(2007).

Let us define B-spline basis functions of order r. Let k be a positive

integer and t1 < · · · < tk be distinct real numbers chosen such that the

interval [t1, tk] contains [0, 1], with knots satisfying tr+1 = 0 and tk−r = 1.

A spline function on I1 = [0, 1] of order r with knots 0 = tr+1 < · · · <

4



tk−r−1 < tk−r = 1 is expressed as

k−r−1∑
i=1

φiBi,r(s), s ∈ [0, 1],

where the basis functions Bi,r(s) are defined recursively (Theorem 4.15 in

Schumaker (2007)). Specifically, initializing for q = 1, . . . , k − 1 by

Bq,0(s) =

⎧⎨⎩1, tq ≤ s < tq+1,

0, otherwise,

we define for p = 1, . . . , r and q = 1, . . . , k − p− 1,

Bq,p(s) =
s− tq

tq+p − tq
Bq,p−1(s) +

tq+p+1 − s

tq+p+1 − tq+1
Bq+1,p−1(s).

Thus, the set {Bj,r(s)}k−r−1
j=1 forms a B-spline basis of order r, consisting of

piecewise polynomials of degree r that are (r− 1)-times continuously differ-

entiable on I1. In other words, this basis spans a linear space of dimension

k − r − 1 determined by the knots 0 = tr+1 < · · · < tk−r = 1.

We extend this construction to the multivariate case on Id = [0, 1]d via

the tensor product. For each coordinate axis i = 1, . . . , d, we fix knots

0 = ti,r+1 < · · · < ti,k−r = 1, which may differ across dimensions, and

construct the univariate B-spline bases B
(i)
j,r(si). For s = (s1, . . . , sd) ∈ Id,

define the tensor product basis by

Bi1,...,id,r(s) :=

d∏
m=1

B
(m)
im,r(sm).

A d-variate spline function of order r on Id is then represented by

k−r−1∑
i1=1

· · ·
k−r−1∑
id=1

φi1,...,idBi1,...,id,r(s),

which we abbreviate by rearranging multi-indices into a single index j =
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1, . . . , J with J = (k − r − 1)d, as

J∑
j=1

φjB
d
j,r(s), s ∈ [0, 1]d. (1)

2.2 Maximum likelihood estimation for spline mixtures

We consider spline mixtures to model density functions on Id = [0, 1]d.

Utilizing non-negativity of B-spline basis functions, we employ mixtures of

the normalized B-spline basis to express density functions in a nonparametric

way.

Let f0(s) be an unknown density on Id = [0, 1]d. Suppose we observe in-

dependent and identically distributed (iid) samples s1, s2, . . . , sn ∈ Id drawn

from f0(s). Denote by B̃d
j,r(s), j = 1, . . . , J , the normalized B-spline basis

functions of order r on Id, satisfying∫
Id

B̃d
j,r(s)ds = 1, j = 1, . . . , J.

We approximate f0 by a B-spline mixture,

f(θ, s) =
J∑

j=1

θjB̃
d
j,r(s), (2)

where the coefficients satisfy θj ≥ 0 and
∑J

j=1 θj = 1 to ensure f(θ, ·) is a

valid density. The number of basis functions J = Jn may depend on the

sample size n and is assumed to increase as n → ∞.

The log-likelihood function for the observed data is given by

Q̃n(θ) =

n∑
i=1

log

⎧⎨⎩
J∑

j=1

θjB̃
d
j,r(si)

⎫⎬⎭− λ

⎛⎝ J∑
j=1

θj − 1

⎞⎠ , (3)

where λ is the Lagrange multiplier enforcing the summation constraint on θ.

Maximizing this likelihood yields the maximum likelihood estimator (MLE)
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θ̂ML, which satisfies the iterative update:

θ(m+1)
p =

1

n

n∑
i=1

θ
(m)
p B̃d

p,r(si)∑J
j=1 θ

(m)
j B̃d

j,r(si)
, p = 1, . . . , J,

for iteration m = 0, 1, 2, . . . until convergence. This procedure is a special

case of the Expectation-Maximization (EM) algorithm commonly used in

mixture models (e.g., McLachlan and Peel, 2007).

2.3 Consistency

Our estimation problem fits into the sieve M-estimation framework described

in Chen (2007). We consider i.i.d. observations si, i = 1, . . . , n from an

unknown, but smooth density function f0 : [0, 1]d → R. We estimate f0

by maximizing the log-likelihood in (3) over a sieve space constructed using

tensor-product B-spline basis functions on Id introduced in (1) as J = Jn →
∞.

Let {Sn} be the sequence of sieve spaces of B-splines defined as

Sn =

⎧⎨⎩
Jn∑
j=1

φjB̃
d
j,r(s) : φj ≥ 0,

Jn∑
j=1

φj = 1

⎫⎬⎭ , (4)

where B̃d
j,r is the tensor-product of the normalized B-spline basis of order

r on Id = [0, 1]d with Jn = (kn − r − 1)d. Then the maximum likelihood

estimator maximizing (3) corresponds to the sieve estimator defined by

f̂n := arg max
f∈Sn

Q̂n(f),

where

Q̂n(f) :=
1

n

n∑
i=1

log f(si).

We now state the assumptions under which the consistency of the esti-

mator f̂n can be established.
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Assumption 1 (Smoothness of the true density). The true density f0 be-

longs to the Hölder class of α-smooth functions Hα([0, 1]d), that is, f0 is m

times differentiable and its m-th derivative Dmf0 is Hölder continuous with

0 < γ < 1 and α = m+ γ.

Assumption 2 (Spline order). The order r of the B-spline basis satisfies

r ≥ �α	.
Assumption 3 (Boundedness). The true density function f0 is bounded

away from zero and infinity; that is, there exist constants K1,K2 ∈ R such

that

0 < K1 ≤ inf
s∈[0,1]d

f0(s) ≤ sup
s∈[0,1]d

f0(s) ≤ K2 < ∞. (5)

It is well known that the space spanned by tensor-product B-spline basis

functions is dense in the Hölder class Hα([0, 1]d) under the Lp norm for any

1 ≤ p ≤ ∞; see Schumaker (2007).

Theorem 1. Under Assumptions 1–3, for Jn → ∞,

‖f̂n − f0‖∞ = op(1).

The proof is deferred to Section A.1 and follows the general sieve M-

estimation argument in Chen (2007).

We now derive the convergence rate for f̂n in the L∞ norm. The rate

is obtained by applying Theorem 3.2 in Chen (2007) and using the metric

entropy evaluation of B-spline sieve spaces from Chen and Shen (1998).

Theorem 2. Under Assumptions 1–3, and for

Jn �
(
log n

n

)− d
2α+d

,

we have

‖f̂n − f0‖∞ = Op

((
log n

n

) α
2α+d

)
.

The proof is deferred to Section A.2 and also follows the general sieve

M-estimation argument in Chen (2007). It follows from Theorem 2 that the
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estimator f̂n achieves the optimal uniform convergence rate in the sense of

Stone (1982).

3 Vector space construction for density functions

We consider the space of density functions on Id defined via spline mixtures

as in (2), denoted by

HJ = {p = (p1, . . . , pJ) : ∀j, pj > 0, p1 + · · ·+ pJ = 1} . (6)

To introduce a regression framework on HJ , we require well-defined opera-

tions of addition, scalar multiplication, and an inner product to endow HJ

with a vector space structure. We aim to construct a bijective mapping from

HJ to RJ−1, where such linear operations and inner products are naturally

defined.

3.1 Generalized Logit and Softmax Functions

The logit function is widely used in multiclass logistic regression. It trans-

forms elements of HJ into RJ−1 by selecting one coordinate as a reference

(typically the first). For (p1, . . . , pJ) ∈ HJ with p1 as the base, the trans-

formation is given by

logit(p) =

(
log

(
p2
p1

)
, . . . , log

(
pJ
p1

))
, (7)

which maps into RJ−1. Its inverse is the softmax function, defined for x =

(x2, . . . , xJ) ∈ RJ−1 by

softmax(x) =

(
1

1 +
∑J

j=2 exp(xj)
,

exp(x2)

1 +
∑J

j=2 exp(xj)
, . . . ,

exp(xJ)

1 +
∑J

j=2 exp(xj)

)
,

which belongs to HJ . The pair of functions of the logit and softmax define

a bijection between HJ and RJ−1.

However, in density estimation, it often happens that some coefficients pj
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approach or equal zero, which causes instability in the logit transformation.

To address this issue, we extend HJ to allow negative values:

H̃J = {p = (p1, . . . , pJ) : ∀j, pj > −1, p1 + · · ·+ pJ = 1} , (8)

and define a generalized logit function:

˜logit(p) = (log(1 + p2
1 + p1

)
, . . . , log

(
1 + pJ
1 + p1

))
, (9)

with the corresponding generalized softmax function for x = (x2, . . . , xJ) ∈
RJ−1 given by

˜softmax(x) =(
J + 1

1 +
∑J

j=2 exp(xj)
− 1,

(J + 1) exp(x2)

1 +
∑J

j=2 exp(xj)
− 1, . . . ,

(J + 1) exp(xJ)

1 +
∑J

j=2 exp(xj)
− 1

)
.

In summary, the logit and softmax functions yield a bijection between HJ

and RJ−1, while their generalized versions do so for H̃J and RJ−1. These

define a bijection between H̃J and RJ−1. We shall employ the transformed

space of H̃J by the generalized logit as the representation space for density

functions.

3.2 Inner product space of density functions

We now define suitable linear operations and an inner product to endow H̃J

with the structure of a Hilbert space. Note that H̃J as defined in (8) is not

closed under standard addition or scalar multiplication.

Our key idea is to define operations via their representations in RJ−1.

For f, g ∈ H̃J , we define:

f ⊕ g := ˜softmax(˜logit(f) + ˜logit(g)),
α⊗ f := ˜softmax(α · ˜logit(f)),
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and the inner product as

(f, g) :=
(˜logit(f), ˜logit(g))

H
, (10)

where for column vectors f̃ := ˜logit(f) and g̃ := ˜logit(g), the inner product

is given by

f̃�HJ−1g̃,

with HJ−1 being a (J − 1)× (J − 1) positive definite matrix that defines a

metric on RJ−1.

To construct HJ−1, let ei denote the i-th unit vector in RJ−1, and define

êi := ˜softmax(ei) ∈ H̃J . The corresponding spline density on [0, 1]d is given

by

êi(s) =

J∑
k=1

êikB̃
d
k,r(s),

where B̃d
k,r denotes the normalized k-th B-spline basis function of order r

on [0, 1]d. We define the (i, j)-th element of HJ−1 by the standard L2 inner

product:

H
(ij)
J−1 =

∫
[0,1]d

êi(s)êj(s) ds, (11)

which can be numerically evaluated using quadrature methods for B-spline

functions. Note that HJ−1 is generally non-diagonal due to the overlapped

supports between B-spline basis functions.

4 Density-valued ARMA models

4.1 Definition

We define an auto-regressive and moving average (ARMA) model for time

series of density functions. For a density function on Id = [0, 1]d, we ap-
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proximate it with an element in H̃J , where addition, subtraction, scalar

multiplication, and inner product are defined. Here, J is assumed to be

sufficiently large to ensure good approximation accuracy. Note that the

positive definite matrix HJ−1 used to define the inner product is the known

constant given in (11).

In this section, we suppose to observe directly H̃J -valued time series

as density-valued time series, ignoring fitting errors to estimate B-spline

mixtures from discrete observations in practical situations.

For H̃J -valued time series {yt ∈ H̃J , t = 1, 2, . . .}, we define the auto-

covariance function by identifying {yt} on the transformed space by the

generalized logit. Namely, for ỹt = ˜logit(yt) ∈ RJ−1, the auto-covariance

function is defined by

Cov(yt, yt−k) := E(ỹt − μ̃t)
′HJ−1(ỹt−k − μ̃t−k), (12)

where μ̃t = Eỹt is the mean function. When both of mean and covariance

functions do not depend on time, we say that {yt} is a H̃J -valued stationary

process.

We define ARMA models for H̃J -valued stationary time series {yt} by

those for transformed series by the generalized logit {ỹt = ˜logit(yt) ∈ RJ−1}
as

ỹt = α̃+ φ1ỹt−1 + · · ·+ φpỹt−p + ε̃t + θ1ε̃t−1 + · · ·+ θq ε̃t−q, (13)

where ε̃t are iid (J − 1)-variate random vectors with mean zero and covari-

ance matrix ΣJ−1. Note that β = (φ1, . . . , φp, θ1, . . . , θq) ∈ Rp+q is ARMA

parameter vector and α̃ = (α̃1, . . . , α̃J−1) is (J − 1)-variate constant. We

assume the following conditions for ΣJ−1 and HJ−1:

J−1 tr(HJ−1ΣJ−1) → C1,

J−1 tr(HJ−1ΣJ−1HJ−1ΣJ−1) → C2, (14)

as J → ∞.

The ARMA model defined in (13) has a stationary auto-covariance func-
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tion and, consequently, a spectral density function obtained as the inverse

Fourier transform of the auto-covariance. Using (12), the auto-covariance

of yt becomes

R(k;β) = E(ỹt − μ̃)′HJ−1(ỹt−k − μ̃) = γk(β) tr(HJ−1ΣJ−1),

μ̃ =
α̃

1− φ1 − · · · − φp
,

where γk(β) is the autocovariance function of a standard real-valued ARMA

process driven by iid error with mean 0 and variance 1. Thus, the spectral

density function is

f(λ;β) =
1

2π

∞∑
k=−∞

R(k;β)e−ikλ, λ ∈ [−π, π]

=
tr(HJ−1ΣJ−1)

2π

∣∣∣∣∣ 1 +
∑q

j=1 θje
−ijλ

1−∑p
j=1 φje−ijλ

∣∣∣∣∣
2

=
tr(HJ−1ΣJ−1)

2π
g(λ;β),

(15)

say.

Finally, the notions of causality and invertibility for the H̃J -valued

ARMA models follow standard definitions used for real-valued ARMA mod-

els (Brockwell and Davis, 1991, Sec. 3.1). The necessary and sufficient con-

dition is that the AR and MA polynomials

φ(z) = 1− φ1z − · · · − φpz
p,

θ(z) = 1 + θ1z + · · ·+ θqz
q,

have no roots inside the unit circle. In subsequent inference procedures, we

assume the parameter space for (13) is

C = {β ∈ Rp+q : φ(z)θ(z) �= 0 for |z| ≤ 1, φp �= 0, θq �= 0, and

φ(·) and θ(·) has no common zeros},

so as to guarantee identifiability of the ARMA parameters.
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4.2 Inference for density-valued AR models

Suppose we observe ỹ1, . . . , ỹT ∈ R̃J−1 from auto-regressive (AR) models

of order p (i.e., when q = 0) in equation (13). We consider the estimation

method and its asymptotic properties when both T and J diverge jointly.

Least squares estimation is applied to estimate the AR model param-

eters. Let φ = (φ1, . . . , φp)
′ and x̃t = (ỹt−1, . . . , ỹt−p)

′. The least squares

estimator is obtained by minimizing

Q(α, φ) =

T∑
t=p+1

‖ỹt − α̃− x̃tφ‖2H ,

under the metric defined in equation (10). For the mean-adjusted series

ȳt = ỹt − 1

T − p

T∑
t=p+1

ỹt, x̄t = x̃t − 1

T − p

T∑
t=p+1

x̃t,

we obtain the least squares estimator

φ̂J =

⎧⎨⎩
T∑

t=p+1

x̄′tHJ−1x̄t

⎫⎬⎭
−1⎧⎨⎩

T∑
t=p+1

x̄′tHJ−1ȳt

⎫⎬⎭ . (16)

We now show the asymptotic normality of φ̂J as both T and J tend to

infinity. Let φ0 be the true parameter value and γ(k;φ0) be the autocovari-

ance function of the real-valued AR(p) model driven by iid errors with mean

0 and variance 1.

Theorem 3. Let ỹt follow a causal AR(p) model as in (13) with q = 0,

driven by iid errors with mean 0 and covariance matrix ΣJ−1. Under con-

dition (14), as T, J → ∞ jointly,

√
TJ
(
φ̂J − φ0

)
→ N

(
0, τ0Γ

−1
p

)
,
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in distribution, where Γp = [γ(i− j;φ0)]
p
i,j=1 and

τ0 = lim
J→∞

J−1tr (HJ−1ΣJ−1HJ−1ΣJ−1)

{J−1tr(HJ−1ΣJ−1)}2
. (17)

The asymptotic variance of φ̂J is consistently estimated by

Â−1B̂Â−1, (18)

where

Â =
T∑

t=p+1

x̄′tHJ−1x̄t,

ût = ȳt − x̄′tφ̂J ,

B̂ =
T∑

t=p+1

x̄′tHJ−1ûtû
′
tHJ−1x̄t.

We extend the standard procedure for identifying the AR order p based

on the partial autocovariance function (PACF) to the setting of density-

valued time series. Define the sample autocorrelation function (ACF) by

ρ̂(k) = R̂(k)/R̂(0), k = 0, 1, 2, . . . ,

where

R̂(k) =
1

T

T∑
t=k+1

(
ỹt − 1

T

T∑
s=1

ỹs

)′
HJ−1

(
ỹt−k − 1

T

T∑
s=1

ỹs

)
. (19)

The sample PACF of order k is defined as the k-th element of the least

squares estimator φ̂J when fitting an AR(k) model.

Corollary 1. Let {ỹt} be iid with mean μ and covariance matrix ΣJ−1.

Under condition (14), as T, J → ∞ jointly,

√
TJρ̂(k) → N(0, τ0),

√
TJφ̂(k) → N(0, τ0),
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in distribution, where τ0 is given in (17). The asymptotic variance is con-

sistently estimated by

κ̂ = T−1
tr
(
HJ−1Σ̂J−1HJ−1Σ̂J−1

)
{
tr(HJ−1Σ̂J−1)

}2 ,

where

Σ̂J−1 =
1

T

T∑
t=1

(
ỹt − 1

T

T∑
s=1

ỹs

)(
ỹt − 1

T

T∑
s=1

ỹs

)′
.

It follows that the AR order can be identified by checking whether the

sample PACF values are greater than 1.96κ̂, based on a 5% significance level.

4.3 Inference for density-valued ARMA models

We consider the estimation of ARMAmodels using observed samples ỹ1, . . . , ỹT ∈
RJ−1 in equation (13). Least squares estimation cannot be directly applied

in the ARMA setting. Instead, we employ the Whittle likelihood estimation

method introduced by Brockwell and Davis (1991), omitting the discussion

of maximum likelihood and least squares estimators in (Brockwell and Davis,

1991, Sec. 8.7) for simplicity.

Define the discrete Fourier transform and periodogram at the Fourier

frequencies ωj = 2πj/T, j = 1, . . . , [T/2], as

dy(ωj) :=
1√
T

T∑
t=1

ỹte
−iωjt,

Iy(ωj) := dy(ωj)
′HJ−1dy(ωj).

We estimate the ARMA parameter β = (φ1, . . . , φp, θ1, . . . , θq) by minimiz-

ing the Whittle likelihood function:

lT (β) =
1

TJ

[T/2]∑
j=1

Iy(ωj)

g(ωj ;β)
, (20)
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where g(ω;β) is defined in equation (15). Note that the zero frequency is

omitted from this definition to avoid the effect of non-zero means.

We now present the asymptotic properties of the Whittle estimator under

the assumption that α̃ and ΣJ−1 are nuisance parameters.

Theorem 4. Let β̂ ∈ C be the minimizer of lT (β) in equation (20), and

suppose ỹt follows a causal and invertible ARMA model with true parameter

β0 ∈ C. Under the condition (14), as T, J → ∞ jointly,

√
TJ(β̂ − β0) → N

(
0, τ0W

−1(β0)
)
,

where

W (β0) =
1

4π

∫ π

−π

[
∂ log g(λ;β0)

∂β

] [
∂ log g(λ;β0)

∂β

]′
dλ,

τ0 = lim
J→∞

J−1tr (HJ−1ΣJ−1HJ−1ΣJ−1)

{J−1tr(HJ−1ΣJ−1)}2
.

The asymptotic variance of β̂ is consistently estimated by

Â−1B̂Â−1,

where

Â =

[T/2]∑
j=1

Iy(ωj)

[
∂2g−1(ωj ; β̂)

∂β∂β′

]
,

B̂ =

[T/2]∑
j=1

|Iy(ωj)|2
[
∂g−1(ωj ; β̂)

∂β

][
∂g−1(ωj ; β̂)

∂β

]′
.

5 Application to population data

This section analyzes human population density in Tokyo. After fitting

spline mixtures in (2) by maximizing the likelihood in (3), we obtain a

dataset expressed in the form of HJ as in (6). Transforming HJ into RJ−1 by

the generalized logit transformation in (9), we apply the time series methods

17



Figure 1: Estimated densities in April 2020 (left), April 2021 (middle), and
April 2022 (right), for monthly averaged human population in the Tokyo 23
central districts at 15:00.

introduced in Section 4.

NTT DoCoMo, a Japanese mobile phone company, provides spatio-

temporal data counting the number of people in 500-meter meshes every

hour throughout Japan since 2016. We collected population data over 6,100

meshes in Tokyo (a 102 km × 74 km area including the 23 central districts)

at 15:00 for each day. Averaging these daily measurements over each month,

we constructed a monthly dataset spanning 96 months from January 2016

to December 2023.

Converting the longitude and latitude coordinates of the 6,100 meshes

into two-dimensional Cartesian coordinates (using the transformation for-

mula from the Geospatial Information Authority of Japan), we treat the

resulting population data as spatio-temporal data on a two-dimensional Eu-

clidean space. For analysis, we focus on the Tokyo 23 districts and normalize

the spatial domain to lie within the unit square [0, 1]2.

We applied cubic B-spline mixtures over [0, 1]2 to estimate monthly den-

sities in the Tokyo 23 districts using J = 819 basis functions. Figure 1 shows

the estimated densities in April in 2020, 2021 and 2022. As a result, we ob-

tained density functions yt ∈ HJ , t = 1, . . . , 96, with J = 819. We then

analyzed the transformed series ỹt = ˜logit(yt) by generalized logit function

in (9), applying the ARMA methodology from Section 4.

First, we computed the sample autocorrelation (ACF) and partial au-

tocorrelation (PACF) functions defined in (19), including critical values at

18



Figure 2: Sample autocorrelation functions (top) and partial autocorrelation
functions (bottom) for the monthly averaged density-valued time series of
human population in the Tokyo 23 central districts at 15:00 from Jan. 2016
to Dec. 2023.
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the 5% significance level under the null hypothesis of independence, to de-

termine the appropriate ARMA order. As shown in Figure 2, the PACF

suggests that an AR(3) model is suitable, with significant partial autocor-

relations up to lag 3. The ACF also shows positive values up to lag 17,

consistent with AR(3) behavior.

The AR(3) parameters for the transformed series ỹt = ˜logit(yt) ∈ RJ−1,

estimated using (16), are:

ỹt =0.867ỹt−1 − 0.303ỹt−2 + 0.337ỹt−3 + ε̃t,

(0.125) (0.121) (0.090),

R2 =0.763.

For comparison, the traditional estimation obtained just by fitting OLS

directly to yt ∈ HJ under the usual Euclidean distance without preserving

the density structure yields:

yt =0.830yt−1 − 0.242yt−2 + 0.316yt−3 + εt,

(0.118) (0.106) (0.084),

R2 =0.764.

These results are similar, though the latter does not ensure that both sides

of the equation are valid density functions. This suggests that our proposed

density-valued time series framework appropriately accounts for serial corre-

lation with preserving the density structure under the practically reasonable

metric of HJ−1.

6 Conclusion

This paper has proposed a dynamic modeling framework for density-valued

time series on the unit cube Id = [0, 1]d using a transformation-based ap-

proach. By representing density functions as B-spline mixtures, we construct

a bijective mapping between the space of density functions and a Euclidean

representation space via generalized logit and softmax transformations. This
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approach enables us to define and estimate auto-regressive and moving av-

erage (ARMA) models for density-valued data using well-established tools

from time series analysis.

A key advantage of our method is that it allows the application of linear

operations and statistical inference in the transformed space, while ensuring

the resulting densities remain valid under the inverse transformation. Al-

though the inclusion of negative components in the mixture representation

may appear counterintuitive, it enables computational tractability and in-

terpretability, especially in contexts such as finance, where negative weights

can reflect short positions in portfolios.

We developed estimation procedures based on least squares for AR mod-

els and Whittle likelihood for ARMA models, and established their asymp-

totic properties when both the time dimension T and the basis dimension

J tend to infinity jointly. The effectiveness of the proposed method was

demonstrated through an empirical application to human population density

data in Tokyo, where the model successfully captured meaningful temporal

dynamics while preserving the structural properties of densities.

Future work includes extending the framework to nonstationary settings,

incorporating exogenous covariates, and exploring high-dimensional spatial

domains or irregular domains beyond the unit cube. Moreover, formaliz-

ing the theoretical properties under estimation error of the initial density

function (i.e., when plug-in estimates from observed data are used) is an

important direction for making the method more robust in practice.
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A Proofs

A.1 Proof of Theorem 1

Let us begin to prepare some notation required in the proof. We define the

true criterion function Q, the empirical criterion function Q̂n, and the sieve

MLE f̂n as follows:

Q(f) := E[log f(si)],

Q̂n(f) :=
1

n

n∑
i=1

log f(si),

f̂n := arg max
f∈Sn

Q̂n(f).

Define the space to which the true density function f0 belongs by

S :=

{
f ∈ Hα([0, 1]d) : f(x) ≥ 0,

∫
[0,1]d

f(x)dx = 1

}
,

and the spline sieve space by

Sn =

{
Jn∑
i=1

φiB̃
d
i,r(s) : φ = (φ1, . . . , φJ) ∈ ΔJn

}
,

where

ΔJn =

{
φ ∈ RJn : φi ≥ 0,

Jn∑
i=i

φi = 1

}
.

We restrict S together with the sieve space Sn in (4), in accordance with

Assumption 3, as follows:

F := S ∩ F[K1,K2], Fn := Sn ∩ F[K1,K2],

where

F[K1,K2] :=
{
f : [0, 1]d → R+

∣∣∣ K1 ≤ f(s) ≤ K2 for all s ∈ [0, 1]d
}
.
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We now prove Theorem 1. The claim follows from Theorem 3.1 in Chen

(2007), once we verify that all required conditions are satisfied. Specifically:

we confirm Conditions 3.1, 3.2, 3.3, 3.4 and 3.5(i) of Theorem 3.1 in Chen

(2007) by Lemmas 3, 2, 4, 1 and 5, respectively, which are shown in the

followings.

Lemma 1. The sieve spaces, Fk, are compact under the distance d(f1, f2) =

‖f1 − f2‖∞.

Proof. ΔJk is a closed and bounded subset of RJk , hence compact by Heine-

Borel theorem. Define

α : ΔJk −→ C([0, 1]d), α(φ) =

Jk∑
j=1

φj B̃j , (21)

and equip C([0, 1]d) with the supremum norm ‖f‖∞ = sups∈[0,1]d |f(s)|. For
any φ,ψ ∈ ΔJk ,

‖α(φ)− α(ψ)‖∞ = sup
s∈[0,1]d

∣∣∣ Jk∑
j=1

(φj − ψj)B̃j(s)
∣∣∣ (22)

≤
(

max
1≤j≤Jk

‖B̃j‖∞
)
‖φ−ψ‖1, (23)

hence α is Lipschitz, and in particular continuous. Since ΔJk is compact

and α is continuous, Sk = α(ΔJk) is compact in C([0, 1]d) (supremum-norm

topology).

For each fixed s, the evaluation map evs : F[K1,K2] → R, f �→ f(s) is con-

tinuous under ‖·‖∞. Since [K1,K2] ⊂ R is closed and inverse images of closed

sets under a continuous map are closed, each set ev−1
s ([K1,K2]) is closed in

the space of d-dimensional functions. Hence F[K1,K2] =
⋂

s∈[0,1]d ev
−1
s ([K1,K2])

is a intersection of closed sets, and therefore closed.

A closed subset of a compact space is compact. Thus Fk = Sk ∩F[K1,K2]

is compact in the supremum-norm topology.

Lemma 2. Fk ⊆ Fk+1 ⊆ F for all k ≥ 1; and there exists a sequence

πkf0 ∈ Fk such that d(πkf0, f0) → 0 as k → ∞.
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Proof. The sequence of sieve spaces {Fn} is nested, i.e., Fk ⊆ Fk+1 for all

k. This follows from the construction of Fk as the span of tensor-product

B-spline basis functions with increasing numbers of knots. Since adding

more knots to the B-spline system strictly enlarges the span of the basis

without discarding existing basis functions, the resulting spline spaces are

automatically nested.

By Assumption 1, f0 ∈ Hα([0, 1]d). It is well known that, under the

mesh ratio condition, the space of tensor-product B-spline functions of order

r ≥ α is dense in Hα([0, 1]d) with respect to the L∞-norm (see Schumaker

(2007)). Hence, there exists a sequence f̂n ∈ span{B̃1,r, . . . , B̃Jn,r} such that

‖f̃n − f0‖∞ → 0.

Although f̂n may not integrate to one, one can normalize it via f̃n(x) =
f̂n(x)∫
f̂n(u)du

, and this operation preserves convergence in L2, provided the de-

nominator converges to 1, which is ensured as f̃n → f0 in L∞ and f0 is a

density.

Furthermore, since f0 satisfies m ≤ f0(x) ≤ M and the sieve space

Fn is restricted to functions satisfying the same bounds, the boundedness

constraint does not interfere with the L∞-density property. The class of

functions in Fn remains sufficiently rich to approximate f0 in L∞ norm.

Lemma 3. (i) Q(f) is continuous at f0 in F , Q(f0) > −∞; and (ii) for

all ε > 0, Q(f0) > sup{f∈F :‖f0−f‖∞≥ε}Q(f).

Proof. (i) Under Assumption 3, we have

|Q(f)−Q(f0)| = E

[
log

f(s)

f0(s)

]
≤ E

[
f(s)

f0(s)
− 1

]
≤
∫
[0,1]d

|f(s)− f0(s)|
f0(s)

f0(s)ds

≤
∫
[0,1]d

|f(s)− f0(s)|ds

≤ ‖f − g‖∞.
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Then, Q(f) is Lipschitz continuous on F at f0. The first inequality follows

from log x ≤ x − 1. It is obvious that Q(f0) ≥ logK2 > 0 under Assump-

tion 3.

(ii) From the definition of the Kullback-Leibler divergence, we have

Q(f0) − Q(f) = KL(f0||f) ≥ 0. Suppose, to the contrary, that Q(f0) =

sup{f∈F :‖f0−f‖∞≥ε}Q(f). But ifQ(fn) → Q(f0), it follows that KL(f0||fn) →
0, which in turn implies that fn → f0 almost everywhere. However, this con-

tradicts ‖f0 − f‖∞≥ ε since both f0 and f are continuous.

Lemma 4. For each k ≥ 1, (i) Q̂n(f) is a measurable function of the

data {si}ni=1 for all f ∈ Fk; and (ii) for any data {si}ni=1, Q̂n(f) is upper

semicontinuous on Fk under the metric d(f1, f2) = ‖f1 − f2‖∞.

Proof. (i) Fix any k ≥ 1 and any f ∈ Fk. Since each si is fixed, the map

(s1, . . . , sn) �→ 1
n

∑n
i=1 log f(si) is measurable in the data. Hence, Q̂n(f) is

a measurable function of the data.

(ii) For each si, the map f �→ f(si) is continuous with respect to the

L∞-norm on Fk, as shown previously. Moreover, the logarithm function

x �→ log x is continuous on [K1,K2], so the composition f �→ log f(si) is

continuous on Fk. Finally, Q̂n(f) is the finite average of the continuous maps

f �→ log f(si), and thus Q̂n is continuous on Fk with respect to d(f1, f2) =

‖f1 − f2‖∞. Since continuous functions are trivially upper semicontinuous,

the claim follows.

Lemma 5. For all k ≥ 1, plim
n→∞

sup
f∈Fk

|Q̂n(f)−Q(f)| = 0

Proof. Fix any k ≥ 1. The map θ �→ fθ is continuous and the simplex

ΔJk is compact in Rpdk ; hence the sieve Fk = {fθ : θ ∈ ΔJk} is compact in

L∞([0, 1]d).

Because fθ(s) ∈ [K1,K2] for all s ∈ [0, 1]d and θ ∈ ΔJk ,

logm ≤ log fθ(s) ≤ logM, ∀ s, θ.

Define the envelope G(s) := max{| logm|, | logM |}. Then | log fθ(s)| ≤
G(s) < ∞ and G ∈ L2(Pf0).
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For any θ, θ′ ∈ ΔJk and s ∈ [0, 1]d,

∣∣log fθ(s)−log fθ′(s)
∣∣ =

∣∣∣log fθ(s)

fθ′(s)

∣∣∣ ≤ 1

m

∣∣fθ(s)−fθ′(s)
∣∣ ≤ ‖B̃‖∞

m
‖θ−θ′‖1,

where ‖B̃‖∞ := maxj sups B̃j(s). Hence θ �→ log fθ is Lipschitz into (L∞, ‖ ·
‖∞), and

N
(
ε, {log fθ}, ‖ · ‖∞

)
� ε−(pdk−1).

Consequently, ∫ ‖G‖2

0

√
logN[]

(
u, logFk, L2(Pf0)

)
du < ∞,

so {log fθ : θ ∈ ΔJk} is Pf0-Glivenko–Cantelli (van der Vaart & Wellner,

1996, Thm 2.4.1).

Therefore

sup
θ∈ΔJk

∣∣∣ 1
n

n∑
i=1

log fθ(si)− Ef0

[
log fθ(s)

]∣∣∣ a.s.−−→ 0, n → ∞,

and hence also in probability. Since Q̂n(f) = n−1
∑n

i=1 log f(si) and Q(f) =

Ef0 [log f(s)], this yields

plimn→∞ sup
f∈Fk

∣∣Q̂n(f)−Q(f)
∣∣ = 0.

A.2 Proof of Theorem 2

We can prove this by checking Conditions 3.7 and 3.8 of Theorem 3.2 in

Chen (2007), which are confirmed by Lemmas 6 and 7, respectively.

Lemma 6. There is C1 > 0 such that for all small ε > 0,

sup
{f∈Fn:‖f0−f‖∞≤ε}

Var(log f(si)− log f0(si)) ≤ C1ε
2.
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Proof. Let si ∼ f0, then

Var(log f(si)− log f0(si)) = E

(
log

f(si)

f0(si)

)2

− E2

(
log

f(si)

f0(si)

)
≤ E

(
log

f(si)

f0(si)

)2

= E

(
log

{
1 +

(
f(si)

f0(si)
− 1

)})2

≤ E

(
f(si)

f0(si)
− 1

)2

= E

{
1

f2
0 (si)

(f(si)− f0(si))
2

}
≤ 1

K2
1

∫
[0,1]d

f0(si) (f(si)− f0(si))
2 ds

≤ K2

K2
1

‖f(si)− f0(si)‖2∞.

Thus, the result holds with C1 =
K2

K2
1
.

Lemma 7. For any δ > 0, there exists a constant ρ ∈ (0, 2) such that

sup
{f∈Fn:‖f0−f‖∞≤δ}

| log f(si)− log f0(si)| ≤ δρU(si),

with E[Uγ(si)] ≤ C2 for some γ ≥ 2.

Proof. Let si ∼ f0, then

| log f(si)− log f0(si)| =
∣∣∣∣log f(si)

f0(si)

∣∣∣∣
=

∣∣∣∣log{1 + f(si)− f0(si)

f0(si)

}∣∣∣∣
≤ log

{
1 +

|f(si)− f0(si)|
f0(si)

}
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Using the inequality, x
x+1 ≤ log(1 + x) ≤ x for all x > 0, we obtain

log

{
1 +

|f(si)− f0(si)|
f0(si)

}
≤ max

{ |f(si)− f0(si)|
f0(si)

,
|f(si)− f0(si)|

f(si)

}
≤ 1

K1
|f(si)− f0(si)|

≤ 1

K1
‖f − f0‖∞

Thus, the result holds with ρ = 1 and U(si) =
1
K1

.

A.3 Proof of Theorem 3

Proof. In order for φ̂J to converge in distribution jointly as T, J → ∞, we

apply Proposition 6.3.9 of Brockwell and Davis (1991). Namely, we show

that φ̂J converges in distribution as T → ∞ for each finite J and that the

limit distribution for each J converges in distribution as J → ∞.

Observe that

x̄t := x̃t − 1

T

T∑
t=1

x̃t = (x̃t − μ̃)−
(

1

T

T∑
t=1

x̃t − μ̃

)
.

Since the second part in the last term is Op(T
−1/2) in combinations with

the condition, we have, for each J = 1, 2, . . .,

√
TJ
(
φ̂J − φ0

)
= Op

(
T−1/2

)
+

{
1

TJ

T−p∑
t=1

(x̃t − μ̃)′HJ−1(x̃t − μ̃)

}−1{
1√
TJ

T−p∑
t=1

(x̃t − μ̃)′HJ−1ε̃t

}
.

The first prat in the second term converges in probability to

J−1tr (HJ−1ΣJ−1) Γp,

while the second part converges in distribution to

N
(
0, J−1tr (HJ−1ΣJ−1HJ−1ΣJ−1) Γp

)
,
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as T → ∞ for each J = 1, 2, . . .. Applying Proposition 6.3.9 of Brockwell

and Davis (1991), we have the result as T, J jointly diverge by checking that

the asymptotic variance converges as J → ∞.

A.4 Proof of Theorem 4

We prove it in the same way with Theorem 3 by Proposition 6.3.9 of Brock-

well and Davis (1991).

Lemma 8. For every β ∈ C,

lT (β) → J−1tr(HJ−1ΣJ−1)

2π

∫ π

−π

g(λ;β0)

g(λ;β)
dλ,

uniformly in β ∈ C̄ in probability, as T → ∞ for each J = 1, 2, . . ..

Proof. It can be proved basically by following Proposition 10.8.2 of Brock-

well and Davis (1991).

Lemma 9. Let β̂ be the estimator in C which minimizes (20), where ỹt

follows an ARMA model in (13) with a true parameter β0 ∈ C. Then

β̂ → β0,

in probability, as T → ∞ for each J = 1, 2, . . ..

Proof. The probability limit function of lT (β) evaluated in Lemma 8 attains

the minimum at β = β0 by Proposition 10.8.1 of Brockwell and Davis (1991).

Since the convergence in Lemma 8 is uniform in C, the consistency follows.

Now we are in the position to prove Theorem 4.

Proof. The Taylor expansion of ∂lT (β0)/∂β about β = β̂ can be written as

√
TJ

∂lT (β0)

∂β
=

√
TJ

∂lT (β̂)

∂β
+

√
TJ

∂2lT (β̃)

∂β∂β′ (β0 − β̂)

= −
√
TJ

∂2lT (β̃)

∂β∂β′ (β̂ − β0)
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for some β̃ ∈ C satisfying ||β̃ − β̂|| < ||β̂ − β0||. Lemmas 8 and 9 can be

used to establish

∂2lT (β̃)

∂β∂β′ →J−1tr(HJ−1ΣJ−1)

2π

∫ π

−π
g(λ;β0)

∂2g−1(λ;β0)

∂β∂β′ dλ

= 2W (β0)J
−1tr(HJ−1ΣJ−1)

in probability as T → ∞. Hence it sufices to show that

√
TJ

∂lT (β0)

∂β
→ N

(
0, 4W (β0)J

−1tr(HJ−1ΣJ−1HJ−1ΣJ−1)
)
,

as T → ∞ for each J = 1, 2, . . .. Applying Propositions 10.8.5 and 10.8.6 of

Brockwell and Davis (1991), we can show that, for η(ω) = ∂g−1(ω;β)/∂β,

E

∣∣∣∣∣∣ 1√
TJ

∑
j

{I(ωj)η(ωj)− g(ωj ;β0)Iε(ωj)η(ωj)}
∣∣∣∣∣∣→ 0,

and

1√
TJ

∑
j

g(ωj ;β0)Iε(ωj)η(ωj) →

N

(
0, J−1 tr (HJ−1ΣJ−1HJ−1ΣJ−1)

π

∫ π

−π
η2(λ)g2(λ;β0)dλ

)
,

in distribution as T → ∞, respectively. Finally, applying Proposition 6.3.9

of Brockwell and Davis (1991), we complete the proof by checking that the

asymptotic variance converges as J → ∞.
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