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Abstract

We investigate the impact of ChatGPT, a generative AI (GenAI) application, on the sys-
temic financial risk of Chinese banks. Using a sample of 42 publicly traded banks and employ-
ing regression discontinuity and regression discontinuity difference-in-differences methodolo-
gies, we assess the immediate effects following the launch of ChatGPT on November 30, 2022.
Our findings reveal an immediate and significant increase in systemic financial risk, measured
by ∆CoVaR. Robustness checks, including placebo tests, alternative risk measures, and vary-
ing sample windows, confirm the reliability of these results. Mechanism analysis highlights
that transitional challenges during GenAI adoption exacerbate systemic vulnerabilities. Smaller
banks, rural commercial banks, and banks with higher nonperforming loan ratios face height-
ened risks, while large state-owned banks remain relatively insulated. These findings underscore
the double-edged nature of disruptive innovations such that GenAI integration poses short-term
risks to financial stability even if GenAI has transformative potential.
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1 Introduction

In the long journey of artificial intelligence (AI) development, the emergence of ChatGPT un-

doubtedly marks a significant milestone. As a breakthrough in natural language processing (NLP)

technology, it heralds the era of large language models (LLMs). Training with large amounts of

texts using machine learning techniques, such as ChatGPT, an LLM-based generative AI (GenAI),

has reached unprecedented sophistication in allowing GenAI tools to understand and generate nat-

ural language. Unlike traditional AI, which is typically tailored to narrow and predefined tasks,

GenAI exhibits a transformative ability to generalize across diverse applications, from creating dy-

namic customer interactions to making complex financial decisions (Kong et al., 2024). This gen-

erative capacity separates GenAI from the conventional approach, enabling flexible adaptation and

autonomous innovation across industries (Liu et al., 2023).

Indeed, since late 2022, ChatGPT’s public debut in November, GenAI has become a central

topic for CEOs and senior leaders across industries, symbolizing a tipping point in the technology’s

trajectory. As highlighted in a Boston Consulting Group report (Rabener et al., 2024), GenAI may

not improve the financial decisions of firms in the short run. This is because only about 2% of the

organizations have a fully developed GenAI talent strategy, exposing a critical gap between rapid

adoption of technology and the readiness to use it effectively while ensuring safety and security

(Dubey et al., 2024; Rabener et al., 2024; Singh, 2024).

This fast-growing interest also raises concerns about GenAI, particularly its potential to increase

financial instability under immature regulatory frameworks and unrefined applications. In trading,

GenAI’s rapid analytical and execution capabilities present significant challenges. According to the

Financial Times, GenAI might enable advanced manipulation techniques or intensify crowded trades

during normal market conditions, and thus, potentially amplify market volatility in times of stress,

and such dynamics could pose serious threats to the overall stability of the financial system.1 Beyond

trading, the use of GenAI also carries notable operational risks. For example, the emergence of

shadow AI, unauthorized or non-controlled applications, entails severe compliance issues (Bickford

et al., 2023). Sensitive data leaks through prompt engineering, a task in which GenAI excels, are

1Online website, https://www.ft.com/content/d4d212a8-c63a-4b00-9f4c-e06ed59f9279. Accessed January 1, 2025.
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becoming increasingly common. Moreover, GenAI could facilitate fraudulent activities, such as

aiding criminals in impersonating customers, forging checks, or using voice imitation to execute

social engineering attacks that trick employees into bypassing security protocols (Stokel-Walker &

Van Noorden, 2023).

Although previous studies have explored the potential benefits and risks of GenAI (Bertomeu

et al., 2023; Bloom et al., 2024; Wu et al., 2024), little is known about its immediate impact on

systemic financial risk, particularly in the context of emerging markets where regulatory frameworks

and technological infrastructure may still be maturing. We attempt to fill this gap by investigating

how the introduction of ChatGPT, a prominent GenAI application, has influenced systemic financial

risk within the Chinese banking sector. Analysis using regression discontinuity (RD) and regression

discontinuity difference-in-differences (RD-DID) designs, and based on a sample of 42 publicly

listed banks from October 19, 2022, to January 12, 2023, reveals that the introduction of ChatGPT

led to a significant short-term increase in systemic financial risk within the Chinese banking sector,

as measured by ∆CoVaR. This finding remains robust through a series of checks, such as the donut

hole test, the placebo test, alternative risk measures, and different time windows, providing strong

evidence of the immediate market impact of GenAI innovations.2

Moreover, our mechanism analysis further reveals that the indirect impact stems from the transi-

tional risks of adopting GenAI technologies. Banks with more prior experience in AI-related tech-

nologies exhibited significantly smaller responses to ChatGPT’s launch than their counterparts with

fewer AI capabilities. This trend can be attributed to banks that lack AI adoption and face greater

2Some may question that ChatGPT is not directly accessible in mainland China. However, we argue that using
ChatGPT’s launch as an exogenous shock is reasonable for three key reasons. First, the launch of ChatGPT represents
not only a technological breakthrough but also a landmark event in the era of GenAI. Financial markets are highly
sensitive; even if the technology itself is not directly accessible, market participants can price it or adjust their ex-
pectations about its potential impact (Duan et al., 2019; Murinde et al., 2022). This is particularly relevant because
China, the second largest economy in the world, is deeply interconnected with global markets (Dong et al., 2016).
Second, ChatGPT’s release spurred domestic companies such as Baidu and Alibaba to quickly announce similar AI
products, introducing competitive dynamics that could influence China’s financial system through changes in mar-
ket expectations (Wang & Liang, 2024). The resulting changes in the technological and business ecosystem have
substantial implications (Qian, 2024). A case in point is China Banking Corporation has launched its GenAI solu-
tion, CHIB GPT to catch up with rapid AI adoption in the financial sector (Online website https://www.chinabank.ph/
latest-news-chinabank-leverages-generative-ai-launches-chib-gpt-to-boost-employee-productivity. Accessed January
1, 2025.) Lastly, the timing of the ChatGPT launch was independently determined by OpenAI and is unrelated to
China’s financial markets. This independence aligns with the exogeneity assumption of our study, and rigorous methods
are applied to control for other confounding factors, ensuring the robustness of our conclusions.
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transitional pressures to improve their technological infrastructure in response to the GenAI stim-

ulus. These efforts introduce additional systemic risks during transition, compounding financial

system vulnerabilities. This finding on indirect impacts also contributes to the literature on how

incumbents succeed in the face of disruptive technologies, such as Ansari et al. (2016) and Roy et

al. (2018), underscoring the importance of preparedness and adaptability in mitigating transitional

risks. It offers new insights into the dynamic interaction between technological disruption and finan-

cial stability.

Overall, this study makes several important contributions to the literature. First, it extends the

research framework on the determinants of banks’ systemic risk by incorporating external techno-

logical uncertainty and shocks into the analytical system. Thus, we address the limitations of ex-

isting studies that focus predominantly on macroeconomic policy shocks and economic uncertainty

(Calmes & Théoret, 2014; Duan et al., 2022). Second, methodologically, this study innovatively

employs a regression discontinuity design to effectively identify the causal effects of external tech-

nological shocks on systemic risk. At the empirical level, utilizing large-scale bank-level data, this

causal inference study provides the first systematic quantification of both the magnitude and trans-

mission mechanisms of the impact of external technological shocks on the systemic risk of Chinese

banks. These findings offer novel empirical evidence to inform regulatory authorities in their efforts

to design more effective risk prevention policies.

The rest of the paper is organized as follows. Section 2 surveys the literature on GenAIs influ-

ence on systemic risk and develops the core research hypothesis. Section 3 explains the research

framework. Section 4 assesses ChatGPTs impact on bank systemic risk, while Section 5 examines

the heterogeneities among bank types. Robustness checks are conducted in Section 6, and Section 7

investigates the underlying mechanism. Finally, Section 8 summarizes the findings.

2 Literature Review and Hypothesis Development

AI has become increasingly integrated into our societies and economies. Its ability to rapidly

process vast amounts of information enhances efficiency and decision-making at both individual
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and organizational levels. AI also boosts labor productivity, creates business opportunities, and

increases profits while helping mitigate political, security, and financial risks. Building on this trend,

ChatGPT and other GenAI technologies are increasingly recognized as important drivers of social

and economic development.

Despite GenAIs potential benefits, such technology may also trigger risks in financial system.

Beckmann and Hark (2024) found that the U.S. banking sector experienced negative market reac-

tions, as reflected in cumulative abnormal returns, following ChatGPTs launch in short-term. Empir-

ical evidence indicates that disruptive technologies often have significant impacts on traditional in-

dustries, potentially leading to market turbulence and systemic risks (Arenas et al., 2023; Danneels,

2004). Similarly, the potential widespread adoption of GenAI tools in the financial system could

also heighten operational risks, including market concentration (Aghion et al., 2018), increased in-

terconnectedness among firms (Fernández, 2019), and risks tied to institutions deemed “too big to

fail” (Leitner et al., 2024). Thus, the sudden and unforeseen emergence of ChatGPT at the end of

2022 has generated significant attention in financial markets. In the rest of this section, we focus on

exploring the short-term impact of GenAI technologies on systemic risk based on existing research

and gradually establish our hypotheses.

2.1 The formation of systmemic financial risks

The formation of systemic financial risks is an essential topic in financial economics, primarily

stemming from the high interconnectedness of financial institutions and the propagation of external

shocks within the system. Key drivers of systemic risk include asset price fluctuations, shifts in

market sentiment, and liquidity contractions (Bai et al., 2025; Salisu et al., 2022). Allen and Gale

(2000) summarized that the interbank credit market is a critical channel for risk transmission, where

a liquidity crisis at a single institution can rapidly spread through asset correlations and financial

networks, affecting the entire financial system. Adrian and Brunnermeier (2016) and Brunnermeier

et al. (2020) further highlighted that external shocks can propagate quickly within the financial sys-

tem through asset correlations, liquidity shortages, and information asymmetry, with the extent of

their impact varying depending on economic cycles and the specific characteristics of banks. In this
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context, the emergence of GenAI can be seen as a typical external shock, potentially affecting the

financial system through similar transmission mechanisms.

2.2 GenAI and information authenticity

Although GenAI can enhance the risk management capabilities of financial institutions and im-

prove operational efficiency, its widespread adoption can also introduce new challenges to the fi-

nancial industry, such as data privacy concerns and potential cybersecurity threats (Alawida et al.,

2024; Gupta et al., 2023; Wach et al., 2023). For example, GenAI models could be maliciously

exploited to compromise the information security of banking systems by embedding backdoors or

injecting malicious code. Additionally, such technologies could be used to spread false or synthetic

information, triggering market panic and disrupting investor behavior (Emett et al., 2024; Keeley,

2023). Given that defensive technologies and response mechanisms may still be insufficient in the

short term following the introduction of ChatGPT, such attacks could negatively impact the stability

of financial markets in the near future.

2.3 Regulation lag and risk management gaps

Regulatory gaps may exacerbate the vulnerabilities associated with the initial adoption of GenAI

technologies. Zetzsche et al. (2017) underscored that delays in regulation can increase uncertainty

within the financial system. In the case of ChatGPT and other GenAI technologies, the regula-

tory and supervisory framework remains underdeveloped, leaving banks without clear compliance

guidelines, thereby amplifying systemic risks (Remolina, 2024). Furthermore, GenAI relies on vast

datasets and complex machine learning models, increasing information asymmetry and system opac-

ity, which could hinder effective risk management.

2.4 Workforce structure and financial institutions

The sudden emergence of GenAI may pose significant challenges to workforce structures, in-

cluding those in the banking sector (Eisfeldt & Schubert, 2024). Unlike industrial robots that pri-
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marily replace routine tasks, AI often substitutes for tasks performed by high-skilled workers (Bloom

et al., 2024). David (2024) noted that AI has the potential to empower lower-skilled workers, en-

abling them to perform tasks traditionally conducted by high-skilled experts. Eisfeldt et al. (2023)

emphasized that when AI replaces core tasks rather than supplementary ones, shareholders typically

benefit from increased firm value, while high-skilled workers, especially those in the banking in-

dustry, may face stagnating wages or even job displacement. Several factors may drive GenAI to

bring about a similar trend. First, GenAI is expected to significantly enhance service efficiency,

such as by automating credit assessments and risk analysis, thereby reducing reliance on human la-

bor. Second, the high substitutability of administrative and clerical tasks makes banks more inclined

to adopt GenAI to reduce labor costs. Third, the widespread application of machine learning and

algorithmic tradings powered by GenAI may reduce the demand for analysts and traders, accelerat-

ing the automation of banking operations. Consequently, the benefits of adopting GenAI are likely

to flow mainly to capital owners, while high-skilled employees could see limited wage growth or

even job losses. This shift in income distribution favoring capital owners may exacerbate income

inequality, weaken middle-class purchasing power, and lead to declining market demand. Tian and

Nagayasu (2024) pointed out that such economic instability could further erode consumer confidence

and worsen market expectations, thereby amplifying financial system vulnerabilities and increasing

systemic risk.

Furthermore, the adoption of GenAI forces financial institutions to undergo significant struc-

tural reforms, potentially exacerbating systemic risks. Deploying GenAI often requires substantial

investments in technological infrastructure and workforce reskilling (Babina et al., 2024). During

this transition phase, banks with varying levels of technological readiness face differing degrees

of operational and financial pressures. Institutions lacking sufficient AI capabilities may experi-

ence increased liquidity constraints and operational disruptions as they attempt to adapt to these

advancements (Vives, 2019). Such asymmetries in preparedness could worsen systemic financial

risks, particularly during periods of market stress.

Therefore, we conjecture that even though GenAI has the potential to improve efficiency and

productivity, its sudden adoption also introduces risks that could destabilize China’s financial sys-
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tems if not managed carefully, especially in the early stage. We thus propose the following research

hypothesis.

Hypothesis: The launch of ChatGPT, as a representative breakthrough in GenAI, will signifi-

cantly increase the systemic risk of Chinese banks in the short term.

3 Research Design

This section introduces the proxy for financial systemic risk and a statistical method to evaluate

the short-term impact of ChatGPT. We describe the data used herein and present the preliminary

evidence of a significant change (i.e., discontinuity) in the data around the cut-off point determined

by the timing of ChatGPT introduction.

3.1 Financial systemic risk

While researchers have advocated several pragmatic definitions and measures of financial sys-

temic risk, we primarily follow one of the most recognized measures, ∆CoVaR, developed by Adrian

and Brunnermeier (2016). ∆CoVaR quantifies the change in the value at risk (VaR) of the entire fi-

nancial system when a particular institution is in distress compared with when it is in its normal state.

It relies primarily on the conditional VaR (CoVaR), which refers to the VaR of the entire financial

system conditional on a specific institution in a particular state (q). To illustrate, we start by defining

the VaR of bank i at time t, along with the CoVaR of the financial system (sys) conditional on bank i:

P
(
X i

t ⩽VaRi
q,t
)
= q, P

(
Rs

t ⩽CoVaRsys|X i

q,t |X i
t = VaRi

q,t

)
= q, (1)

where Rs
t and X i

t represent the return of the system and bank i, respectively. In simple terms, CoVaR

reflects the tail-dependency between the entire financial system and a specific bank. Considering the

asymmetric effect on the returns’ volatility shift, we assume that (Rs
t ,X

i
t ) follow a bivariate dynamic

conditional correlation–generalized autoregressive conditional heteroskedasticity (DCC–GARCH)

process. Appendix A.1 provides the formal definitions of the DCC–GARCH model. The univariate
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volatility for the system and bank i are denoted by σ2
s,t and σ2

i,t , respectively. The dynamic correlation

between the system and bank i is denoted by ρsi,t . We use q = 5% to denote a distressed state and

q = 50% to denote a normal state. Then, ∆CoVaRsys|X i

q,t measures the change in the risk of the

financial system due to the distress of bank i at time t, as given by the formula

∆CoVaRsys|X i

q=5%,t =CoVaRsys|X i

q=5%,t −CoVaRsys|X i

q=50%,t .. (2)

Here, the system’s VaR conditional on bank i (CoVaRsys|X i

q,t ) is measured by

CoVaRsys|X i

q,t = ρsi
t

σ s
t

σi,t
VaRi

q,t +σ s
t

(
1−ρsi2

t

)1/2
G−1(q), (3)

where the parameters, ρsi
t ,σs,t and σi,t , from DCC-GARCH model, and G(·) is the conditional dis-

tribution of the system’s return. See more detailed derivations of (3) in Adrian and Brunnermeier

(2016).

It is worth noting that in Section 6, we perform a robustness check of our study using alternative

empirical methods to estimate CoVaR, specifically Quantile-based CoVaR (Q-CoVaR) and Copula-

based CoVaR (C-CoVaR). Furthermore, we include another widely used risk measure, Marginal

Expected Shortfall (MES) (Acharya et al., 2017).3

3.2 Data and methodology

Our sample comprises 42 banks listed on the Shanghai Stock Exchange and the Shenzhen Stock

Exchange. These banks constitute the CSI Bank Index (code: 399986). The complete alignment

between our sample banks and the index components ensures comprehensive coverage of China’s

listed banking sector. To examine the impact of ChatGPT’s launch (November 30, 2022) on systemic

risk, we use ∆CoVaR and the sample spans from October 19, 2022, to January 12, 2023, that is, a

±30-trading-day window around the event date. To construct the daily ∆CoVaR for each bank,
3We do not consider SRISK (Brownlees & Engle, 2017), a systemic risk measure that quantifies the expected capital

shortfall of an institution, conditional on prolonged and severe market declines. This exclusion is due to two key reasons.
First, our study relies on daily data for a relatively short period, whereas SRISK requires quarterly corporate financial
data. Second, the sample period lacks significant market downturns, making SRISK less suitable to capture systemic
capital shortfalls in this context.
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we employ a rolling window approach with ±3-month around the target date and using return data

from three months before and after each target date.4 The daily return data are calculated using the

closing price growth rate and comes from the CSMAR database. We specifically focus on a narrow

time frame (±30-trading-day) to capture the immediate market response to ChatGPT’s introduction

while minimizing confounding effects from other events. This short-run analysis is particularly

crucial for two reasons: First, it enables timely risk assessment and potential intervention; second,

it provides cleaner identification compared to medium-run windows, where multiple factors could

influence systemic risk measures.

Our benchmark analysis employs the RD model as it effectively capitalizes on the exogenous

shock of ChatGPT’s launch to precisely assess its immediate impact on the systemic financial risk

of Chinese banks. By focusing on the discontinuity around the event, the model effectively isolates

the effects of ChatGPT, ensuring robust causal inference. Specifically, banks’ systemic risk before

launch serves as the control group, while the risk after launch is used to create the treated group. As-

suming other conditions remain constant, a sudden and significant change in systemic risk after the

launch of ChatGPT, with continuity around other time points, suggests that this change is attributable

to the sudden emergence of GenAI.

The RD model provides a more precise measure of local average treatment effects and can effec-

tively minimize the influence of extraneous factors on the results. As noted in Hausman and Rapson

(2018) and Meng and Yu (2023), when using time as a cut-off point, we must consider that tempo-

ral variations in treatment effects may lead to biased RD estimates if not properly accounted for.5

Therefore, we employ a two-step regression approach following Greenstone et al. (2022) and Meng

and Yu (2023). First, we residualize the dependent variable on a series of control variables and fixed

effects, and then use the residual of financial systemic risk as the dependent variable and regress it

on the RD indicator. In detail, the first step is

4For instance, the ∆CoVaR calculation for October 19, 2022, incorporates return data from July 19, 2022, to January
19, 2023.

5Hausman and Rapson (2018) referred to the RD design with time as the running variable as RDiT (RD in time). As
documented in their review, RDiT has been widely used in empirical research. For example, Anderson (2014) applied
RDiT to estimate the effects of transit strikes using the days from the onset of the strike as the running variable. Similarly,
Bento et al. (2014) used RDiT to evaluate the impact of the Clean Air Vehicle Sticker policy on travel time with date of
policy as the running variable and suggested that RD with time could serve as an alternative research design when the
construction of appropriate control groups proves challenging.
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∆CoVaRi,t = β0 +β1ConVarsi,t +ρi +ωd +θm + γim + εi,t , (4)

where i indexes banks, t denotes trading dates, and m represents months. ConVarsi,t is a vector

of daily control variables that captures broader financial conditions and market environment: the

three-month Treasury yield as a proxy for market spread, the difference between the one-year AAA

corporate bond rate and China’s one-year Treasury yield to capture market credit risk, the term spread

(10-year Chinese Treasury yield minus three-month Chinese Treasury yield) to control for economic

cycles, the percentage change in bank market value, and a dummy variable to capture the impacts

from the relaxation of COVID-19 epidemic on December 7, 2022. These variables are summarized

in Table 1. This table also reports p values of the Levin–Lin–Chu (LLC) panel unit root test with

a time trend, suggesting that the data are stationary. We further add fixed effects. ρi captures bank

fixed effects, θm controls for month fixed effects, ωd is for weekday fixed effects, and γim represents

bank-by-month fixed effects to account for any time-varying bank characteristics such as financial

conditions and unobserved heterogeneity in banks’ risk exposure over time. These fixed effects help

us control for bank-specific seasonality patterns in risk measures, varying regulatory requirements

across banks and periods, potential differences in banks’ business cycle sensitivity, and changing

financial market conditions that might heterogeneously affect banks.

After controlling for the various factors in Equation (4), we perform the RD analysis on the

residual systemic risk measure. The second stage regression can be expressed as

∆CoVaRi,t − ̂∆CoVaRi,t = α0 +α1D (t ≥ChatGPT i,t)+α2 f (t −ChatGPT i,t)

+α3D (t ≥ChatGPT i,t)× f (t −ChatGPT i,t)+ηi,t .
(5)

Here, ∆CoVaRi,t − ̂∆CoVaRi,t represents the residual systemic risk after removing the effects of

control variables and the fixed effects from Equation (4). D (t ≥ChatGPT i,t) is a dummy variable

that equals 0 before ChatGPT’s launch, and 1 after it. The coefficient α1 is of interest as it indicates

whether an immediate discontinuity exists due to the launch of ChatGPT. The term t −ChatGPT i,t

represents the distance in time from the event date, and f (t −ChatGPT i,t) is a polynomial function
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that controls differences before and after the launch date.

[Table 1 about here.]

3.3 Statistics and RD plots

Table 2 presents the summary statistics for the key variables. The sample consists of 2,562

bank-day observations and is strongly balanced (42 banks×61 days = 2,562). Of particular interest

are our risk measures. The ∆CoVaR has a mean of 0.013, with a substantial variation measured

by the standard deviation of 0.006. Its distribution exhibits positive skewness and excess kurtosis,

showing a heavy right-tail characteristic indicating more frequent extreme positive values than that

expected in a normal distribution. After controlling for various factors, the residual ∆CoVaR is

centered at zero by construction and shows even more pronounced heavy-tailed characteristics, with

a high kurtosis around 5 and positive skewness around 0.4. This leptokurtic distribution suggests

that extreme systemic risk events still exist even after removing the influence of market conditions

and bank characteristics, with the residuals showing a strong tendency for positive outliers.

[Table 2 about here.]

Before we employ the nonparametric estimation for the RD model with the residual of ∆CoVaR

as the dependent variable, we first determine any discontinuity in residual ∆CoVaR over time. Fig-

ure 1 presents the RD plots with different polynomial functions, where Figure 1a uses a first-order

polynomial, and Figure 1b uses a second-order polynomial. In both subplots, we observe a sig-

nificant increase in the residual ∆CoVaR value after the launch of ChatGPT in the short run. This

suggests that the introduction of ChatGPT has an immediate and notable impact on the systemic risk

captured by ∆CoVaR. To ensure the validity of the RD design, we also verify that covariates exhibit

no significant jumps at the cut-off point. This verification ensures that the observed discontinuity

in residual ∆CoVaR is not driven by systematic differences in covariates around the cut-off, which

supports causal inference. The RD plots of other covariates are shown in Figure A.1, and we find

that the discontinuities at the cut-off are not statistically significant at the 5% level.

[Figure 1 about here.]
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4 Benchmark Results

We now perform global polynomial RD regressions, which measure the overall trend of the de-

pendent variable across the entire data range by fitting high-order polynomials to capture nonlinear

features at the cut-off point. Unlike local polynomial RD, global polynomial regression uses obser-

vations from the entire sample period rather than just around the discontinuity in order to estimate

the treatment effect. Specifically, we set the bandwidth to 30 days on each side, including all obser-

vations within this window. Table 3 reports the estimation results for different polynomial orders and

kernel functions, with residual ∆CoVaR as a dependent variable. The z-statistics and bias-corrected

p values show that the effects of RD are statistically significant at the 5% level. Considering column

1, the RD estimate of 0.0025 indicates that, following ChatGPT’s launch, market systemic risk in-

creased significantly by around 0.4 standard deviation of ∆CoVaR (0.0025/0.006 ≈ 0.42). This is a

noteworthy phenomenon, as it reflects a substantial increase in interconnectedness and potential con-

tagion risk among banks after ChatGPT’s launch. It also highlights the market volatility triggered by

ChatGPTs introduction and the profound impact of technological innovation on the financial system.

[Table 3 about here.]

However, global polynomial regression may be sensitive to the data distribution far from the cut-

off point. To further validate this finding and improve the robustness of the analysis, we employ the

local polynomial regression method, which focuses on data near the cut-off point to more accurately

capture the short-term effects of ChatGPT’s launch on systemic financial risk. Table 4 presents

the results of these local polynomial RD regressions. We use the bandwidth selection method of

Calonico et al. (2014), employing both the mean square error optimal bandwidth selector (MSE)

and the coverage error rate (CER). Besides, Gelman and Imbens (2019) highlights that high-order

polynomials should be avoided in the RD setting due to their instability. Following Fu and Gu

(2017), we adopt a low-order polynomial, specifically a linear local and quadratic specification. The

results for higher-order polynomials are reported in Table A.1.

As shown in Table 4, generally speaking, the local polynomial RD effect is close to the global

RD effect in Table 3. The RD estimates are slightly larger with quadratic polynomial regressions
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in Table 4a and smaller with linear regressions in Table 4b. All estimates are significant at the

5% level, except in columns 4 and 5, where they are significant at the 10% level. We observe no

notable change in significance before and after bias adjustment, indicating robustness. The optimal

bandwidth varies with different settings; however, the choice of bandwidth selection method does

not heavily affect estimated RD effects, as evidenced by the similarity between the results in columns

1 and 4, 2 and 5, as well as columns 3 and 6. We also use three kernel functions to construct the

local polynomial estimators, namely, triangular, epanechnikov, and uniform, and the RD effects

are close to each other. Thus, the RD results are relatively insensitive to bandwidth selection and

exhibit strong consistency and robustness across different kernel functions. That is, local polynomial

models effectively capture the distributional characteristics near the cut-off point, further supporting

the conclusion that the launch of ChatGPT had a significant causal impact on systemic financial risk.

[Table 4 about here.]

Using time as the running variable may pose challenges. For example, while the dependent

variable in our analysis is the residual ∆CoVaR, which accounts for and removes seasonal variations,

unobserved factors tied to time that could influence systemic risk, such as year-end effects. To

address these concerns, following Fu and Gu (2017), Xue et al. (2023), and Persson and Rossin-

Slater (2024), we implement the RD-DID design, comparing changes over the same calendar period

across different years, thus controlling for potential time-related biases and ensuring a more robust

causal inference. We center the analysis around November 30, 2021, using the 30 trading days before

and after this date as the control group (treati,y=2021 = 0), and the 30 trading days before and after

November 30, 2022, as the treatment group (treati,y=2022 = 1).6 The event date is the month and

day of ChatGPTs launch. We denote the dummy variable D(t ≥ c) based on c, where c represents

November 30. Referring to Persson and Rossin-Slater (2024), the following model is constructed:

6The time range for the year prior to the event spans from October 19, 2021, to January 12, 2022. For simplicity, we
uniformly represent it as y = 2021.
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∆CoVaRity − ̂∆CoVaRity = β0 +α0treatiy +α1D(t ≥ c)+α2treatiy ×D(t ≥ c)

+α3D(t ≥ c)× f (t − c)+α4 f (t − c)+ εity,
(6)

where i denotes banks, t represents dates, and y refers to a year (2021 or 2022). We calculate the

financial systemic risk of banks in 2021 using the same methodology as that elaborated in Section 3.

Residual ∆CoVaR is then derived from Equation (5). α2 is the coefficient of interest, capturing the

effect of ChatGPTs launch on systemic risk. f (t − c) is a flexible function of the running variable,

the day centered around November 30.

[Table 5 about here.]

Table 5 documents the results of the RD-DID method. The comparison focuses on differences in

systemic risk before and after the event within 30 trading days in 2022, relative to the corresponding

period in 2021. This table shows that the magnitude and significance of the coefficient treatiy ×

D(t ≥ c) remain consistent across different polynomial orders. In all regressions, the coefficient

is significantly positive at the 1% level, indicating that the launch of ChatGPT has a robust and

statistically significant positive effect on systemic financial risk. Thus, the intervention introduced

by ChatGPTs deployment increased the vulnerability of the financial system, captured by the residual

∆CoVaR. The consistency of the results across polynomial orders further supports the stability of

this finding and reduces concerns about model specification biases.7

5 Heterogeneous Results

Thus far, we have presented evidence of an increase in systemic risk immediately following the

introduction of ChatGPT in the banking sector. This section replicates the analysis while accounting

for heterogeneity among banks. Generally, as summarized below, we observe a similar effect of

7To further verify whether there is a discontinuity at the November 30, 2021 cut-off, we plot the RD effect and
corrected p values for 2021 in the Figure A.2. The p values exceed 0.05, confirming no significant effect of RD at the
cut-off point of 2021. Parallel trends and dynamic policy effect graphs are included in the Figure A.3 for robustness
checks.
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ChatGPT across different groups of banks, although some interesting but often insignificant discrep-

ancies exist in their responses.

5.1 Bank types

Different types of banks, such as state-owned, city commercial, and rural commercial banks,

may exhibit varying levels of systemic risk and responses to external shocks, such as the launch

of ChatGPT. These differences stem from operational focus, customer base, market exposure, and

regulatory environment. For example, state-owned banks typically have more stable funding struc-

tures and stronger government backing, whereas rural commercial banks may be more vulnerable to

market fluctuations and external disruptions.8

Table 6a presents the results of the heterogeneity analysis by bank types. We follow the approach

of Cleary (1999) and Lu et al. (2019) to compute the empirical p values for the differences between

the groups. Specifically, we use a bootstrap resampling method with 100 iterations to generate

a series of empirical samples, which are then grouped to obtain the empirical distribution of the

differences in regression coefficients between groups. The results are presented in the final row

of the table. State-owned banks in column 1 have fewer RD effects, with rural commercial banks

having the largest impact. The difference in the coefficients of effect of RD between columns 1 and

2 is −0.0008, with the empirical p value (in parentheses) being 0.360. Thus, while the systemic risk

of city commercial banks is higher for GenAI, the result is not statistically significant. Comparing

columns 1 and 3, the difference in the coefficients of the RD effect between state-owned banks

and rural commercial banks is −0.0019, with a corresponding empirical pvalue of 0.030. This

result is consistent with the expectation that state-owned banks benefit from more stable funding

structures and stronger government backing, which buffers them from short-term shocks. In contrast,

rural commercial banks exhibit significantly larger RD effects because they serve localized markets

with limited diversification and, as a result, are particularly exposed to tail risks during periods of

8The information about banks in this section, including bank types, state-owned shareholding ratio, nonperforming
loan ratio, and bank assets, all come from the CSMAR database. We further divide the sample into two groups based on
the median level of state ownership share: low and high. We obtain a similar result (Table A.4) that banks with lower
levels of government control are more exposed to systemic risk, with more significant discrepancies between the two
groups.
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technological transition.

5.2 Nonperforming loan ratios

Considering the potential influence of credit risk on systemic vulnerability, we further divide the

sample into two groups based on the median ratio of nonperforming loans (NPL) to total loans: the

low NPL group and the high NPL group. This classification allows us to examine whether banks

with higher credit risk are more susceptible to systemic shocks. The findings reported in Table 6b

reveal that the RD coefficients for the high NPL group (column 1) are higher than those for the low

NPL group (column 2). Although the difference in the RD coefficients between the high NPL group

(column 1) and low NPL group (column 2) is statistically insignificant based on the empirical p

value, the observed pattern remains consistent with expectations. The higher RD coefficient for the

high NPL group suggests that banks with higher NPL ratios experienced an increase in systemic risk

following the launch of ChatGPT. This finding implies that preexisting credit risk may exacerbate

the impact of disruptive technological shocks.

5.3 Bank size

To explore how bank size influences the impact of ChatGPT’s initiation on systemic financial

risk, we categorize the sample into two groups based on total assets: large banks and small banks.

Bank size can play a dual role in shaping the responses to systemic risk. On the one hand, larger

banks may face greater challenges in adopting new technologies because of their complexity and

rigid organizational structure. However, they typically have more resources, such as skilled talent

and advanced infrastructure, to support this transition. On the other hand, smaller banks may be more

flexible and adaptive during transformation but often lack the resources and expertise necessary to

fully capitalize on technological advancements. Table 6c presents the results of this analysis. The

difference between the two groups is reported in the last row, along with the empirical p value. The

findings show that the RD coefficients of large banks (column 2) are smaller than those of small

banks (column 1). The difference was 0.0010 with p value of less than 0.1. That is, while large
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banks benefit from their resource advantages, small banks face heightened systemic risk, possibly

because of their limited capacity to manage technological transformation challenges.

[Table 6 about here.]

6 Robustness Checks

Given the findings in the previous section that immediate responses to ChatGPT are often statisti-

cally homogeneous among banks, we perform several robustness checks from different perspectives.

These robustness checks cover the validity of our a priori assumptions in the RD estimation and the

unobservable definition of systemic financial risk.

6.1 Donut hole test

The first robustness check is the donut hole test, which considers the potential biases introduced

by observations around the cutoff point. These biases could arise from data irregularities such as

noise, measurement errors, or the strategic behavior of market participants. Although we assume

that the launch of ChatGPT is an exogenous shock, some investors may have anticipated its launch

and reacted accordingly. This raises the potential for manipulation near the cutoff value. We adopt

the donut hole test, as in Barreca et al. (2011) to address this issue.

Figure 2 plots the results of the robustness check using the donut hole test for different trading-

day exclusions around the cut-off. Specifically, we first determine the optimal bandwidth using the

MSE criterion and perform the analysis sequentially, excluding observations within 1%, 5%, 10%,

15%, and 25% of the trading days around the cutoff using the triangular kernel. The leftmost vertical

line in the figure represents the baseline regression (column 1 in Table 4a), and the subsequent

points from left to right show the point estimates and 95% confidence intervals after excluding

observations within the varying percentages of trading days. In Figure 2, the estimated RD effect

remains positive and the confidence intervals across all specifications consistently exclude zero. The

estimates are comparable to those from the baseline regression without any exclusion. These results

suggest that the estimated RD effects are robust when observations close to the cut-off value are
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excluded. The positive jump in systemic risk resulting from ChatGPT’s launch is not driven by

potential manipulation or anomalies immediately around the cutoff, further reinforcing the validity

of our findings.

[Figure 2 about here.]

6.2 Placebo test

To further validate the robustness of our results, we perform an additional analysis using false

policy discontinuities. By introducing these artificial cut-offs, we examine whether the observed RD

effects are specific to the actual cutoff value. Specifically, we assume that ChatGPT was launched

three, five, and seven trading days after the actual launch date, and three, five, and seven trading days

before the actual launch date.

Figure 3 reports the results of the placebo tests, assuming that the policy intervention occurred

on different dates. The leftmost point represents the result of the baseline regression, followed by

the estimates and corresponding 95% confidence intervals for fake policy cut-offs occurring seven

trading days before (−7), five days before (−5), three days before (−3), three days after (+3),

five days after (+5), and seven days after (+7) the actual launch date. Except for the baseline

regression result, the confidence intervals for all other placebo estimates include zero, indicating

that the observed effects are not statistically significant at the 5% level when these false cut-offs

are applied. This supports our initial findings, confirming that the identified significant effects are

specific to the actual intervention date, corresponding to the launch of ChatGPT.

[Figure 3 about here.]

6.3 Bandwidth sensitivity

We conduct a sensitivity test for the bandwidth selection, considering that the choice of band-

width may affect the robustness of the RD estimates. The bandwidth determines the range of obser-

vations on either side of the cutoff, directly influencing the estimated effect and significance level.

If the bandwidth is chosen incorrectly, the results may depend heavily on a specific subset of data,

18



thereby undermining the credibility of the analysis. A sensitivity analysis of the bandwidth selection

ensures the robustness of our findings.

Specifically, we scale the MSE-optimal bandwidth by factors of 0.5, 0.75, 1.25, 1.5, and 1.75 to

assess the sensitivity of the RD estimates to variations in bandwidth selection. The results obtained

using these scaled bandwidths and the optimal bandwidth are plotted sequentially from left to right

in Figure 4. Each point represents the RD estimate accompanied by a corresponding 95% confi-

dence interval. RD point estimates remain consistent with the baseline regression for all bandwidth

specifications, indicating that the observed treatment effect is not sensitive to changes in the sample

inclusion range. Importantly, the 95% confidence intervals for all estimates consistently excluded

zero, thus reinforcing the statistical significance of the results. These findings demonstrate that the

magnitude and significance of the RD estimates remain stable even when the bandwidth is either

substantially narrowed or widened.

[Figure 4 about here.]

6.4 Alternative measures

To further ensure the robustness of our findings, we employ three alternative measures of fi-

nancial systemic risk: Q-CoVaR, C-CoVaR, and MES following Adrian and Brunnermeier (2016),

Mensi et al. (2017), Acharya et al. (2017), Brownlees and Engle (2017), and Cincinelli et al. (2022).

The Q-CoVaR focuses on how the risk profile of the entire financial system changes when a specific

institution moves from its normal state to a stressed state by leveraging quantile regression. The

C-CoVaR enhances systemic risk measurements by incorporating copula functions to model the de-

pendency structure between individual institutions and financial systems. Unlike traditional methods

that assume linear relationships, the copula approach captures complex nonlinear dependencies and

joint tail behaviors. The MES measures an individual institutions expected losses when the financial

system is in distress. By focusing on conditional losses during systemic crises, the MES provides

insight into the extent to which each institution contributes to systemic vulnerability under extreme

market conditions.
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Table 7 presents the results obtained using these alternative measures, where the dependent vari-

able is the residual systemic risk values derived from Equations (4) and (5). The RD estimation

adopts a linear specification with a triangular kernel and the bandwidth selected based on the MSE

criterion. The higher-order estimates and results obtained using alternative kernels are presented in

Table A.2. The robust p values for the RD effect are consistently below 10%: The identified causal

relationship between the intervention (e.g., ChatGPT’s launch) and systemic financial risk is statis-

tically significant and robust to the choice of systemic risk measurement methods. These findings

underscore the reliability of our results and highlight the consistent impact of the intervention on the

various methodological frameworks.

[Table 7 about here.]

6.5 Different sample ranges

The baseline regression uses a sample range of 60 trading days before and after the cutoff. To

test the robustness of our results, we change the sample range. Specifically, we use 20, 40, 50, and

60 trading days before and after the cutoff as alternative sample ranges. The motivation for this

approach is to examine whether the RD estimates are sensitive to including data further away from

the cutoff, as data further from the threshold may introduce noise or bias in the estimates due to

changing market conditions and extra shocks.

Table 8 presents the results using different sample ranges, with the dependent variable being the

residual ∆CoVaR. The estimated RD coefficients remain consistent with the baseline regression and

are robust across all sample ranges. Moreover, the robust p values for all the estimates are below

0.05. Thus, the choice of sample range does not drive the RD effect and is robust to variations in

the observation window length. This finding further supports the validity of the causal relationship

between interventions and systemic financial risk.

[Table 8 about here.]
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7 Mechanism

One potential mechanism underlies the challenges that banks face during their transitions, partic-

ularly because they are encouraged to adopt more AI-related technologies. Specifically, if ChatGPT

accelerates banks adoption of AI-driven tools, it may increase systemic financial risk, especially

during the transition period (Arenas et al., 2023; Palmié et al., 2020). This is because the integration

of AI solutions often requires substantial adjustments to business operations, which can exacerbate

short-term vulnerabilities. If this hypothesis holds, then institutions with limited prior experience in

AI adoption are likely to encounter higher risks following the launch of ChatGPT.

Although existing research suggests that adopting AI technologies in the financial sector can

mitigate risks through improved credit assessment and operational efficiency, the initial phase of

disruptive innovation, particularly during the immature stages of adoption, may lead to increased

tail risks. Advanced AI systems, such as those inspired by ChatGPT, may introduce unanticipated

challenges, including technical failures, data privacy concerns, and operational complexities. More-

over, institutions with a stronger focus on AI adoption are better positioned to adapt to the evolving

market landscape and to deploy such tools more effectively. By contrast, banks that have paid less

attention to AI-related tools face greater pressure to catch up, potentially leading to a more turbulent

transition process (Vives, 2019). This divergence in adaptation speed could amplify systemic risks

by creating an uneven playing field within the financial system.

To investigate whether the business transformation associated with banks adoption of AI tech-

nologies serves as a channel through which ChatGPT increases financial systemic risk in the short

term, we focus on the potential risks inherent in this transformation process. The integration of AI

technologies often requires significant organizational adjustments, which may exacerbate short-term

vulnerabilities and operational risks. To test this mechanism, we conduct a textual analysis of banks

annual reports. We calculate the average frequency of AI-related keywords over the three years prior

to the event from 2019 to 2021 for each bank to ensure consistency and reduce the impact of annual

fluctuations.

Based on these values, we classify banks into high- and low AI-related focus groups using the
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median, tertiles, and quartiles as thresholds. We then perform RD estimations separately for each

group. If the effect of RD is significantly greater for banks in the high AI-related group, indicating

that institutions less prepared for AI adoption face greater risks during the transition period, this

would validate our hypothesis that the transformation risks associated with AI adoption are a critical

mechanism through which ChatGPT increases systemic risk in the short term.

[Table 9 about here.]

Table 9 presents the results of the mechanism analysis. Columns 1 and 2 divide the sample into

the top 50% (high AI-related) and bottom 50% (low AI-related) based on the median frequency of

AI-related keywords. Columns 3 and 4 categorize banks into high, medium, and low AI-related

focus groups, with the top third (above the 67th percentile) representing high AI-related banks and

the bottom third (below the 33rd percentile) representing low AI-related banks. Columns 5 and 6

divide banks into quartiles, with the top 25% (above the 75th percentile) classified as high AI-related

and the bottom 25% (below the 25th percentile) classified as low AI-related. A comparison of the

two columns within each sub-column reveals that the RD effect is consistently larger for the low AI-

related group and statistically significant at the 5% level, whereas the high AI-related group shows

a significant but smaller value, equal to approximately half of the low AI-related group. Comparing

columns 1, 3, and 5, we observe that the RD effect increases as AI-related focus decreases.

8 Conclusion

This study investigates the implications of the systemic financial risk of ChatGPT’s launch in the

Chinese banking sector, and offers significant insights into how disruptive technologies influence

financial stability. Using RD and RD-DID methodologies, we find that the introduction of ChatGPT

leads to a marked short-term increase in systemic risk, as evidenced by a significant increase in

∆CoVaR values. This underscores the potential of GenAI technologies to increase interconnectivity

and risk spillovers among financial institutions during their initial deployment phases. The main

conclusions were robust across multiple dimensions. Through robustness checks, including placebo

tests, donut hole tests, alternative systemic risk measures (e.g., Copula-based CoVaR, MES), and
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varying sample windows, our results consistently reveal that ChatGPT’s launch has a causal and

significant impact on systemic financial risk.

A heterogeneity analysis further uncovers disparities in how different types of bank experience

increase systemic risk. Although such discrepancies are often statistically insignificant, smaller

banks, rural commercial banks, and banks with higher nonperforming loan ratios tend to exhibit

greater susceptibility, likely due to limited resources and higher baseline vulnerabilities. By con-

trast, large state-owned banks with stronger financial buffers and government backing are shielded

from these risks. These findings emphasize the importance of tailoring risk-mitigation strategies to

specific bank characteristics, ensuring that weaker institutions receive targeted support.

Finally, our mechanism analysis reveals that the observed increase in systemic risk is closely

related to the transitional challenges banks face when adopting advanced AI technologies. This

indirect effect is evidenced by the fact that banks with lower readiness to adopt AI or weaker tech-

nological capacity are disproportionately affected, facing higher operational and adjustment costs.

This highlights the economic importance of reducing technological disparities between institutions,

as smoother transitions improve the stability of individual banks and mitigate the risk of contagion

within the financial system. These findings have significant political implications for future studies.

Although GenAI has immense potential for improving operational efficiency, its deployment must

be accompanied by safeguards to mitigate transitional vulnerabilities. Regulatory authorities should

encourage financial institutions to strengthen their technological infrastructure and risk-management

capabilities to better accommodate such innovations. Furthermore, policies promoting the equitable

adoption of AI in banks of different sizes and ownership structures could reduce systemic disparities

and improve overall financial resilience.
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Figures
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(b) Quadratic polynomial

Note: The optimal number of bins was chosen based on a data-driven process using the integrated mean-squared
error-optimal evenly spaced method with spacing estimators. The global polynomial order for Figure 1a is 1, and for
Figure 1b is 2. Standard errors are clustered at the bank level using a triangle kernel function.

Figure 1. RD Plots of Residual ∆CoVaR
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Figure 2. Results of Donut Hole test
Note: This figure plots the results of the Donut Hole test, showing RD local non-parametric estimates and their cor-

responding 95% confidence intervals after excluding portions of the sample around the cut-off. From left to right, the
results represent the baseline estimates after excluding 1%, 5%, 10%, 15%, and 25% of the sample. A linear specifi-
cation with a triangular kernel is used for the RD estimation. The bandwidths are selected based on the MSE criterion.
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Figure 3. Results of Placebo Test
Note: This figure presents the results of the placebo tests, where we introduce artificial cut-offs to examine

whether the observed RD effects are specific to the actual intervention date (the launch of ChatGPT). The leftmost
point represents the baseline regression result using the actual cut-off, while the subsequent points correspond to
placebo tests assuming the policy intervention occurred seven trading days before (-7), five trading days before (-5),
three trading days before (-3), three trading days after (+3), five trading days after (+5), and seven trading days af-
ter (+7). Each point shows the RD estimate with the corresponding 95% confidence interval. A linear specification
with a triangular kernel is used for the RD estimation. The bandwidths are selected based on the MSE criterion.
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Figure 4. Results of Bandwidth Sensitivity
Note: This figure illustrates the sensitivity of the RD estimates to bandwidth selection. The horizontal

axis represents the scaling factor applied to the MSE-optimal bandwidth, ranging from 0.5 to 1.75. Specif-
ically, “0.5MSE” indicates that the bandwidth used is 50% of the MSE-optimal bandwidth, while “0.75MSE,”
“1.25MSE,” “1.5MSE,” and “1.75MSE” indicate 75%, 125%, 150%, and 175% of the MSE-optimal bandwidth, re-
spectively. The leftmost point represents the baseline regression result using the MSE-optimal bandwidth. Each
point shows the RD estimate with the corresponding 95% confidence interval. A linear specification is used
for the RD estimation with a triangular kernel. The bandwidths are selected based on the MSE criterion.
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Tables

Table 1. Control Variables Used in Equation (4)

Variables Definition Frequency Data source Unit-root test (p value)
Y3MChina three-month Treasury yield, indicating market spread Daily CEIC 0.0000
Credit one-year AAA corporate bond rate minus China’s one-year Trea-

sury yield, indicating credit risk
Daily CEIC 0.0000

CycChina 10-year Chinese Treasury yield minus three-month Chinese Trea-
sury yield, indicating economic cycle

Daily CEIC 0.0000

MV Bank market value growth rate Daily CSMAR 0.0000
COVID19 Set to 1 if the date is December 7, 2022, or later; otherwise 0 Daily - -

Note: The unit-root test is conducted using LLC, incorporating both a time trend and the removal of individual fixed
effects since our data is panel data. We report the p value in the of the LLC test.
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Table 2. Descriptive statistics

Obs. Mean SD Min p50 Max Kurtosis Skewness
Y3MChina 2,562 1.938 0.191 1.617 2.022 2.220 1.591 -0.369
Credit 2,562 0.510 0.138 0.274 0.522 0.796 2.114 -0.089
CycChina 2,562 0.868 0.135 0.633 0.840 1.091 1.668 0.035
MV 2,562 0.000 0.014 -0.097 0.000 0.095 8.802 0.739
COVID19 2,562 0.426 0.495 0.000 0.000 1.000 1.089 0.298
∆CoVaR 2,562 0.013 0.006 0.003 0.012 0.032 4.672 1.248
Residual∆CoVaR 2,562 0.000 0.002 -0.005 0.000 0.006 5.341 0.433

Note: This figure presents the descriptive statistics of the variables. All continuous variables are winsorized at the
1% and 99% levels to mitigate the influence of extreme values and confirmed to be free of unit roots. ∆CoVaR is the
dependent variable in Equation (4), while Residual∆CoVaR is the dependent variable in Equation (5).

29



Table 3. Global Polynomial RD Estimation

(1) (2) (3) (4) (5) (6)
Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR

RD effect 0.0025 0.0025 0.0027 0.0027 0.0025 0.0025
(8.089) (8.552) (5.540) (5.537) (4.489) (4.482)

Robust p-value 0.000 0.000 0.000 0.000 0.000 0.000
Order 1 1 2 2 3 3
Kernel Triangular Epanechnikov Triangular Epanechnikov Triangular Epanechnikov
Obs. 2,562 2,562 2,562 2,562 2,562 2,562

Note: This table reports the results of global polynomial RD effects. The values in parentheses are unadjusted z-
statistics. “Robust p values” are calculated using bias-corrected standard errors following Calonico et al. (2017). order
denotes the order of the global polynomial, and Kernel represents the kernel function. Standard errors are clustered at
the bank level.
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Table 4. Local Polynomial RD Estimation

(a) Linear Polynomial

(1) (2) (3) (4) (5) (6)
Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR

RD effect 0.0025 0.0024 0.0025 0.0026 0.0026 0.0030
(5.102) (4.911) (4.701) (4.883) (4.847) (5.343)

Robust p-value 0.000 0.000 0.000 0.000 0.000 0.000
Order 1 1 1 1 1 1
Kernel Triangular Epanechnikov Uniform Triangular Epanechnikov Uniform
Bandwidth selector MSE MSE MSE CER CER CER
Obs. 2,562 2,562 2,562 2,562 2,562 2,562
Bandwidth 10.79 9.81 6.62 8.65 7.86 5.31
Eff # of left 420 378 252 336 294 210
Eff # of right 462 420 294 378 336 252

(b) Quadratic Polynomial

(1) (2) (3) (4) (5) (6)
Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR

RD effect 0.0032 0.0029 0.0021 0.0027 0.0027 0.0035
(4.497) (4.336) (3.553) (3.635) (3.581) (4.860)

Robust p-value 0.001 0.000 0.000 0.067 0.067 0.050
Order 2 2 2 2 2 2
Kernel Triangular Epanechnikov Uniform Triangular Epanechnikov Uniform
Bandwidth selector MSE MSE MSE CER CER CER
Obs. 2,562 2,562 2,562 2,562 2,562 2,562
Bandwidth 7.58 10.16 12.35 5.88 5.47 6.53
Eff # of left 294 420 504 210 210 252
Eff # of right 336 462 546 252 252 294

Note: p denotes the order of the local polynomial, and h represents the bandwidth. The values in parentheses are
unadjusted z-statistics. “Robust p values” are calculated using bias-corrected standard errors following Calonico et al.
(2017). “Bandwidth” refers to the bandwidth used for the estimation of the regression function around the cut-off on
each side. The last two rows indicate the effective observations to the left and right of the cutoff, respectively. Standard
errors are clustered at the bank level using the uniform kernel function.

31



Table 5. Results of RD-DID

(1) (2) (3) (4)
Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR

D(t ≥ c) 0.0008∗∗∗ 0.0009∗∗∗ 0.0005∗∗ 0.0010∗∗∗

(9.827) (4.471) (2.689) (5.846)
treat -0.0001∗ -0.0001∗ -0.0001∗ -0.0001∗

(-1.772) (-1.772) (-1.771) (-1.771)
treat ×D(t ≥ c) 0.0003∗∗∗ 0.0003∗∗∗ 0.0003∗∗∗ 0.0003∗∗∗

(5.380) (5.379) (5.378) (5.378)
Order 1 2 3 4
F value 32.456 55.275 47.282 56.844
Adj R-squared 0.065 0.065 0.070 0.078
Obs. 5,002 5,002 5,002 5,002

Note: This table presents the RD-DID estimation results of ChatGPT’s impact on financial systemic risk. Bank 001227
(Lanzhou Bank) was excluded due to missing data for 2021, resulting in a total of 5,002 observations (41×61×2). “Or-
der” indicates the degree of f (t − c). Values in parentheses are t-statistics. Significance levels are reported as follows:
∗p < 0.10, ∗∗ p < 0.05, ∗∗∗p < 0.001. Standard errors are clustered at the bank level.

32



Table 6. Heterogeneous Analysis

(a) Bank Types

State-owned City commercial Rural commercial

(1) (2) (3)
Res∆CoVaR Res∆CoVaR Res∆CoVaR

RD effect 0.0016 0.0024 0.0036
(2.215) (4.080) (3.482)

Robust p-value 0.037 0.001 0.005
Order 1 1 1
Kernel Triangular Triangular Triangular
Bandwidth selector MSE MSE MSE
Obs. 366 1,586 610
Diff value [Empirical p-value] -0.0008[0.360] -0.0019[0.030]

(b) NPL ratio

Low NPL ratio High NPL ratio

(1) (2)
Res∆CoVaR Res∆CoVaR

RD effect 0.0022 0.0028
(3.047) (4.623)

Robust p-value 0.019 0.000
Order 1 1
Kernel Triangular Triangular
Bandwidth selector MSE MSE
Obs. 1,281 1,281
Diff value [Empirical p-value] -0.0006[0.160]

(c) Bank size

Small size Big size

(1) (2)
Res∆CoVaR Res∆CoVaR

RD effect 0.0031 0.0020
(4.145) (3.964)

Robust p-value 0.001 0.001
Order 1 1
Kernel Triangular Triangular
Bandwidth selector MSE MSE
Obs. 1,281 1,281
Diff value [Empirical p-value] 0.0010[0.070]

Note: This table presents the results of the heterogeneity analysis. The values in parentheses are unadjusted z-statistics.
“Robust p values” are calculated using bias-corrected standard errors following Calonico et al. (2017). A linear specifi-
cation with a triangular kernel is used for the RD estimation. The bandwidths are selected based on the MSE criterion.
Standard errors are clustered at the bank level. “Diff value” is the difference in RD effect between columns 1 and 2. The
corresponding empirical p value is shown in brackets based on bootstrap resampling (100 iterations).
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Table 7. Alternative Measures for Financial Systemic Risk

(1) (2) (3)
ResQ-∆CoVaR ResC-∆CoVaR ResMES

RD effect 0.0019 0.0020 0.0004
(2.710) (9.680) (3.186)

Robust p-value 0.031 0.000 0.004
Order 1 1 1
Kernel Triangular Triangular Triangular
Bandwidth selector MSE MSE MSE
Obs. 2,562 2,562 2,562

Note: This table documents results using different systemic risk measurements. Column (1)-(3) stand for Q-CoVaR,
C-CoVaR and MES, respectively. For the C-CoVaR, the optimal copula was determined according to Akaike informa-
tion criterion values of several copula candidates, with the Student’s t copula selected as the best fit. The MES was
calculated using a DCC–GARCH model, capturing dynamic conditional correlations among institutions and the market.
The values in parentheses are unadjusted z-statistics. “Robust p values” are calculated using bias-corrected standard er-
rors following Calonico et al. (2017). A linear specification with a triangular kernel is used for the RD estimation. The
bandwidths are selected based on the MSE criterion. Standard errors are clustered at the bank level.
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Table 8. Different Sample Ranges

(1) (2) (3) (4)
Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR

RD effect 0.0030 0.0025 0.0025 0.0026
(4.641) (5.075) (5.353) (6.464)

Robust p-value 0.000 0.000 0.000 0.000
Order 1 1 1 1
Kernel Triangular Triangular Triangular Triangular
Bandwidth selector MSE MSE MSE MSE
Sample range [-20, +20] [-40, +40] [-50, +50] [-60, +60]
Obs. 1,722 3,402 4,242 5,082

Note: This table documents the results of the RD estimation using different sample ranges around the cut-off. The
dependent variable is the residual ∆CoVaR. The sample ranges refer to the number of trading days before and after the
cut-off included in the analysis. For example, [-20, +20] indicates that the sample consists of 20 trading days before and
20 after the cut-off. The values in parentheses are unadjusted z-statistics. “Robust p values” are calculated using bias-
corrected standard errors following Calonico et al. (2017). A linear specification with a triangular kernel is used for the
RD estimation. The bandwidths are selected based on the MSE criterion. Standard errors are clustered at the bank level.
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Table 9. Mechanism Analysis

50th vs 50th 33th vs 67th 25th vs 75th

(1) (2) (3) (4) (5) (6)
Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR

RD effect 0.0031 0.0019 0.0037 0.0020 0.0043 0.0023
(3.860) (3.092) (3.838) (2.517) (4.481) (2.350)

Robust p-value 0.003 0.005 0.002 0.020 0.000 0.036
Order 1 1 1 1 1 1
Kernel Triangular Triangular Triangular Triangular Triangular Triangular
Bandwidth selector MSE MSE MSE MSE MSE MSE
Obs. 1,342 1,220 854 854 671 610

Note: This table documents the results of the mechanism analysis, examining the impact of ChatGPT on financial
systemic risk through banks’ transformation risks due to the adoption of AI technologies. The values in parentheses are
unadjusted z-statistics. “Robust p values” are calculated using bias-corrected standard errors following Calonico et al.
(2017). A linear specification with a triangular kernel is used for the RD estimation. The bandwidths are selected based
on the MSE criterion. Standard errors are clustered at the bank level.
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A Appendix For Online Only

A.1 DCC-GARCH model
This section presents the detailed descriptions of the DCC-GARCH model we mentioned in

Section 3.1. The log return of the daily closing prices of the CSI Bank Index (code: 399986) is used
as the system return of the financial market. We assume that the returns (Ri

t) of the financial system
and bank i follow a bivariate GARCH process with the DCC-GARCH specification (Engle, 2002).
Define a bivariate return Ri

t = (Rs
t ,X

i
t )

′. We have

Ri
t = ε i

t , ε i
t = Σ1/2

i,t zt , (7)

where zt follows the bivariate Student’s t distribution and Σi,t is the conditional covariance (co-
volatility) matrix of the error term ε t with the form:

Σi,t =

(
σ s2

t σ si
t

σ is
t σ2

i,t

)
= Di,tCi,tDi,t . (8)

Note that in (8), we assume the volatility of the system’s return, σ s2

t , and the volatility of bank i’s
return, σ2

i,t , both follow the standard GARCH(1,1) process. That is, for demeaned return X i
t ,

X i
t = εi,t , εi,t = zi,tσi,t , (9)

where zi,t follows i.i.d. Student’s t distribution and σi,t satisfies:

σ2
i,t = ωi +αiε2

i,t−1 +βiσ2
i,t−1. (10)

The GARCH(1,1) model of the system’s return Rs
t is defined in the same way. Returning to (8), Di,t

is a diagonal matrix with diagonal elements (σ s
t ,σi,t). Ci,t is the dynamic conditional correlation

matrix in the form of

Ci,t =

(
ρsi

t 1
1 ρ is

t

)
= diag(Qi,t)

−1/2Qi,tdiag(Qi,t)
−1/2,

where ρsi
t = ρ is

t denotes the correlation coefficients between the system and bank i at time t. Fur-
thermore, Qi,t has the following dynamic structure:

Qi,t = (1−a−b)Si + aη i,t−1η ′
i,t−1 + bQi,t−1, (11)

where η i,t = (Rs
t /σ s

t , X i
t /σi,t)′, Si is the unconditional covariance matrix of η i,t , and the DCC

coefficients satisfy a,b ⩾ 0, a+ b < 1. The model is then estimated by standard QMLE procedures.

A.2 Quantile-based CoVaR Method
We employ the standard quantile regression method to estimate CoVaR (Q-CoVaR), following

the methodology described in Adrian and Brunnermeier (2016). The quantile measure of CoVaRsys|X i

q,t
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is given by

CoVaRsys|X i

q,t = VaR
sys|X i=VaRi

q
q,t = α̂ i

q + β̂ i
qVaRi

q (12)

since the definition of value at risk implies that

CoVaRsys|X i

q,t = R̂s|X i

q = α̂ i
q + β̂ i

qX i, (13)

where the second equality means the system loss is predicted by the return of a particular bank i.
Note that in (12), VaRi

q is derived from the qth quantile of the losses of bank i. Subsequently, the
systemic risk attributable to the distress of bank i can be expressed as:

∆CoVaRsys|X i

q,t =CoVaRsys|X i

q,t −CoVaRsys|X i

50%,t = β̂ i
q(VaRi

q −VaRi
50%). (14)

A.3 Copula-based CoVaR Method
We follow a typical Copula-based CoVaR (C-CoVaR) approach applied in Reboredo and Ugolini

(2015) and Mensi et al. (2017). First, let us recall the definition of a bivariate copula. The joint
distribution FXY (x,y) of two continuous random variables X and Y can be represented using a copula
function C(u,v) :

FXY (x,y) =C(u,v), (15)

where u = FX (x) and v = FY (y) are the marginal distribution functions of X and Y , respectively. A
copula is, therefore, a multivariate function with uniform marginals that describes the dependence
structure between the two random variables. Next, with the definition of generalized CoVaR in
Girardi and Ergün (2013) that P

(
Rs

t ⩽CoVaRsys|X i

q,t |X i
t ⩽VaRi

α ,t

)
= q, we have

P
(

Rs
t ⩽CoVaRsys|X i

q,t , X i
t ⩽VaRi

α ,t

)
= qα . (16)

Then CoVaR can be written in terms of copulas as:

C
(

FRs
t

(
CoVaRsys|X i

q,t

)
,FX i

t

(
VaRi

α ,t
))

= qα ,

1−FRs
t

(
CoVaRsys|X i

q,t

)
−FX i

t

(
VaRi

1−α ,t
)
+C

(
FRs

t

(
CoVaRsys|X i

q,t

)
,FX i

t

(
VaRi

1−α ,t
))

= qα ,
(17)

where FRs
t

and FX i
t

denote the marginal distribution functions of Rs
t and X i

t , respectively. Given
a specific copula representation, the CoVaR then can be computed in a standard two-step proce-
dure. In the first step, for given q and α , we solve the above equations (17) to obtain the value
of FRs

t

(
CoVaRsys|X i

q,t

)
. In the second step, with the value of FRs

t

(
CoVaRsys|X i

q,t

)
, we can obtain the

CoVaR value as the quantile of the distribution of Rs
t by F−1

Rs
t

(
FRs

t

(
CoVaRsys|X i

q,t

))
. The generalized

∆CoVaR (Girardi & Ergün, 2013) is then calculated as

∆CoVaRsys|X i

q,t =
CoVaRsys|X i

q,t −CoVaRsys|X i

q=50%,t

CoVaRsys|X i

q=50%,t

. (18)
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Note that in this study, we evaluate seven widely used copula specificationsGaussian, Student’s t,
BB7, Clayton, Gumbel, Survival Clayton, and Survival Gumbelto find the best-fitting copula func-
tions based on the Akaike Information Criterion (AIC). The Student’s t copula is selected as the
optimal copula specification.

A.4 Marginal Expected Shortfall
We introduce an additional measure of systemic risk, Marginal Expected Shortfall (MES), as

proposed by Acharya et al. (2017) and extended by Brownlees and Engle (2017). In this study, MES
represents the expected return of bank i, conditional on the system experiencing a loss exceeding its
VaR at the q level. First, let us define Expected Shortfall (ES), which represents the expected loss
conditional on exceeding the VaR, as follows:

ESsys
t = Et−1(X i

t |Rs
t <VaRsys

q ) =
N

∑
i=1

wi
tEt−1(X i

t |Rs
t <VaRsys

q ), (19)

where wi
t is the weight of bank i in the system. The MES of bank i, which captures the systemic risk

contribution of bank i, is then given by:

MESi
t =

∂ESsys
t

∂wi
t

= Et−1(X i
t |Rs

t <VaRsys
q ). (20)

Following Brownlees and Engle (2011) and Brownlees and Engle (2017), we estimate MES
using a DCC-GARCH model, treating the returns of bank i and the system as a bivariate system.
This approach has been widely adopted in the literature, as evidenced by Idier et al. (2014), Benoit
et al. (2017) and Cincinelli et al. (2022). Building on the notations introduced in Section A.1, we
model the demeaned return processes for bank i and the system as follows:

Rs
t = σ s

t ηs
t , X i

t = σi,tηi,t = σi,tρ is
t ηs

t +σi,t(1−ρ is2

t )1/2ξi,t , (ηs
t ,ξi,t) ∼ F , (21)

where the disturbance shocks (ηs
t ,ξi,t) are independent and identically distributed over time, with

zero mean, unit variance, and no covariance. Notably, ξi,t is derived from a simple one-factor CAPM
model, allowing for a time-varying beta. This model is defined as: Xi,t = βi,tRs

t + vi,t , where βi,t =

σ is
t /σ s2

t and vi,t = σ v
i,tξi,t . MES can then be explicitly expressed as follows:

MESi,t−1 = Et−1(X i
t |Rs

t <VaRsys
q )

= σi,tEt−1(ηi,t |ηs
t <VaRsys

q /σ s
t )

= σi,tEt−1(ρ is
t ηs

t +(1−ρ is2

t )1/2ξi,t |ηs
t <VaRsys

q /σ s
t )

= σi,tρ is
t Et−1(ηi,t |ηs

t <VaRsys
q /σ s

t )+σi,t(1−ρ is2

t )1/2Et−1(ξi,t |ηs
t <VaRsys

q /σ s
t ).

(22)

Using the variance and correlation parameters estimated from the DCC-GARCH model, MES can
be easily calculated by averaging the two disturbance shocks across all instances that satisfy the
condition ηs

t <VaRsys
q /σ s

t as noted in Brownlees and Engle (2011).

A.5 Tables and Figures
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Figure A.2. RD Plots of Residual ∆CoVaR with Cutoff in November 30, 2021
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Table A.1. Local Polynomial RD Estimation

(a) Quadratic Polynomial

(1) (2) (3) (4) (5) (6)
Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR

RD effect 0.0035 0.0036 0.0035 0.0031 0.0029 0.0038
(4.528) (4.623) (4.496) (4.000) (3.738) (4.881)

Robust p-value 0.000 0.001 0.000 0.187 0.378 0.011
Order 3 3 3 3 3 3
Kernel Triangular Epanechnikov Uniform Triangular Epanechnikov Uniform
Bandwidth selector MSE MSE MSE CER CER CER
Obs. 2,562 2,562 2,562 2,562 2,562 2,562
Bandwidth 11.53 10.39 11.51 9.02 8.13 9.00
Eff # of left 462 420 462 378 336 378
Eff # of right 504 462 504 420 378 420

(b) Quartic Polynomial

(1) (2) (3) (4) (5) (6)
Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR

RD effect 0.0038 0.0036 0.0026 0.0028 0.0025 0.0040
(4.803) (4.652) (2.954) (3.701) (3.280) (4.686)

Robust p-value 0.019 0.074 0.000 0.784 0.774 0.000
Order 4 4 4 4 4 4
Kernel Triangular Epanechnikov Uniform Triangular Epanechnikov Uniform
Bandwidth selector MSE MSE MSE CER CER CER
Obs. 2,562 2,562 2,562 2,562 2,562 2,562
Bandwidth 13.56 12.83 17.92 11.18 10.50 14.24
Eff # of left 546 504 714 462 420 588
Eff # of right 588 546 756 504 462 630

A-5



Table A.2. Alternative Measures for Financial Systemic Risk with Quadratic Polynomial

(1) (2) (3) (4) (5) (6)
ResQ-∆CoVaR ResQ-∆CoVaR ResC-∆CoVaR ResC-∆CoVaR ResMES ResMES

RD effect 0.0014 0.0014 0.0032 0.0032 0.0003 0.0004
(1.755) (1.628) (13.781) (13.668) (2.702) (2.690)

Robust p-value 0.118 0.192 0.000 0.008 0.008 0.008
Order 2 2 2 2 2 2
Kernel Triangular Epanechnikov Triangular Epanechnikov Triangular Epanechnikov
Bandwidth selector MSE MSE MSE MSE MSE MSE
Obs. 2,562 2,562 2,562 2,562 2,562 2,562

Table A.3. Different Sample Ranges with Quadratic Polynomial

(1) (2) (3) (4) (5) (6) (7) (8)
Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR Res∆CoVaR

RD effect 0.0032 0.0032 0.0028 0.0027 0.0026 0.0025 0.0026 0.0026
(4.352) (4.317) (4.253) (4.177) (4.734) (4.525) (4.990) (4.967)

Robust p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Order 2 2 2 2 2 2 2 2
Kernel Triangular Epanechnikov Triangular Epanechnikov Triangular Epanechnikov Triangular Epanechnikov
Bandwidth selector MSE MSE MSE MSE MSE MSE MSE MSE
Sample range [-20, +20] [-20, +20] [-40, +40] [-40, +40] [-50, +50] [-50, +50] [-60, +60] [-60, +60]
Obs. 1,722 1,722 3,402 3,402 4,242 4,242 5,082 5,082
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Table A.4. Heterogeneous Analysis: State Ownership Share

Low state ownership High state ownership

(1) (2)
Res∆CoVaR Res∆CoVaR

RD effect 0.0034 0.0016
(4.355) (3.296)

Robust p-value 0.001 0.003
Order 1 1
Kernel Triangular Triangular
Bandwidth selector MSE MSE
Obs. 1,281 1,281
Diff value [Empirical p-value] 0.0018[0.030]

Note: This table presents the results of the heterogeneity analysis by state ownership. The values in parentheses are
unadjusted z-statistics. “Robust p-values” are calculated using bias-corrected standard errors following Calonico et al.
(2017). Banks are categorized into two groups: low state ownership in Column 1 and high state ownership in Column
2, based on the median level of state ownership share. A linear specification with a triangular kernel is used for the RD
estimation. The bandwidths are selected based on the MSE criterion. Standard errors are clustered at the bank level.
“Diff value” is the difference in RD effect between Columns 1 and 2. The corresponding empirical p-value is shown in
brackets based on bootstrap resampling (100 iterations).

A.6 Banks in our sample
Agricultural Bank of China (601288.SH), Bank of Communications (601328.SH), Industrial and

Commercial Bank of China (601398.SH), Postal Savings Bank of China (601658.SH), XD Con-
struction Bank (601939.SH), Bank of China (601988.SH), Ping An Bank (000001.SZ), Lanzhou
Bank (001227.SZ), Ningbo Bank (002142.SZ), Jiangyin Bank (002807.SZ), Zhangjiagang Bank
(002839.SZ), Zhengzhou Bank (002936.SZ), Qingdao Bank (002948.SZ), Qingnong Commercial
Bank (002958.SZ), Suzhou Bank (002966.SZ), Shanghai Pudong Development Bank (600000.SH),
Huaxia Bank (600015.SH), China Minsheng Bank (600016.SH), China Merchants Bank (600036.SH),
Wuxi Bank (600908.SH), Jiangsu Bank (600919.SH), Hangzhou Bank (600926.SH), Xi’an Bank
(600928.SH), Nanjing Bank (601009.SH), Chongqing Rural Commercial Bank (601077.SH), Chang-
shu Bank (601128.SH), Industrial Bank (601166.SH), Bank of Beijing (601169.SH), Xiamen Bank
(601187.SH), Shanghai Bank (601229.SH), Rui Feng Bank (601528.SH), Changsha Bank (601577.SH),
Qilu Bank (601665.SH), China Everbright Bank (601818.SH), Shanghai Rural Commercial Bank
(601825.SH), Chengdu Bank (601838.SH), Zijin Bank (601860.SH), Zhejiang Commercial Bank
(601916.SH), Chongqing Bank (601963.SH), Guiyang Bank (601997.SH), CITIC Bank (601998.SH),
Suzhou Rural Bank (603323.SH).
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