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Introduction

Decision making usually occurs in the presence of multiple risks affecting sev-
eral aspects of an individual’s well-being. Indeed, risk management strategies
(such as precautionary savings, the purchase of insurance contracts, preven-
tive actions, or portfolio choices) are often adopted when agents are exposed to
risks associated with attributes of the utility function other than wealth (health
state, environment, relatives’ wealth or health state,...). Papers dealing with
precautionary saving in bivariate (Courbage and Rey, (2007)) or multivariate
(Denuit, Eeckhoudt, and Menegatti, (2011); Jouini, Napp, and Nocetti, (2013);
Courbage, (2014)) settings, with the effects of health risks on portfolio choices
(Edwards, (2008); Crainich, Eeckhoudt, and Le Courtois, (2017)), or with in-
vestments improving future random health or environmental quality (Denuit,
Eeckhoudt, and Menegatti, (2011); Jouini, Napp, and Nocetti, (2013)) offer il-
lustrations of the way individuals behaving according to the expected utility
model make that kind of decision. Note that non-financial decisions have also
been treated in the literature: the effect of risky life expectancy on the choice
of the intensity of a medical treatment in the presence of therapeutic risk has
for instance been addressed in Bleichrodt, Crainich and Eeckhoudt (2011).

The above-mentioned papers can be classified into two categories: those in-
terested in the direction of changes and those analyzing the intensity of changes
in the decision variable once risks are either introduced or modified. Among the
second category, Jouini, Napp, and Nocetti (2013) and Crainich, Eeckhoudt,
and Le Courtois (2017) highlight that the trade-offs dictating agents’ decisions
depend on the value of various measures of the intensity of higher order multi-
variate risk attitude. In both papers, the latter are expressed as ratios wherein
numerators are cross partial derivatives (of different orders) of the utility func-
tion and the denominator is the marginal utility of wealth. These measures
share the same denominator because the cost of the economic decision is purely
financial in both contributions. This cost is a forsaken current consumption
that improves the future value of several attributes in Jouini, Napp, and No-
cetti (2013) while it corresponds to reduced expected return when less risky
assets are held in portfolios in Crainich, Eeckhoudt, and Le Courtois (2017).

When the effect of the introduction of multivariate risks on the strength of
precautionary saving is analyzed, the denominators of the intensity measures
of multivariate risk attitudes are second-order cross partial derivatives (Jouini,
Napp, and Nocetti (2013); Courbage (2014)). However, as we illustrate below
with a simple example, the cost of economic decisions can also be expressed in
more general units, such as increases in higher order risks or increases in higher
order correlations. In these cases, the denominators of the intensity measures
take other forms. The purpose of our paper is to provide a comprehensive
framework that encompasses all the measures of the intensity of preferences
towards bivariate risks in the expected utility model.

Our work is based on three important contributions in risk theory: 1) the
interpretation of the signs of successive cross partial derivatives of the utility
function exposed in Eeckhoudt, Rey, and Schlesinger (2007); 2) the concept
of nth order increases in risk à la Ekern (1980); 3) the rate of substitution
between two stochastic changes introduced in Liu and Meyer (2013). Based on
these concepts, we propose an intuitive interpretation of the ratios of partial
derivatives. As will be highlighted in the paper, these ratios will prove useful
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when dealing with risky decisions in bivariate settings.
To provide these interpretations, we first make use of the bivariate preference

ordering introduced by Eeckhoudt, Rey, and Schlesinger (2007). The latter con-
cept generalizes that of correlation aversion (Richard, (1975)), which refers to
the preference for the dissociation between wealth and health1 losses. Richard
(1975) indicates that correlation aversion corresponds to u(1,1) < 0 in the ex-
pected utility model2. Its generalization to higher orders is obtained when the
dissociation principle is extended from losses to higher order zero-mean risks
applied to both attributes. In the expected utility model, Eeckhoudt, Rey, and
Schlesinger (2007) make the connection between this preference ordering and
the signs of successive cross partial derivatives of the utility function i.e. the
signs of u(2,1), u(1,2), u(2,2),..., u(n1,n2). Doing so, they establish the concept of
(n1, n2)

th degree correlation aversion.
We then apply the concept of nth degree increase in risk (Ekern (1980))

to bivariate cases in order to obtain changes in bivariate distributions corre-
sponding to the preference ordering defined in Eeckhoudt, Rey, and Schlesinger
(2007). More precisely, while Ekern (1980) defines an nth degree increase in
risk by keeping the n− 1 first moments of the distribution constant, Denuit et
al. (2013) define an (n1, n2)

th degree increase in bivariate risk as the movement
from one distribution to another such that the (n1, n2)

th comoment of these two
distributions differs and such that three constraints are satisfied. Namely, the
bivariate distributions must have: 1) the same first n1 moments for the marginal
distribution of the first variable; 2) the same first n2 moments for the marginal
distribution of the second variable; 3) the same first (n1+n2−1) comoments. It
can then be shown that every (n1, n2)

th degree correlation averse agent dislikes
(n1, n2)

th degree increases in bivariate risks (or, equivalently, (n1, n2)
th degree

increases in correlation).
Equipped with this definition, we extend Liu and Meyer (2013) and propose

a general measure of the intensity of preferences towards bivariate risks. Liu
and Meyer (2013) show that the existing measures (−u′′

u′
, −u′′′

u′′
, u′′′

u′
,...) of the

intensity of preferences towards risk in the univariate setting correspond to a rate
of substitution between two increases in risk of different degrees. Specifically,
suppose that G(x) has more nth degree risk than F (x), that H(x) has more
mth degree risk than F (x) and that the agent is indifferent between G(x) and
(1− T )F (x) + TH(x). Liu and Meyer (2013) indicate that T is proportional to
the ratio um

un that corresponds to a measure of the aversion towards increases in
nth degree risk. As noted by these authors, T is "the weight that the decision
maker is willing to put on H(x) when forming a mixture of F (x) and H(x)
to avoid having an nth degree risk increase from F (x) to G(x) instead". The
same principle, applied to (n1, n2)

th degree increases in correlation, is used in
our paper in order to provide an intuitive interpretation of the measures of the
intensity of bivariate risk preferences. Because the latter measures are expressed
as ratios of cross partial derivatives, they do not depend on utility scales and
allow us to compare individual behaviors towards bivariate risks.

The ratios of partial derivatives that we introduce generalize the existing
measures of the intensity of bivariate preferences proposed by Jouini, Napp,

1Or any other attribute of the utility function.
2The following notation is adopted throughout the paper: u(n1,n2) refers to the nth

1 and nth
2

partial derivatives of the utility function with respect to its 1st and 2ndarguments, respectively.
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and Nocetti (2013) and by Crainich, Eeckhoudt, and Le Courtois (2017). The
latter authors exploit the concept of an (n1, n2)

th degree correlation aversion
(Eeckhoudt, Rey, and Schlesinger, (2007)) and extend the technique used by
Crainich and Eeckhoudt (2008) who measure the intensity of downside risk
aversion in an univariate setting. Namely, the intensity of preference towards a
distribution F (x) compared to a distribution G(x) is equivalent to the maximum
amount of money one is willing to sacrifice in order to be exposed to F (x) rather
than to G(x). As a result, the existing measures of the intensity of preferences
in bivariate or multivariate settings are all based on the marginal utility of
wealth. We extend this interpretation by stating that the compensation might
take other forms, such as changes in the marginal distributions corresponding
to decreases in mth degree risk or changes in the distribution corresponding to
decreases in (n1, n2)

th degree correlation.
Our paper is organized as follows. In Section 1, we introduce a saving de-

cision that must be made in the presence of an environmental risk in order
to illustrate the usefulness of a particular measure of the intensity of bivariate

preferences, namely of −u(1,2)

u(1,1) . An explanation of the connection between our
decision problem and that particular measure of preference towards bivariate
risks is then established. Section 2 generalizes this illustration by adopting an
approach based on the comoments of the distribution. Section 3 provides an-
other generalization based on the concept of an increase in (n1, n2)

th degree
correlation. Section 4 concludes.

1 An illustration

Consider the following savings problem. An agent lives two periods during
which he earns an identical income (w). Besides this income, the environment
quality (e) she enjoys also enters in her utility function so that her preferences
are represented by u(w, e). We suppose that the utility of wealth and the utility
of environmental quality are both increasing and concave, so that: u(1,0) > 0,
u(0,1) > 0, u(2,0) < 0, and u(0,2) < 0. The agent has the opportunity to transfer
money through savings from period 1 to period 2. To simplify this problem,
suppose that the agent’s utility function is the same across periods and that the
interest rate and the rate of intertemporal preference are both null. Finally, no
change in the environmental quality is anticipated between period 1 and period
2. The agent’s maximization problem is given by:

max
s

(u(w − s, e) + u(w + s, e)) . (1)

It is straightforward to show that there are no savings (s∗ = 0) at the
optimum. Suppose now that a new environmental program is implemented
between period 1 and period 2. The expected improvement in environmental
quality due to the program is positive, but the final effect of the program is
risky. Suppose that this improvement is given by the random variable q̃ such
that q̃ = q0 + ǫ̃, with q0 > 0, E(ǫ̃) = 0, and where the variance of ǫ̃ is denoted
by σ2

ǫ̃ . The agent’s maximization then becomes:

max
s

(u(w − s, e) + Eu(w + s, e+ q̃)) . (2)
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The first-order condition that is associated with this program and that de-
fines the new optimal level of savings s∗∗ is given by:

u(1,0)(w − s∗∗, e) + Eu(1,0)(w + s∗∗, e+ q̃) = 0. (3)

We approximate Eu(1,0)(w + s∗∗, e + q̃) around (w + s∗∗, e) with a limited
Taylor expansion:

Eu(1,0)(w+s∗∗, e+q̃) ≃ u(1,0)(w+s∗∗, e)+q0u
(1,1)(w+s∗∗, e)+

σ2
ǫ̃

2
u(1,2)(w+s∗∗, e).

When s∗∗ is evaluated at s∗ = 0, the first-order condition indicates the extent
to which the implementation of the environmental program modifies savings.
The agent saves (s∗∗ > s∗ = 0) if:

−
u(1,2)(w, e)

u(1,1)(w, e)
>

2q0
σ2
ǫ̃

.

Besides, the higher the gap between
σ2
ǫ̃

q0
and the ratio of cross partial deriva-

tives of the bivariate utility function −
u(1,2)(w,e)
u(1,1)(w,e)

, the higher the difference be-

tween s∗∗ and s∗. This result obtained in a very simplified model illustrates
that the ratio of cross partial derivatives of the utility function explains deci-
sions made by agents when they are exposed to bivariate risks.

In order to explain this result, we first use the interpretation of the concepts
of correlation aversion and cross-prudence in health - or, equivalently, of the
concepts of (1, 1)th and (1, 2)th degrees increase in correlation aversion - respec-
tively defined by Richard (1975) and Eeckhoudt, Rey, and Schlesinger (2007).
Consider the distributions A1 and B1 in the figure below and suppose that the
agents are both (1, 1)th correlation averse (u(1,1) < 0) and (1, 2)th correlation
averse (u(1,2) > 0).

A1

w+s, e+q0

w, e

1/2

1/2

B1

w, e + q0

w + s, e

1/2

1/2

Following Richard (1975), it can be shown that A1 ≺ B1 when individuals are
(1, 1)th correlation averse. Indeed, using limited Taylor expansions, we obtain:

Eu(B1)− Eu(A1) ≃ −s q0 u(1,1)(w, e).

This preference towards risk in a bivariate setting reflects the fact that agents
prefer the sure gains (s on wealth and q0 on the environmental attribute) to be
dissociated (as in B1) rather than associated in the same state of the world (as in
A1). In Richard (1975), the two outcome of the distributions A1 and B1 are two
states of the world occurring with equal probability. Similar interpretations can
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be made if the outcomes are two time periods (assuming that there is no discount
factor). Applied to our saving problem, (1, 1)th correlation averse agents do not
transfer of money from period 1 to period 2 in order not to concentrate the gains
(the extra wealth due to savings and the expected improvement in environmental
quality) in the same period.

Suppose now that same agents must choose between the distributions C1

and D1 described in the figure below.

C1

w + s, e+ ǫ̃

w, e

1/2

1/2

D1

w, e + ǫ̃

w + s, e

1/2

1/2

Using Eeckhoudt, Rey, and Schlesinger (2007), we obtain D1 ≺ C1 since in-
dividuals are (1, 2)th degree correlation averse. Using limited Taylor expansions,
it can be shown that:

Eu(C1)− Eu(D1) ≃ s
σ2
ǫ̃

2
u(1,2)(w, e).

Agents who are (1, 2)th degree correlation averse prefer to associate the im-
provement on the first attribute (due to s) with the pain (taking here the form
of a zero mean risk ǫ̃) on the second attribute of the utility function. As a result,
and once again in order not to concentrate the gains in the same period, the
risk associated with the environmental quality in period 2 provides an incentive
to save for agents who are (1, 2)th degree correlation averse.

Consequently, the implementation of the new environmental program has
contradictory effects on correlation averse agents: the positive expected en-
vironmental value (q0) deters savings as agents are (1, 1)th degree correlation
averse while the environmental risk (ǫ̃) provides an incentive to save as they are
(1, 2)th degree correlation averse. The decisions to associate an extra unit of
wealth to e+q0+ ǫ̃ through savings rather than to e through dissavings depends
on the relative values of Eu(B1) − Eu(A1) and of Eu(C1) − Eu(D1) i.e. on
whether

−
u(1,2)(w, e)

u(1,1)(w, e)
>

2q0
σ2
ǫ̃

.

which corresponds to condition (1). The final effect of the environmental
change on the saving decision thus depends not only on q0 and ǫ̃ but also on the
relative aversions to (1, 1)th degree and (1, 2)th degree correlation. The left-hand
side of the inequality sign of condition (1) actually corresponds to a marginal
rate of substitution between the improvement in quality q0 and the risk ǫ̃ that

is attached to it. As a result, −u(1,2)(w,e)
u(1,1)(w,e)

is a measure of the intensity of (1, 2)th

degree correlation aversion.
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Note that other measures exist. For instance starting from distributions
C1 and D1, Crainich, Eeckhoudt and Le Courtois (2017) suggest that the sure
amount of money which, when subtracted from w in the upper branch of distri-
bution C, restores indifference for (1, 2)th degree correlation averse agents is one
such measure. In that case, the intensity of (1, 2)th degree correlation aversion
is measured relatively to the marginal utility of wealth, i.e. relatively to (1, 0)th

degree correlation aversion. The next section generalizes this idea to describe
the measures of preferences towards bivariate risks.

2 Substitutions of Lotteries

In the previous section, we illustrated the role played by the ratio of cross
partial derivatives of a utility function in explaining a decision made by an
agent exposed to a particular risky situation. This kind of trade-off can be
extended to any risks. This is what we do in this section where an approach "in
the small" is adopted.

To do so, consider first the lotteries A and B described below:

A

α̃, β̃

κ̃, φ̃

1/2

1/2

B

κ̃, β̃

α̃, φ̃

1/2

1/2

where κ̃, φ̃, α̃, and β̃ are four distinct random variables. The lotteries A and B
respectively generalize the lotteries A1 and B1 described in the previous section
if we assume that κ̃ = w, φ̃ = e, α̃ = w+s and β̃ = e+q0. Lottery B differs from
lottery A in that the random variables κ̃ and α̃ attached to the first argument
of the utility function are swapped between the two possible states of the world.
As we did in Section 1, we start by computing the difference in expected utility
between the lotteries A and B.

Proposition 2.1. We assume that all the partial derivatives of u are non-null.
We have the following approximation:

E(u(B))− E(u(A)) ≈
1

2

n1
∑

k=1

n2
∑

h=1

E((α̃k − κ̃k)(φ̃h − β̃h))

k! h!
uk,h(0, 0). (4)

Proof. See Appendix.

In the spirit of the utility premium of Friedman-Savage, a decomposition
of the gain in expected utility resulting from being exposed to distribution B
instead of distribution A is proposed in Eq. (4). Proposition 2.1 underlines that
this gain is the weighted sum of differences between the moments and comoments
of A and B, where the weights are the cross-derivatives of the utility function.

Note that the two distributions A and B are constructed by associating the
same variables κ̃, φ̃, α̃, and β̃ in two different ways. A and B thus have the same
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marginal distributions and, consequently, the same moments. Besides, when κ̃
and α̃ on the one hand, and φ̃ and β̃ on the other, do not have the same higher-
order moments (α̃ and κ̃ do not have the same (k)th moment and φ̃ and β̃ do
not have the same (h)th moment), the comoments lower than (k, h)th of A and
B are equal. Consequently, we deduce from Proposition 2.1 that the preference
for B over A is only dictated by the sign of the (k, h)th cross-derivative of the
utility function.

For instance, as the difference between distributions A1 and B1 (see Section
1) lies in the way the two sure gains attached to each argument of the utility
function (s to the first argument and q0 to the second one) are associated, the
preference for A1 or for B1 depends on the sign of u(1,1). Likewise, the difference
between distributions C1 and D1 is related to the way a sure gain attached to
the first argument (s) and a risk attached to the second one (ǫ̃) are associated:
the preference for one of these two distribution over the other then depends on
the sign of u(1,2).

In what follows, we assume that lottery A has more (n1, n2)
th degree risk

than lottery B in the sense defined below:

Definition 2.2 (More (n1, n2)
th degree risk). We say that the lottery A has

more (n1, n2)
th degree risk than the lottery B if3

∀(k, h) < (n1, n2) E((α̃k − κ̃k)(φ̃h − β̃h)) = 0 (5)

and
(−1)n1+n2−1 E((α̃n1 − κ̃n1)(φ̃n2 − β̃n2)) > 0. (6)

The link with Ekern’s (1980) definition of an nth order increase in risk is
straightforward: while the last comoment of A and B differs (see Eq. (6)), the
moments of each of the two variables are equal and they share the same lower
order comoments (see Eq. (5)).

We now come to the characterization of agents’ preferences towards these
two lotteries.

Definition 2.3 ((n1, n2)
th degree risk aversion around 0). An agent u is (n1, n2)

th

degree risk averse around 0 if and only if (−1)n1+n2−1 u(n1,n2)(0, 0) > 0.

This definition generalizes those of (1, 1)th degree and of (1, 2)th degree cor-
relation aversion provided in Section 1. In what follows, being (n1, n2)

th degree
risk averse and being (n1, n2)

th degree correlation averse are two terminologies
referring to the same preference.

Proposition 2.4. Consider an agent u who is (n1, n2)
th degree risk averse

around 0. This agent has the choice between two lotteries A and B, where the
lottery A has more (n1, n2)

th degree risk than the lottery B. Then, B is preferred
to A and the difference in utilities between the two lotteries is given by4

E(u(B))− E(u(A)) ≈
1

2

E((α̃n1 − κ̃n1)(φ̃n2 − β̃n2))

n1! n2!
un1,n2

(0, 0) > 0. (9)

3The case (k, h) < (n1, n2) includes the limit subcases (n1, h) < (n1, n2) with h < n2, and
(k, n2) < (n1, n2) with k < n1.

4If we assume in addition that α̃ and κ̃ are independent from φ̃ and β̃, we deduce that if

∀(k, h) < (n1, n2) E(α̃k) = E(κ̃k) or E(φ̃h) = E(β̃h),
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Proof. See Appendix.

As in the lotteries used by Eeckhoudt, Rey and Schlesinger (2008), the distri-
butions A and B are constructed so that they have equal lower order comoments:
the preference that a (n1, n2)

th degree risk averse individual has for the latter
distribution over the former thus only results from the difference between their
last comoment.

Let us now introduce the lotteries C and D:

C

γ̃, δ̃

θ̃, υ̃

1/2

1/2

D

θ̃, δ̃

γ̃, υ̃

1/2

1/2

where θ̃, δ̃, γ̃, and υ̃ are independent random variables. The lotteries C and
D respectively generalize the lotteries C1 and D1 described in Section 1 if we
assume that θ̃ = w, υ̃ = e, γ̃ = w + s and δ̃ = e + ǫ̃. Lottery D differs from
lottery C in that the random variables θ̃ and γ̃ attached to the first argument
of the utility function are swapped between the two possible states of the world.

If we assume that the lottery C has more (m1,m2)
th degree risk than the

lottery D and that u is (m1,m2)
th degree risk averse around 0, then we can use

Proposition 2.4 to obtain:

E(u(D))− E(u(C)) ≈
1

2

E((γ̃m1 − θ̃m1)(υ̃m2 − δ̃m2))

m1! m2!
um1,m2

(0, 0) > 0. (10)

As we did in the previous section, we can now define the marginal rate of
substitution as the rate at which the agent is willing to exchange the transition
from C to D against that from B to A.

Definition 2.5 (Substitution Rate). The marginal rate of substitution Tu is
defined as follows:

Tu =
E(u(B))− E(u(A))

E(u(D))− E(u(C))
(11)

Since the lottery A has more (n1, n2)
th degree risk than the lottery B and the

lottery C has more (m1,m2)
th degree risk than the lottery D, the substitution

then

E(u(B))− E(u(A)) ≈
1

2

E(α̃n1 − κ̃n1 ) E(φ̃n2 − β̃n2 )

n1! n2!
un1,n2 (0, 0). (7)

and B is preferred to A provided that

E(α̃n1 − κ̃n1 ) E(φ̃n2 − β̃n2 ) un1,n2 (0, 0) > 0. (8)

Further, if we assume that the sign of un1,n2 (0, 0) is (−1)n1+n2−1, then assuming the con-
dition in (8) is equivalent to assuming that the sign of the product of moments E(α̃n1 −

κ̃n1 ) E(φ̃n2 − β̃n2 ) is also (−1)n1+n2−1.

9



rate becomes

Tu =
E((α̃n1 − κ̃n1)(φ̃n2 − β̃n2))

E((γ̃m1 − θ̃m1)(υ̃m2 − δ̃m2))

m1! m2!

n1! n2!

un1,n2
(0, 0)

um1,m2
(0, 0)

, (12)

where we use Eqs. (9) and (10) and where the ratio of moments in this equation
is independent of the utility function u.

Suppose that a potential decision generates both an (n1, n2)
th increase in

bivariate risk (such as the transition from B to A) and an (m1,m2)
th decrease

in bivariate risk (such as the transition from C to D). Such a decision will be
approved by agents as long as:

E(u(D))− E(u(C)) > E(u(B))− E(u(A)) ⇔

un1,n2
(0, 0)

um1,m2
(0, 0)

<
E((γ̃m1 − θ̃m1)(υ̃m2 − δ̃m2))

E((α̃n1 − κ̃n1)(φ̃n2 − β̃n2))

n1! n2!

m1! m2!
.

Finally, the marginal rate of substitution T allows the comparison between
decisions made by two agents u and v, that is, it indicates the agent who is
the more willing to trade an (n1, n2)

th increase in bivariate risk against an
(m1,m2)

th decrease in bivariate risk:

Proposition 2.6. Consider two decision makers u and v. When the lottery A
has more (n1, n2)

th degree risk than the lottery B and the lottery C has more
(m1,m2)

th degree risk than the lottery D, then,

Tu ≥ Tv ⇔
(−1)n1+n2−1 u(n1,n2)(0, 0)

(−1)m1+m2−1 u(m1,m2)(0, 0)
≥

(−1)n1+n2−1 v(n1,n2)(0, 0)

(−1)m1+m2−1 v(m1,m2)(0, 0)
(13)

Proof. The proof is a direct consequence of Eq. (12) and of Eq. (6) applied to
A and B, and to C and D, respectively.

Proposition 2.6 establishes that the propensity to substitute changes in bi-
variate risks depends on the appropriate ratio of cross-derivatives of the utility
function. It generalizes the problem exposed in Section 1 where savings was
shown to simulateously increase (1, 1)th degree risk and decrease (1, 2)th de-
gree risk. In that case, the individual whose (1, 1)th degree correlation aversion
relative to (1, 2)th degree correlation aversion is lower (see condition (1)) has
the higher propensity to save. Proposition 2.6 extends interpersonal compar-
isons to decisions leading to higher-order changes in bivariate risks. Namely,
it states that individuals whose (n1, n2)

th degree correlation aversion relative
to (m1,m2)

th degree correlation aversion is lower are more willing to accept
(n1, n2)

th degree increases in risk in exchange for (m1,m2)
th degree decreases

in risk.

3 Substitutions in the General Case

In the previous section, we adopted an approach "in the small" based on pref-
erences that agents have for the comoments of bivariate distributions. We go
one step further in the generalization process in this section by adopting an
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approach "in the large". The latter is based on the extension to the bivariate
case of the definition of an "nth degree increase in risk" introduced by Ekern
(1980). Then, we adapt Liu and Meyer (2013) to the bivariate case in order to
provide a general characterization of the intensity of bivariate preferences.

We consider a two dimensional random variable whose cumulative distri-
bution function is denoted by F . We construct by successive integrations the
function F [k,h](., .). Indeed, we have: F [k,h](x, y) =

∫ x

a
F [k−1,h](s, y)ds and

F [k,h](x, y) =
∫ y

a
F [k,h−1](x, t)dt, where the initial point is F [1,1](x, y) = F (x, y).

Following Denuit et al. (2013), we define the concept of more high-order
bivariate degree risks, ("(n1, n2)

th degree increases in risk"’), which is an ex-
tension to the bivariate case of Ekern’s definition of an "nth degree increase in
risk".

Definition 3.1 (More (n1, n2)
th degree risk). A distribution G has more (n1, n2)

th

degree risk than a distribution F if and only if, for all (k, h) ≤ (n1, n2),

G[k,h](s, b) = F [k,h](s, b) ∀s ∈ [a, b], (14)

and
G[k,h](b, t) = F [k,h](b, t) ∀t ∈ [a, b], (15)

and also
G(n1,n2)(s, t) ≥ F (n1,n2)(s, t) ∀(s, t) ∈ [a, b]2. (16)

Equipped with this definition, we extend Ekern (1980)’s result to the case
of bivariate random vectors:

Proposition 3.2. Let X = (X1, X2) and Y = (Y1, Y2) be bivariate random
vectors that are respectively F -distributed and G-distributed. When G has more
(n1, n2)

th degree risk than F , then

E(Xk
1 Xh

2 ) = E(Y k
1 Y h

2 ) ∀(k, h) < (n1, n2) (17)

and
(−1)n1+n2 E(Xn1

1 Xn2
2 ) ≤ (−1)n1+n2 E(Y n1

1 Y n1
2 ) (18)

Proof. For brevity, we omit the proof, which is obvious and relies on multiple
integrations by parts.

This proposition states that the comparison of X and Y at order (n1, n2) is
equivalent to the comparison of their non-centered comoment of order (n1, n2)
when all of their lower-order non-centered moments and comoments are identi-
cal. These last constraints are expressed in (5) in the previous section and in
(17) in this one. Proposition 3.2 makes the connection with the previous section
where the distributions differ in their last comoments. However, note that there
is no equivalence between (14), (15) and (16) on the one hand and (17) and
(18) on the other: if any (n1, n2)

th degree increase in risk implies that the bi-
variate distributions considered differ in their last comoment (their lower order
comoments being equal), the opposite is not true. As a result, the approach
based on the concept of (n1, n2)

th degree increase in risk is more general than
the comoments approach - based on approximations - that we developed in the
previous section.

We now come to the characterization of agents faced with bivariate choices.

11



Definition 3.3 ((n1, n2)
th degree risk aversion). An agent is (n1, n2)

th degree
risk averse if and only if

(−1)n1+n2−1 u(n1,n2)(s, t) > 0 ∀(s, t) ∈ [a, b]2.

Then, we can relate the comparisons of (n1, n2)
th degree risks to the prefer-

ences of agents as follows:

Proposition 3.4. G has more (n1, n2)
th degree risk than F if and only if every

(n1, n2)
th degree risk averter prefers F to G.

Proof. Let X and Y be bivariate random vectors that are F-distributed and G-
distributed, respectively. The proof, which is obvious, relies on the computation
of

E(u(X))− E(u(Y)) =

∫ b

a

∫ b

a

u(s, t) dF (s, t)−

∫ b

a

∫ b

a

u(s, t) dG(s, t)

via multiple integrations by parts, and on the study of its sign.

Proposition 3.4 in this section is the equivalent of Proposition 2.4 in the
previous section. Both of these propositions refer to preferences that (n1, n2)

th

degree risk averse agents have towards bivariate distributions. But they say
nothing about the intensity of these preferences or about the choices that two
different (n1, n2)

th degree risk averse agents might make. The transition from
the concept of a "direction of preferences" to that of an "intensity of prefer-
ences" in bivariate settings is established - as in Sections 1 and 2 - through the
comparison between two changes in distributions.

To do so, we extend to the bivariate case a technique introduced by Liu and
Meyer (2013) in the univariate context. Assume that G(x, y) has more (n1, n2)

th

degree risk than F (x, y) and that H(x, y) has more (m1,m2)
th degree risk than

F (x, y). What is the value of T such that an agent is indifferent between G(x, y)
and (1 − T )F (x, y) + TH(x, y)? The higher T , the more the agent is sensitive
to (n1, n2)

th degree increases in risk relative to (m1,m2)
th degree increases in

risk. As a result, T indicates the intensity of preferences in bivariate settings.
It is straightforward to show that for the agent u, the value of T - denoted

Tu - is given by:

Definition 3.5.

Tu =

b
∫

a

b
∫

a

u(s, t)(dF (s, t)− dG(s, t))

b
∫

a

b
∫

a

u(s, t)(dF (s, t)− dH(s, t))

As in Liu and Meyer (2013), the proposed measure of intensity of bivariate
risk aversion is a ratio of two expected utility changes. While the Arrow-Pratt
measure of risk aversion is sufficient to deal with the introduction of risks or with
changes in risk "in the small", Ross (1981) has shown that a stronger measure of
the increase in risk aversion was required once increases in risk or once changes
in risk "in the large" were addressed. We now indicate how the generalization
of the Ross measure of "stronger risk aversion" is helpful when higher-order

12



increases in bivariate risk "in the large" are considered. The Arrow-Pratt and
Ross increases in higher-order bivariate risk aversion are respectively defined as
follows:

Definition 3.6. u is ((n1, n2)/(m1,m2))
th degree more risk averse than v if,

for all (s, t) ∈ [a, b]2,

(−1)n1+n2−1 u(n1,n2)(s, t)

(−1)m1+m2−1 u(m1,m2)(s, t)
≥

(−1)n1+n2−1 v(n1,n2)(s, t)

(−1)m1+m2−1 v(m1,m2)(s, t)
,

whereas u is ((n1, n2)/(m1,m2))
th degree Ross more risk averse than v if, for

all (s, t) ∈ [a, b]2 and for all (w, z) ∈ [a, b]2,

(−1)n1+n2−1 u(n1,n2)(s, t)

(−1)m1+m2−1 u(m1,m2)(w, z)
≥

(−1)n1+n2−1 v(n1,n2)(s, t)

(−1)m1+m2−1 v(m1,m2)(w, z)
.

These definitions allow the interpersonal comparison of the propensity to
exchange an (n1, n2)

th increase in bivariate risk against an (m1,m2)
th decrease

in bivariate risk. Combining what precedes, the following Proposition can indeed
be established:

Proposition 3.7. We consider two agents u and v that are each both (n1, n2)
th

degree risk averse and (m1,m2)
th degree risk averse. The following statements

are equivalent:

(i) u is ((n1, n2)/(m1,m2))
th degree Ross more risk averse than v on [a, b]2,

so that there exists λ > 0 such that u(n1,n2)(s,t)

v(n1,n2)(s,t)
≥ λ ≥

u(m1,m2)(w,z)

v(m1,m2)(w,z)
for all

(s, t) ∈ [a, b]2 and (w, z) ∈ [a, b]2.

(ii) There exist λ > 0 and φ : [a, b]2 → R such that u = λv + φ and such that
(−1)m1+m2−1φ(m1,m2)(s, t) ≤ 0 and (−1)n1+n2−1φ(n1,n2)(s, t) ≥ 0 for all
(s, t) ∈ [a, b]2.

(iii) Tu ≥ Tv for all F , G, and H such that G has more (n1, n2)
th degree risk

than F and H has more (m1,m2)
th degree risk than F

Proof. See Appendix.

The willingness to trade (n1, n2)
th increases in risk against (m1,m2)

th de-
creases in risk depends on the intensity T of preferences in bivariate settings.
Part (i) of Proposition 3.7 establishes the condition under which an individ-
ual whose preferences are represented by the utility function u is more Ross
bivariate risk averse than another individual whose preferences are represented
by v. Parts (ii) of Proposition 3.7 defines the transformation of the bivariate
utility function that preserves this partial order. Part (iii) of the Proposition
underlines that this ordering determines the propensity to substitute two kinds
of change in bivariate risks and, as a result, is a measure of the intensity of
preferences towards risk in the bivariate setting.
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In Section 2, we adopted an approach "in the small" based on the com-
parison between comoments of the distribution. In such a case, one can com-
pare the decisions made by two agents by using the Arrow-Pratt concept of an
((n1, n2)/(m1,m2))

th increase in bivariate risk aversion (see Proposition 2.6).
Because an approach "in the large" is adopted in this section, the Proposition
indicates that the notion of ((n1, n2)/(m1,m2))

th increase in bivariate risk aver-
sion in the Ross sense is required in order to compare the preferences expressed
by two agents agents exposed to changes in bivariate risk.

4 Conclusion

Decision-makers consider various aspects of their well-being (wealth, health,
environment quality,...) when they make choices that modify the risks they
are exposed to. In this paper, we show how the ratios of cross partial deriva-
tives of the utility function measure the intensity of preferences that individuals
display in bivariate settings. When an approach "in the small" based on the
comparison of the comoments of the distributions is adopted, we show that the
decisions agents make depend on their ((n1, n2)/(m1,m2))

th Arrow-Pratt risk
aversion. Then, we extend Liu and Meyer (2013) to the bivariate case to show
that the propensity to substitute (n1, n2)

th increases in risk for (m1,m2)
th de-

creases in risk "in the large" can be explained by the concept of an "increase in
((n1, n2)/(m1,m2))

th Ross risk aversion". These last ratios constitute general
measures of the intensity of preferences towards risk in bivariate settings.

Appendix

Proof of Proposition 2.1

From the definition of the lotteries, we have:

∆
def
= E(u(B))−E(u(A)) =

1

2
E(u(α̃, φ̃))+

1

2
E(u(κ̃, β̃))−

1

2
E(u(κ̃, φ̃))−

1

2
E(u(α̃, β̃))

or

∆ =
1

2

[

E(u(α̃, φ̃))− E(u(κ̃, φ̃))
]

−
1

2

[

E(u(α̃, β̃))− E(u(κ̃, β̃))
]

.

Then,

∆ ≈
1

2
E

[

n1
∑

k=1

α̃k

k!
uk,0(0, φ̃)−

n1
∑

k=1

κ̃k

k!
uk,0(0, φ̃)

]

−
1

2
E

[

n1
∑

k=1

α̃k

k!
uk,0(0, β̃)−

n1
∑

k=1

κ̃k

k!
uk,0(0, β̃)

]

,

so that

∆ ≈
1

2
E

[

n1
∑

k=1

α̃k − κ̃k

k!

(

uk,0(0, φ̃)− uk,0(0, β̃)
)

]

.

Developing with respect to the second argument, we obtain:

∆ ≈
1

2
E

[

n1
∑

k=1

n2
∑

h=1

α̃k − κ̃k

k!

φ̃h − β̃h

h!
uk,h(0, 0)

]

.

which is our result.
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Proof of Proposition 2.4

We first cancel the terms in Eq. (4) that are null in Eq. (5). This operation
allows us to write:

E(u(B))− E(u(A)) ≈
1

2

E((α̃n1 − κ̃n1)(φ̃n2 − β̃n2))

n1! n2!
un1,n2

(0, 0),

which is equivalent to

E(u(B))− E(u(A)) (19)

≈
1

2

(

(−1)n1+n2−1E((α̃n1 − κ̃n1)(φ̃n2 − β̃n2))

n1! n2!

)

(

(−1)n1+n2−1un1,n2
(0, 0)

)

.

(20)

Then, we observe that the first bracket is positive thanks to Eq. (6) and that the
second bracket is positive thanks to the (n1, n2)

th degree risk aversion around
0 property of u.

Proof of Proposition 3.7

The equivalences are shown by generalizing the arguments in Liu and Meyer
(2013).

(i) ⇒ (ii). Using λ defined in (i), we construct φ as follows:

φ(s, t) = u(s, t)− λ v(s, t) ∀(s, t) ∈ [a, b]2.

We readily check that

(−1)m1+m2−1φ(m1,m2)(s, t)

= (−1)m1+m2−1u(m1,m2)(s, t)− λ (−1)m1+m2−1v(m1,m2)(s, t) ≤ 0

and

(−1)n1+n2−1φ(n1,n2)(s, t)

= (−1)n1+n2−1u(n1,n2)(s, t)− λ (−1)n1+n2−1v(n1,n2)(s, t) ≥ 0.

(ii) ⇒ (iii). From the definition of Tu, we have:

b
∫

a

b
∫

a

u(s, t) [(1− Tu)dF (s, t) + TudH(s, t)] =

b
∫

a

b
∫

a

u(s, t) dG(s, t).

Then,
b
∫

a

b
∫

a

u(s, t) dG(s, t) =

b
∫

a

b
∫

a

(λv(s, t) + φ(s, t)) dG(s, t)

and

b
∫

a

b
∫

a

(λv(s, t) + φ(s, t)) dG(s, t) ≤

b
∫

a

b
∫

a

λv(s, t) dG(s, t) +

b
∫

a

b
∫

a

φ(s, t) dF (s, t)
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because φ shows (n1, n2)
th degree risk aversion. Further, using the definition of

Tv and the fact that φ shows (m1,m2)
th degree risk taking, we have:

b
∫

a

b
∫

a

λv(s, t) dG(s, t) +

b
∫

a

b
∫

a

φ(s, t) dF (s, t) ≤

b
∫

a

b
∫

a

λv(s, t) [(1− Tv)dF (s, t) + TvdH(s, t)] +

b
∫

a

b
∫

a

φ(s, t) [(1− Tv)dF (s, t) + TvdH(s, t)] ,

so that

b
∫

a

b
∫

a

λv(s, t) dG(s, t)+

b
∫

a

b
∫

a

φ(s, t) dF (s, t) ≤

b
∫

a

b
∫

a

u(s, t) [(1− Tv)dF (s, t) + TvdH(s, t)] .

Recombining the above equalities and inequalities shows that Tu ≥ Tv.

(iii) ⇒ (i). By integration by parts, we can show that

b
∫

a

b
∫

a

(−1)k+h−1 u(k,h)(s, t) (G[k,h](s, t)− F [k,h](s, t)) ds dt

b
∫

a

[

(−1)k+h−1 u(k,h)(s, t) (G[k+1,h](s, t)− F [k+1,h](s, t))
]b

a
dt

−

b
∫

a

b
∫

a

(−1)k+h−1 u(k+1,h)(s, t) (G[k+1,h](s, t)− F [k+1,h](s, t)) ds dt.

Using conditions (14) and (15), we obtain:

b
∫

a

b
∫

a

(−1)k+h−1 u(k,h)(s, t) (G[k,h](s, t)− F [k,h](s, t)) ds dt =

b
∫

a

b
∫

a

(−1)(k+1)+h−1 u(k+1,h)(s, t) (G[k+1,h](s, t)− F [k+1,h](s, t)) ds dt,

which shows that an identical formula prevails at orders k and k+1 on wealth.
By extension, we have:

b
∫

a

b
∫

a

u(s, t) (dF (s, t)− dG(s, t)) ds dt =

b
∫

a

b
∫

a

(−1)n1+n2−1 u(n1,n2)(s, t) (G[n1,n2](s, t)− F [n1,n2](s, t)) ds dt.
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Therefore,

Tu ≥ Tv ⇔

b
∫

a

b
∫

a

(−1)n1+n2−1 u(n1,n2)(s, t) (G[n1,n2](s, t)− F [n1,n2](s, t)) ds dt

b
∫

a

b
∫

a

(−1)m1+m2−1 u(m1,m2)(s, t) (H [m1,m2](s, t)− F [m1,m2](s, t)) ds dt

≥

b
∫

a

b
∫

a

(−1)n1+n2−1 v(n1,n2)(s, t) (G[n1,n2](s, t)− F [n1,n2](s, t)) ds dt

b
∫

a

b
∫

a

(−1)m1+m2−1 v(m1,m2)(s, t) (H [m1,m2](s, t)− F [m1,m2](s, t)) ds dt

Next, we assume that (i) does not hold: we can find two compact sets [c, d]2

and [e, f ]2 and µ > 0 such that

u(n1,n2)(s, t)

v(n1,n2)(s, t)
< µ <

u(m1,m2)(w, z)

v(m1,m2)(w, z)

for all (s, t) ∈ [c, d]2 and (w, z) ∈ [e, f ]2.
Because we assume that v is (n1, n2)

th and (m1,m2)
th degree risk averse,

we have:

(−1)n1+n2−1u(n1,n2)(s, t) < µ (−1)n1+n2−1v(n1,n2)(s, t)

for all (s, t) ∈ [c, d]2 and

(−1)m1+m2−1u(m1,m2)(w, z) > µ (−1)m1+m2−1v(m1,m2)(w, z)

for all (w, z) ∈ [e, f ]2

Then, choosing F̃ , G̃ and H̃ such that G̃ − F̃ > 0 on [c, d]2, H̃ − F̃ > 0 on
[e, f ]2 and such that these two differences are null outside the compact sets, we
can write:

b
∫

a

b
∫

a

(−1)n1+n2−1 u(n1,n2)(s, t) (G̃[n1,n2](s, t)− F̃ [n1,n2](s, t)) ds dt <

µ

b
∫

a

b
∫

a

(−1)n1+n2−1 v(n1,n2)(s, t) (G̃[n1,n2](s, t)− F̃ [n1,n2](s, t)) ds dt

and

b
∫

a

b
∫

a

(−1)m1+m2−1 u(m1,m2)(s, t) (H̃ [m1,m2](s, t)− F̃ [m1,m2](s, t)) ds dt >

µ

b
∫

a

b
∫

a

(−1)m1+m2−1 v(m1,m2)(s, t) (H̃ [m1,m2](s, t)− F̃ [m1,m2](s, t)) ds dt
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so that

b
∫

a

b
∫

a

(−1)n1+n2−1 u(n1,n2)(s, t) (G̃[n1,n2](s, t)− F̃ [n1,n2](s, t)) ds dt

b
∫

a

b
∫

a

(−1)m1+m2−1 u(m1,m2)(s, t) (H̃ [m1,m2](s, t)− F̃ [m1,m2](s, t)) ds dt

<

b
∫

a

b
∫

a

(−1)n1+n2−1 v(n1,n2)(s, t) (G̃[n1,n2](s, t)− F̃ [n1,n2](s, t)) ds dt

b
∫

a

b
∫

a

(−1)m1+m2−1 v(m1,m2)(s, t) (H̃ [m1,m2](s, t)− F̃ [m1,m2](s, t)) ds dt

which is a contradiction. Therefore (i) holds.
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