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Abstract 

In this article, we propose a regression model for high-dimensional sparse data from store-

level aggregated POS systems.  The modeling procedure comprises two sub-models—topic 

model and hierarchical factor regression model—that are applied sequentially not only for 

accommodating high dimensionality and sparseness but also for managerial interpretation. 

First, the topic model is applied unusually to aggregated data to decompose the daily 

aggregated sales volume of a product into sub-sales for several topics by allocating each unit 

sale (“word” in text analysis) in a day (“document”) into one of topics based on joint purchase 

information.  This stage reduces the dimension of data inside topics because topic 

distribution is not uniform and product sales are allocated mostly into smaller numbers of 

topics.  Next, the market response regression model in the topic is estimated by using 

information about other items in the same topic.  That is, we construct a topic-wise market 

response function by using explanatory variables not only of itself but also of other items 

belonging to the same topic.  Additional reduction of dimensionality remains necessary for 

each topic, and we propose a hierarchical factor regression model based on canonical 

correlation analysis for original high-dimensional sample spaces.  Then we discuss feature 

selection based on a credible interval of parameters’ posterior density. 

Empirical study shows that (i) our model has the advantage of managerial implications 

obtained from topic-hierarchical factor regression defined according to their contexts, and (ii) 

it offers better fit than does conventional category regressions in-sample as well as out of 

sample. 

 

Keywords: Topic Model, Hierarchical Factor Regression, Dimension Reduction, High 

Dimensional Sparse Data, Feature Selection 
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1. Introduction 

Disaggregated store data of scanner panel records have been analyzed using many models 

and from many different perspectives.  For example, many choice models have been 

proposed based on the theories of microeconomics and consumer behavior to understand 

customers and explore the effectiveness of the strategies suggested by said models. 

The active use of daily aggregated store data—POS data that are accumulated 

automatically at customer check out points—is important for most merchandisers, even for 

those without a membership system.  Most traditional methods of analyzing POS data 

specify market response function after the range of products is limited to a specific category 

and the number of product is smaller than the number of records (days).  This category-

based approach is useful when applied to products from well-recognized categories depending 

on the validity of the assumed categories.  However, it cannot be applied to all products in a 

store, particularly to products that are purchased infrequently over observational periods.  It 

is possible to lose useful information from store data when using the category-based 

approach. 

By contrast, for this purpose, it is well known that scanning entire databases creates room 

for possibly discovering unexpected hidden patterns of joint purchases, which would bring 

new insights for marketing management by understanding the market baskets or shopping 

contexts of their customers.  The POS data in a store contain records of the number of sales, 

prices, and promotions for 8,000 products.  The direct use of these variables as covariates to 

explain sales is prohibited because the data is sparse and includes many zeros, and the size of 

the covariate matrix in the market response function is intractably large, that is, the entire data 

of a POS is Big Data.  Even when the model can be estimated, overfitting occurs due to the 

so-called “N < P” problem, where N and P, respectively, refer to the numbers of samples and 

covariates.  Thus, we need to generate smaller-sized datasets in some ways, for example, by 

decomposing larger ones into several datasets or reducing the dimension of the data matrix. 

In this study, we relax these restrictions and do not assume category by applying entire 

products.  The proposed model is composed of two sub-models.  The first sub-model uses 

the topic model to reduce the dimension of the original data space by decomposing it into a 

prespecified number of sub-datasets and uncovers a hidden structure by aggregating 
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individual product purchases with store POS data, to which end we apply the disaggregated 

data model (topic model) to aggregated data.  The second module solves the N<P problem 

by reducing the dimension of the covariate space, to which end we propose a hierarchical 

factor regression model interpretable as a Bayesian canonical correlation model to estimate 

the market structure in a lower-dimensional space between the dependent variable and the 

covariates, where market response functions are estimated regularly given that there are not 

many zeros in the reduced dimensional space.  Finally, the market structure in the high-

dimensional original data space is recovered by converting the estimated structure in a 

reduced-dimensional space to the original space.  An overview of the proposed model is 

shown in Figure 1. 

 

Figure 1: Overview of Model 

 

In the next section, we apply the topic submodel to aggregated sales data and generate 

sub-datasets, each of which contain purchases pertaining to each topic.  We interpret topic as 

shopping context in our study.  These datasets already have smaller dimensions compared to 

those of the original data space because it is likely that products sales are not allocated to 

every topic evenly. 

In Section 3, conditional on the datasets for topics, we use the second submodel to 

reduce dimensionality further to ensure that it is feasible to estimate topic-wise market 

response functions for individual topics. More specifically, topic-wise market response 

functions for products are estimated by using covariates related to variables of the products 

that belong to a given topic.  This market response structure is estimated in a reduced-

dimensional space and is then converted to the original space to extract sets of operational 

covariates that affect sales.  In Section 4, we report an empirical study performed using POS 

data.  The concluding remarks are given in Section 5. 

 

2. Dimension Reduction Using Topic Model 

2.1. Decomposing Aggregated Sales into Sub-sales by Shopping Context 

Consumers have reasons when they purchase products in their shopping trips.  Their 
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motivations, in other words, contexts, are buried in aggregated sales.  For example, out of 

50 sales of a chocolate, 15 could be consumers purchasing for themselves, 25 for gifting 

purchased jointly with a card, and 10 for cooking purchased jointly with flour.  The 

decomposition of total sales into several contexts, that is, topics, leads to better 

understanding of the market and helps design efficient marketing strategies by targeting sub-

sales in various contexts and conducting marketing to meet heterogeneous needs in the 

corresponding topics.  We employ the topic model, which has been applied successfully to 

text analysis of natural language processing, for accommodating the latent topics in 

aggregated sales data. 

The topic model is a reduced-dimensional model that has been applied successfully to text 

analysis for determining the frequency of “words” in “documents.”  We employ the latent 

Dirichlet allocation (LDA) model developed by Blei et al. (2003), which is well-established 

in natural language processing and used in a variety of disciplines.  The LDA model is a 

generative model that allows for sets of observations to be explained by unobserved groups, 

explaining why some parts of the data are similar.  It is based on the assumption that each 

document can be viewed as a mixture of various latent topics, where the topics follow a 

multinomial distribution over words.  Let |  denote the i-th word in document d and 

|  the latent topic of the i-th word in document d.  The model assumes that the 

vocabulary (v) distribution of |  in topic k follows a multinomial distribution 

( | 	~	 | ) and |  follows a multinomial distribution ( | 	~	 ) in 

document d.  Then, the model describes the probability that vocabulary v appears in 

document d and is represented as the sum of the products of topic distribution and 

vocabulary distribution in K possible ways: 

      | |
1 1

| | |
K K

v k k d
k k

p v d p v k p k d  
 

   .              (2) 

The most common method of estimating the parameters |  and |  is Bayesian 

inference by using data augmentation of latent parameter z by way of full conditional 

posterior density to evaluate the posterior density of these parameters.  When there is a 

large volume of text data like, as our study, Gibbs sampling of the parameters requires a 



6 
 

considerable amount of time.  Therefore, we employ a collapsed Gibbs sampling, which 

analytically uses the natural conjugate of the prior distribution to integrate |  and | .  

{ | , 1, … , } is the vocabulary distribution in topic k, and { | , 1, … , 	  is the 

topic distribution in document d. 

We first apply the topic model to POS data so that one unit of an item purchased on each 

day in a store is allocated to one of the topics (segments) based on information about joint 

purchase with other items.  That is, the number of sales of each product at time t is 

decomposed into several topics, and datasets are constructed for topic-wise market response 

functions. 

In this study, one unit of an item purchased in each day in a store is allocated to one of the 

topics (segments) based on information about joint purchase with other products.  The 

vocabulary v of text analysis corresponds to a product “j” and the document d  means the 

day t in our study. Let jtY  denote the number of sales of product “j” on day “t” and

 1 2, ,..., '
tt t t nY Y YY  denote the vector of the total number of sales on the same day.  In the 

context of text analysis, tY  corresponds to the frequency vector of tn
 
types of 

vocabularies.  The frequency of jtY  of the j-th vocabulary is allocated to each topic 

proportional to the probability that each word from that vocabulary, i.e., unit sale of j-th 

product, belongs to each topic       , ,
1 1

| | |
K K

j k k t
k k

p j t p j k p k t  
 

   .  Based on the 

allocation probability , ,j k k t  , we divide jtY
 

into sub-sales in topic k, denoted by ( )k
jtY , 

according to the allocation 

 ( )
, ,

k
jt jt j k k tY Y E                                                          (3) 

so that the aggregated sales are represented by the sum of topic-based sub-sales 

( )

1

K
k

jt jt
k

Y Y


                               (4) 

2.2. Topic-wise Market Response Function 

We have “k Bags” of product sales according to topics and we build market response 

functions for the respective topics.  Contrary to the usual market response functions, we 
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incorporate variables pertaining to other products in the same topic in the form of covariates 

because the topics are extracted from joint purchase information with other products.  Then, 

we define the market response function of product item j in topic k, ( )k
jtY , not only by its 

marketing variables such as price and promotions, but also other items’ sales and their 

marketing variables:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 ' ' , 1,...,k k k k k k k k k

jt j j jt m mt m mt jt j
m j m j

Y Y t T  
 

      α X γ X 　　 (5) 

 

where jtX  is the vector of the marketing variables of item j,  ( )k
mtY is the number of sales 

of different items ( m j )allocated similarly to topic k, and ( )k
mtX  is the vector of their 

marketing mix variables. 

The forecast is defined by the sum of predictors constructed in each topic: 

(1) (2) ( )ˆ ˆ ˆ ˆ K
it it it itY Y Y Y                             (6) 

This step reduces the dimensions of the variable because the distribution of allocation 

probability  , ,j k k t 
 

is usually not uniform but is concentrated on a few topics. 

 

3. Dimension-Reduced Model for High-dimensional Market Responses 

3.1 Hierarchical Factor Regression 

Next, we consider the regression model for each topic between high-dimensional variables 

( )kY  and ( )kX  in topic k.  We delete the superscript (k) for ease of reading hereafter. 

Now, in case of the multivariate regression model for yP -dimensional Y   and xP -

dimensional X  

 Y FX e ,                                                                    (7) 

we consider the situation that the structural coefficient matrix F  cannot be estimated 

directly due to high dimensionality of the original variable spaces.  We define a class of 

model for the high-dimensional variables of Y   and X .  First, we assume that they, 

respectively, have dimension-reduction models for defining their marginal distributions
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 | ,p Y U a
 

and  | ,p X V b
 

 

, 1,...,i i yi i N  Y Ua η 　　                                     (8) 

, 1,..., ,i i xi i N  X Vb η 　
                                       

(9) 

where ia
 
is a  y yf P -dimensional vector and U is a y yP f matrix, and ib is 

 x xf P -dimensional vector and V is a x xP f matrix.  By stacking the vectors with 

respect to i to generate matrix forms, we have  

y Y Ua η                                                                 (10) 

,x X Vb η                                                               (11) 

where the augmented vectors are Y : yP N ,  a : yf N ,  yη : yf N , X : xP N ,  b :

xf N , and yη : yf N , and we assume that  0,y yN η ～  and  0,x xN η ～ . 

As for the joint distribution of Y  and X , we assume that they are conditionally 

independent of the common parameter H.  That is, 

       , | , , , | , , | , , | ,p p p pY X U a V b Y U a H X V b H H a b .          (12) 

More specifically, in the structure equation (1) between Y  and X   in the original space, e is 

the error with zero mean and assumedly independent of X . 

Instead of dealing with (7), following Brynjarsdotter and Berliner (2014), we assume that there 

is a relationship in the reduced-dimensional space in terms of the hierarchical multivariate 

regression model: 

 a Hb ε                                                                     (13) 

where the regression coefficient matrix H  is of the order y xf f  and the error matrix ε is 

of the order yf N  whose columns are assumed to independently follow  20,N I . 

This reduced-dimensional space is called “crystallized space” in Brynjarsdotter and 

Berliner (2014).  The motivation of the model is that the projection of X  onto Y  is 

infeasible, and direct inference on (7) is not applicable. They estimated H  by using 

relationship (13) for forecasting Y  as ˆ ˆ ˆ ˆ ' Y UHb UHV X  under the restriction of 
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orthogonality on V  in spatio-temporal modeling, but the estimation of structure F   was out 

of the scope of their study.  This model assumes the presence of a relationship H  between 

Y  and X , and they are independent conditionally of H .  This model can be interpreted as 

a Bayesian multivariate canonical correlation model. 

In the above, H  plays the intermediate roles of a  and b  in the form of regression, and 

Y  and X  are independent conditionally of H .  That is, by considering that a  and b  

are interpreted as the principal components or factors of Y  and X , they are determined by 

using their relations by way of H . 

3.2 Recovering Structure in High Dimensional Space 

When X  is given, structural equation (7) defines the conditional distribution.  Under 

the assumption of conditional expectation of error term as  | 0xE e , the conditional 

probability measure of Y  on X   yields 

   | |x xE E  Y FX e FX                                       (14) 

Then, by taking expectation with respect to the probability measure of X , 

    | i.e.x x x y xE E E Y F X μ Fμ　                        (15) 

In terms of variables in the reduced-dimensional space,     |x xE E E Y Y Ua
 
and 

 xE X Vb , (15) induces the following relationship 

Ua FVb .                                                          (16) 

In turn, the matrix F  of the structure connecting the original variables in high-dimensional 

sample space is obtained by 

  1
' ' ' '

F Uab V Vbb V                                           (17) 

The joint prior density of factor model parameters    | , y yp p U a ,

   | , x xp p V b ,    | a ap p a , and    | b bp p b are also specified as normal-

inverted gamma conjugate priors for Gibbs sampling, as is applied to standard factor models, 

e.g., by Lee (2007).  Then, the posterior distributions of  , | ,p U a H Y
 

and 

 , | ,p V b H X
 

are derived by using the procedure of Bayesian factor models. Under the 
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assumption of normal-inverted gamma prior distribution for    | h hp p H , 

 2| , ,p H a b
 

is also available analytically, as is the posterior density of coefficient 

parameters in the normal linear regression model. 

Then, the joint posterior density of all types of parameters in models (7)–(17) is 

represented by 

 
       
         
             

2

2

2

2

, , , , , , , , , | ,

, | , , | , | , , | , , ,

| , , | , | ,

| | |

y x h

y y x x

a a b b h h

p

p p p p

p p p p p

p p p p p p p









   

    

      

U a V b H F Y X

U a H Y V b H X H a b F U a V b

a b H U a V b

a b H

　　

　　　

　　　

          (18) 

We note that  | , , ,p F U a V b  is a degenerated density restricted as  , , , , 0 U a V b F
 

in (17).  In order to recover F  in the original high-dimensional space, we use the marginal 

posterior density  | ,p F Y X , which is marginalized numerically in terms of the MCMC 

procedure given by (18).  The steps of the MCMC procedure are given in the appendix. 

We propose a doubly reduced dimensional regression model by applying sequentially the 

topic model first and the hierarchical factor regression model thereafter.  We call this topic-

hierarchical factor regression in the following. 

 

4. Empirical Application 

4.1 Data 

We applied the model to daily POS (point of sales) data of a store recorded between May 

6, 2002, and May 6, 2003.  The dataset contains information about 7,912 items over 363 

days, and a total 3,720,419 purchases were recorded.  POS data contain daily numbers of 

sale for purchased items and their price, and three types of marketing promotional variables, 

namely, two types of display and a feature.  There are no records of marketing variables for 

items that were not purchased. 

4.2 Topic Extraction 

When we applied the first topic model, we set the number of topics k = 10.  The LDA 

model was estimated by using the collapsed Gibbs sampler under the conjugate Dirichlet prior 
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distributions of hyper parameters 	and	 	for topic distribution and vocabulary distribution, 

respectively. 

	~	 , … , , and 	~	 	 , … ,  

Following Griffiths and Steyvers (2004), we set  = 50/k and 	 	0.1 for every element of 

their vectors. 

The results of the topic model are given in Table 1 and shown in Figure 1. Table 1 lists the 

items with the top 20 highest probabilities, ,
ˆ

j k  for k = 1, …, 10, where the item is denoted 

as the product number in braces and the category name is shown.  For example, the first item 

in Topic 1, “[6453]milk” indicates a product with identification number 6453 in the product 

items. 

 

Table 1: Categories and Items in Topics 

 

 

4.3 Topic-Hierarchical Factor Regression for a Milk Product 

We applied the model to the sale of a brand of milk (JANcode:4902705065161), denoted 

Y , for developing the market response model.  Thus, we consider the regression model with 

a univariate dependent variable.  Y contains 21,482 total sales in 344 days.  The first 324 

days were used for estimation and last 20 days were used to validate the estimate. 

 

Figure 1: Sales of a Milk Product (JAN: 4902705065161) 

 

Figure 1 shows the time series plot of Y .  The product is sold regularly with significant 

spikes on some days, which could be caused by store promotional activity, and the level of sales 

remains high over the summer season from July (60th day) to August (70th day). 

 

Figure 2: Averaged Topic Distribution for a Product 

 

Figure 2 shows the topic distribution of a product averaged over entire days, specifically 

defined by 
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, | , |
1

1ˆ ˆ ˆ ˆ , 1,..., ,
N

j k k j k k t
t

k K
N

   


                                    (19) 

where N = 344 and K = 10.  We can observe that the topics have nearly equal weights, 

except for the most frequent topic at k = 4 and the least frequent topic at k = 8. 

 

Figure 3: Topic Sales Decomposition 

 

Figure 3 shows the time series of topic-wise sales, ( ) , 1,...,10k
jtY k  , which were generated 

by using the averaged topic distributions.  The time series patterns exhibit seasonality with 

ranges from one to three months, although a few of the ranges contain overlapping periods.  

Topic 8 is rather exceptional with regularly sold pattern of relatively small numbers.  We note 

that the allocated numbers are not integers in general according to formula (3). 

To be specific, Topic 1 refers to the sales between September and October, and the sales 

between January and March are classified in Topic 2.  Topic 4 refers to the sales in the summer 

vacation period between July and August and the period between January and February, and 

Topic 10 refers to the sales at the start of the fiscal year in April.  The sales in summer and 

early autumn are covered by Topic 7, and so on. 

Combined time series plots of topics with averaged topic distribution and LDA topic model 

decompose the sales over the entire year into clearly distinguished submarkets defined by the 

seasons, and among all, summer is most important season for the target product as mostly four 

times sales as other topics. 

 

4.4 Model Comparison 

In empirical analysis, we set a univariate Y.  We then defined the number of reduced-

dimensional space of X as 20xf   for every topic.  According to the topic-hierarchical 

factor regression model, the estimated dependent variable in topic k is calculated by evaluating 

the posterior means of related parameters and covariates 

    1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ' ' ' 'k k k k k k k k k k k k
t t tY E E


 F X U a b V V b b V X   (17) 
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and the posterior density of forecast is defined as  
10

( )

1

ˆ ˆ| |k
t t

k

p Y Data p Y Data


 
  

 
 . 

In the above, the covariate ( )k
tX  in topic k contains four marketing variables, in addition to 

the joint sales of other products and their marketing variables. 

The model fit is evaluated by the root mean square error   2

1

ˆ /
S

s s
s

RMSE Y E Y S


 

for in-sample and out-of-sample data, where the posterior mean  ŝE Y  is used as a point 

forecast.  Table 2 shows the RMSEs of in-sample and out-of-sample forecasts for various 

models. 

The first model is topic-hierarchical factor regression.  The structural regression model 

defined by (7) in the original space contains 39,560 parameters, obtained as 7,912 item numbers 

multiplied by five types of covariates, that is, the target item’s marketing variables and the sale 

of jointly purchased other items and their marketing variables. 

 

Table 2: Model Fit and Comparisons 

 

The model’s performance can be improved by extracting effective covariates to reduce the 

number of model parameters and increase the degrees of freedom.  Then, the second proposed 

model contains a reduced number of covariates after eliminating covariates with insignificant 

parameter estimates.  We evaluated the posterior density  |p DataF  of the regression 

coefficient, and we can apply the 95% credible interval test for determining the significance of 

coefficients to increase the number degrees of freedom.  Specifically, we selected covariates 

with estimated coefficient parameters based on the criterion that 95% of the central region of 

posterior density does not include zero.   

Table 2 shows the total number of effective parameters, and Table 3 shows the number of 

covariates for the respective models in the 10 topics.  In total, 2,131 parameters remained as 

effective variables.  The number of parameters decreased dramatically to approximately 5.4% 

of the number of parameters in the original space.  The numbers of selected covariates in the 

respective topics were almost proportional to the volumes of data allocated to the topics. 
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Table 3: Number of Effective Covariates 

 

Then, we re-estimate the model by eliminating insignificant variables following the same 

procedure as before.  We call this model effective topic-hierarchical factor regression. 

The third alternative model uses only the top 20 items with the highest topic probability in 

each topic, called topic regression.  This selection was followed by studies on topic model 

analysis in natural language processing, adopted usually in machine learning studies.  The 

estimation process is the same, except the 2nd reduced-dimensional factor model is not used.  

The fourth alternative model assumes a category a priori for the target item and uses only items 

from the same category.  This model has been used conventionally in marketing, and it is 

called category regression.  This is the benchmark model.  This category contains 48 items.  

In addition to four marketing variables, the model contains 47 times 5 covariates of other items 

sales and their marketing variables, so 239 is the total number of covariates. 

Table 2 shows the results of model fit in terms of RMSE.  First, the conventionally used 

category regression model performs the worst in in-sample and out-of-sample forecasts.  This 

means that shopping contexts expressed by the topics are likely to have important roles, and the 

narrowly defined category-based analysis loses useful information hidden in purchase records.  

The comparison of (i) topic-factor and (iii) topic regression models indicates rather mixed 

results in the in-sample and the out-of–sample forecasts. Although both models use information 

of all items when topics are extracted, (ii) uses only 20 variables in regression, and it might lose 

information in forecasting, even though it is adequate to explain in-sample data. 

Finally, the comparison of (i) the topic-factor and (ii) the efficient topic-factor models 

clearly supports (ii), in particular, for out-of-sample forecasting. 

 

Figure 4:Model Fit and Forecasting 

 

 

4.5 Efficient Topic-Factor Reduced Dimensional Regression 

Model (ii) is supported as the best, and thus, we report the estimation results of that model 

in greater detail in this section. 
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Figure 5: Estimated Sales in Topics 

 

Table 4(1), (2): Feature Selection for Topics 

 

Figure 5 shows the in-sample fit for the respective topics.  In addition to fit for total sale 

in Figure 4, we observe that the model performs well for every topic.  Table 4(1) and (2) 

indicate the results of feature selection in terms of 95% credible interval for recovered posterior 

density.  The significant estimates of “sales”, “price”, “promotion 1,” and “promotion 2” are 

tabulated up to ten in the order of absolute magnitude.  The estimated coefficients are given 

after the name of category and product ID number in parentheses.  The coefficient means 

elasticity for log-transformed sales and price, and it holds approximately for other binary 

promotional variables.  We observed the following: 

(i) The sales variables of other products are identified as effective covariates across 

topics.  This is reasonable because we modeled the regression by using joint 

purchase patterns. 

(ii) “price” variables are chosen as effective in topic 6 and in many cases in topic 10.  All 

of them are cross elastic, and self-elasticity is not significant.  The price of this 

targeted product does not change much.  Conventional category regression shares 

this result for self-elasticity. 

(iii) “promotions” are effective for topics 5, 6, 7, 9, and 10. 

(iv) Topic 9 has the most number of effective covariates.  The sales of foodstuffs are 

selected as features, and we interpret this fact as milk is purchased not for drinking 

but for cooking.  Promotions of chocolate and other drinks are effective. 

(v) In topic 4, which has the most volume, the sales of water and juice are synchronized 

with the sale of the target product and are opposite to the sales of chocolates and 

cookies from June to August.  This may be consistent with the seasonal pattern of 

summer from June to August. 
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Table4(1): Feature Selection for Topics 

 

 

Table 4(2): Feature Selection for Topics 

 

 

5. Concluding Remarks 

The volume of high-dimensional data is growing with progress in network technology. 

These high-dimensional data contain many zeros, that is, sparse in data spaces, as is the case 

with POS data in our study.  That is, the daily number of product items purchased is 

considerably smaller than that of items displayed in a store, and many items are recorded as 

having zero sales and information about their price and promotional variables are not 

recorded, thus producing yet another data entry with zero value.  POS data are used to find 

effective relationships between product items and promotional variables to facilitate efficient 

management.  In these cases, statistical models that accommodating simply high-

dimensional data do not work. 

We proposed a regression model for high-dimensional and sparse data.  In the proposed 

model, two types of dimension-reduction models, namely, topic model and canonical 

correlation model, are used sequentially.  More specifically, the store-level aggregated sales 

and marketing mix data are analyzed using a model that combines the topic model with the 

regression model.  First, the topic model decomposes sales of product items into several 

topics by allocating each unit sale (“word” in text analysis) in a day (“document”) into one of 

topics based on joint purchase information. 

Next, conditional to the topic model estimates, the market response function of an item is 

estimated by using information regarding variables on the items inside a topic.  That is, we 

construct topic-wise market response functions of an item by using explanatory variables not 

only of said item but also of the other items belonging to the same topic.  In addition, the 

explanatory variables include not only marketing mix variables but also the numbers of sales 

of product items in the same topic.  We can expect unusual findings from these response 

functions because sets of related items are not considered in advance and they are not 

obtained by conventional category-based market response functions. 

Finally, we forecast the sales of an item by summing up respective predictors constructed 
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for topics.  We compared the model performance with that of conventionally predetermined 

category regression model to show that (i) our model has the advantage of offering 

managerial implications obtained from topic-wise regressions defined according to their 

contexts, and (ii) it has better fit than does the category regression model. 

We have basically kept the number of topics for topic model and the numbers of factors 

for hierarchical factor regression model as fixed in the empirical application, mostly due to 

the restrictions on computational times.  By using R under usual PC environment, it took 

four days for estimating topic model, and two days for the part of hierarchical factor 

regression model when numerically calculating inverse of large scale matrix to recover the 

structure in original space.  We leave this model selection problem for future research by 

developing more efficient computation procedures, although we currently recognize that the 

estimation procedure of second submodel’s part could be eased if we employ parallel 

computing for topic wise market response functions. 
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Appendix: MCMC Algorithm 

1. LDA Topic Model 

Under the prior distributions of Dirichlet distributions on hyperparameter 

α, β 	~	 1, … , , and 	~	 	 1, … , , where M is the number of 

documents and K is the number of topics. Following Griffiths and Steyvers (2004), we set the 

vectors with α = 50/K and  = 0.1. Then, we used the collapsed Gibbs sampler to obtain 

posterior density in the closed form as 

 
\ , \ ,
, ,\ , \ ,

, , \ , \ ,
, ' '

' '

| , , , ,
d i d i

k v v d k kd i d i
d i d i d i d i

k v d k
v k

n n
p z k w v

n n

 
 

 
  

  
w z α β , 

where ,d iw  means word i in document d, ,d iz is the latent topic of word i in document d, 

d  
means topic distribution of document d,  and k is the vocabulary distribution of topic 

k. \ ,d iw is the set of all words from the text data except word , , \ ,d iz is the set of all topics 

except , ,  is the number of words in document d, \ ,
,
d i

k vn
 
refers to the frequency of 

word v in topic k except for that of word i in document d, and \ , \ ,
, ,
d i d i

k k v
v

n n  . 

 

2. Hierarchical Factor Regression Model 

 

2.1 Prior Density 
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2.2 Conditional Posterior Distribution for MCMC 
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Table 1: Categories and Items in Topics 

 

 

  

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

[6453]milk [7262]milk [4912]milk [6453]milk [4808]milk

[3630]milk [6455]milk [6453]milk [6615]water [4787]yogurt
[6524]energy drink [3630]milk [3630]milk [4928]yogurt [7262]milk
[6795]cola [6795]cola [4787]yogurt [3630]milk [3596]milk
[3596]milk [3596]milk [6795]cola [6795]cola [6795]cola
[6800]carbonated flavor [6800]carbonated flavor [3596]milk [3596]milk [3630]milk
[4787]yogurt [5506]cup noodle [6800]carbonated flavor [6800]carbonated flavor [6800]carbonated flavor
[4928]yogurt [5879]yogurt [6455]milk [4787]yogurt [4928]yogurt
[6622]Janpanese tea and [4950]yogurt [4928]yogurt [4933]yogurt [3597]milk
[463]yogurt [3835]cup noodle [463]yogurt [3496]cup noodle [4786]milk
[6798]Chinese tea drink [463]yogurt [3712]cola [3729]Janpanese tea and[5506]cup noodle
[3496]cup noodle [3833]cup noodle [5895]coffee drink [3238]water [6798]Chinese tea drink
[453]yogurt [5887]yogurt [6798]Chinese tea drink [1846]coffee drink [4933]yogurt
[2895]mayonnaise [6798]Chinese tea drink [3497]cup noodle [3706]cola [463]yogurt
[2162]vegetable juice [5946]lactic acid bacteria[3496]cup noodle [6798]Chinese tea drink [6524]energy drink
[6787]water [4997]yogurt [5946]lactic acid bacteri [3483]cup noodle [5946]lactic acid bacteria b
[3706]cola [3735]sports drink [6833]coffee drink [463]yogurt [431]water
[3497]cup noodle [3605]yogurt [3605]yogurt [6622]Janpanese tea and[1064]yogurt
[5873]milk [6622]Janpanese tea and[3164]cup noodle [5946]lactic acid bacteria[3288]Janpanese tea and 
[5946]lactic acid bacteria [4915]milk [3319]sports drink [3497]cup noodle [3712]cola

Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

[7262]milk [6453]milk [408]cup noodle [4808]milk [6455]milk

[6795]cola [3630]milk [411]cup noodle [3630]milk [3630]milk
[3630]milk [3596]milk [3630]milk [7262]milk [7262]milk
[6800]carbonated flavor [4787]yogurt [3635]milk [3596]milk [4808]milk
[3596]milk [6795]cola [409]cup noodle [6795]cola [3596]milk
[4928]yogurt [6800]carbonated flavor [3850]cup noodle [6800]carbonated flavor [4912]milk
[4787]yogurt [4928]yogurt [5756]soy [3236]Chinese tea drink [6795]cola
[3735]sports drink [3497]cup noodle [2895]mayonnaise [3735]sports drink [6800]carbonated flavor
[6624]Janpanese tea and [463]yogurt [6746]salad oil [4787]yogurt [4787]yogurt
[5887]yogurt [3496]cup noodle [3735]sports drink [5873]milk [6453]milk
[4808]milk [6798]Chinese tea drink [3706]cola [463]yogurt [5946]lactic acid bacteria b
[451]personal ice (cream) [5946]lactic acid bacteria[4243]soup [3712]cola [6822]carbonated flavor
[453]yogurt [4912]milk [2397]lactic acid bevera [5879]yogurt [6557]energy drink
[463]yogurt [4997]yogurt [6624]Janpanese tea an[3706]cola [4997]yogurt
[3706]cola [4209]Janpanese tea and[3497]cup noodle [3734]sports drink [463]yogurt
[5506]cup noodle [3503]cup noodle [2725]soy [5895]coffee drink [5887]yogurt
[6787]water [3712]cola [5887]yogurt [6787]water [4928]yogurt
[6622]Janpanese tea and [1064]yogurt [3496]cup noodle [6798]Chinese tea drink [6872]cola
[450]personal ice (cream) [6833]coffee drink [4289]instant curry [5946]lactic acid bacteria[5895]coffee drink
[5879]yogurt [3279]energy drink [4224]salad oil [5887]yogurt [5506]cup noodle
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Table 2: Model Fit and Comparisons 

 

 

Table 3: Number of Effective Covariates 

 

 

  

Model RMSE1(In Sample) RMSE2(Out of Sample) Number of Covariates

(a) Topic-Factor Dimension-Reduced 50.41 14.403 39,560(200)

(b) Effective T-F Dimension-Reduced 45.622 8.168 2131(200)

(c) Topic Regression 46.617 19.164 1000

(d) Category Regression 93.472 33.956 239

Topic:k 1 2 3 4 5 6 7 8 9 10

Number of
Variables

190 205 235 284 179 281 286 74 239 158
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Table 4(1): Feature Selection for Topics 

 

 
  

Topic Sales Coef Price Coef Prom1 Coef Prom2 Coef Prom3 Coef

[4891]miso 2.318 [3064]rice cracker 0.079 [3064]rice cracker -0.019 [2092]tomato juice -0.089 - -

[4929]coffee drink 2.184 [3523]cup noodle 0.030 [1639]cup noodle 0.010 [235]yogurt -0.043 - -
[5025]rice cracker 2.141 [7211]barbecue sauce -0.001 - - - - - -
[5577]suger 2.093 - - - - - - - -
[3249]energy drink 1.946 - - - - - - - -
[7034]coffee drink 1.942 - - - - - - - -
[1927]family ice -1.885 - - - - - - - -
[3287]fruit juice 1.764 - - - - - - - -
[494]sauce 1.709 - - - - - - - -
[7384]premium ice 1.649 - - - - - - - -

Topic Sales Coef Price Coef Prom1 Coef Prom2 Coef Prom3 Coef

[5790]biscuit and cookie 3.000 [6012]cheese -0.014 [2245]snack 0.154 [5550]cup noodle -0.260 - -

[4919]family ice (cream) 1.948 - - [2553]chocolat -0.090 [3128]cup noodle -0.123 - -
[3846]cup noodle 1.764 - - - - [2112]instant soup 0.108 - -
[1345]chocolat 1.764 - - - - - - - -
[2727]soy 1.680 - - - - - - - -
[1826]dressing 1.674 - - - - - - - -
[89]coffee drink 1.532 - - - - - - - -
[3587]personal ice 1.462 - - - - - - - -
[6860]instant coffee -1.460 - - - - - - - -
[1413]biscuit and cookie -1.389 - - - - - - - -

Topic Sales Coef Price Coef Prom1 Coef Prom2 Coef Prom3 Coef

[1287]cooked curry -2.088 - - [3225]salad oil 0.486 [2031]dressing -0.178 - -

[4825]lactic acid bacteria b 1.913 - - - - [2030]dressing 0.145 - -
[1138]mayonnaise -1.607 - - - - - - - -
[494]sauce 1.516 - - - - - - - -
[6402]chocolat 1.379 - - - - - - - -
[3116]candy 1.352 - - - - - - - -
[469]dessert -1.316 - - - - - - - -
[166]personal ice (cream) 1.294 - - - - - - - -
[3559]cheese 1.272 - - - - - - - -
[883]carbonated flavor 1.128 - - - - - - - -

Topic Sales Coef Price Coef Prom1 Coef Prom2 Coef Prom3 Coef

[258]water 3.963 [3182]cup noodle 0.165 - - [869]carbonated flavor -0.049 - -

[5304]biscuit and cookie -3.253 - - - - - - - -
[4309]instant curry 3.042 - - - - - - - -
[3731]carbonated flavor 3.008 - - - - - - - -
[4792]family ice (cream) 2.941 - - - - - - - -
[5184]chocolat -2.626 - - - - - - - -
[2334]snack -2.54 - - - - - - - -
[4094]fruit juice 2.431 - - - - - - - -
[6122]chocolat 2.328 - - - - - - - -
[6832]cola 2.314 - - - - - - - -

Topic Sales Coef Price Coef Prom1 Coef Prom2 Coef Prom3 Coef

[7897]instant noodle 2.174 [5046]dessert 0.036 [4710]biscuit and cookie 0.451 [5255]chocolat -0.328 [2227]rice cracker -0.108

[6815]black tea drink -1.998 [4983]health food -0.015 [3419]snack 0.276 [5916]family ice -0.047 - -
[3020]dressing 1.781 [2297]snack 0.000 166]Principle of Chinese food -0.187 [3015]mayonnaise -0.020 - -
[4297]cooked curry 1.584 - - - - [6451]100% fruit juice -0.006 - -
[6735]miso 1.538 - - - - - - - -
[6862] 1.528 - - - - - - - -
[7717]energy drink 1.528 - - - - - - - -
[2486]candy -1.443 - - - - - - - -
[505]candy -1.413 - - - - - - - -
[6211]candy 1.410 - - - - - - - -

1

2

3

4

5
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Table 4(2): Feature Selection for Topics 

 

 

  

Topic Sales Coef Price Coef Prom1 Coef Prom2 Coef Prom3 Coef

[4124]coffee drink 2.021 [7430]dessert -0.290 - - [3783]carbonated flavor 0.066 - -

[7196]soup -1.678 [1560]rice cracker 0.174 - - - - - -
[3019]dressing -1.673 [3184]cup noodle -0.086 - - - - - -
[6540]100% fruit juice -1.613 [7148]family ice (cream) 0.000 - - - - - -
[713]yogurt 1.580 - - - - - - - -
[5884]vegetable juice 1.517 - - - - - - - -
[2493]candy 1.445 - - - - - - - -
[7158]family ice (cream) 1.364 - - - - - - - -
[6143]chocolat 1.327 - - - - - - - -
[1125]Principle of Chinese 1.265 - - - - - - - -

Topic Sales Coef Price Coef Prom1 Coef Prom2 Coef Prom3 Coef

[1345]chocolat 2.085 [3631]dessert 0.013 [1634]cup noodle 1.035 [3994]dessert -0.518 - -

[2064]regular coffee 1.754 [4686]chocolat 0.003 [1878]regular coffee -0.532 [6777]suger -0.117 - -
[7166]yogurt 1.668 - - [3196]cup noodle 0.333 [6874]vegetable juice -0.036 - -
[1264]instant curry 1.667 - - [1142]Chinese food 0.272 [6781]bread crumb -0.007 - -
[6269]soup 1.661 - - [3345]coffee drink 0.171 - - - -
[4097]rice cracker -1.464 - - [1273]cooked curry -0.105 - - - -
[6518]Janpanese tea and
barley tea drink

1.429 - - - - - - - -

[6103]chocolat -1.422 - - - - - - - -
[6428]yogurt 1.393 - - - - - - - -
[6122]chocolat 1.362 - - - - - - - -

Topic Sales Coef Price Coef Prom1 Coef Prom2 Coef Prom3 Coef

[3589]milk -0.489 - - - - - - - -

[6620]coffee drink 0.424 - - - - - - - -
[6772]suger 0.232 - - - - - - - -
[3493]cup noodle -0.231 - - - - - - - -
[2493]candy 0.225 - - - - - - - -
[5579]suger -0.207 - - - - - - - -
[3101]chocolat 0.205 - - - - - - - -
[359]personal ice (cream) 0.205 - - - - - - - -
[89]coffee drink 0.170 - - - - - - - -
[4786]milk 0.164 - - - - - - - -

Topic Sales Coef Price Coef Prom1 Coef Prom2 Coef Prom3 Coef

[1086]Principle of Chinese 1.415 - - [6891]rice cracker -0.965 [6316]energy drink 0.470 - -

[4263]Principle of Chinese 1.291 - - [6053]chocolat -0.646 [6317]energy drink -0.345 - -
[1149]salad oil 1.193 - - [2598]chocolat -0.532 [2167]vegetable juice -0.313 - -
[1230]instant curry 1.185 - - [1680]cup noodle -0.442 [2090]tomato juice 0.143 - -
[6734]instant soup -1.072 - - [2534]chocolat -0.334 [2095]tomato juice 0.088 - -
[4839]cheese 1.058 - - - - [2156]vegetable juice -0.054 - -
[5988]dressing 0.981 - - - - [2959]dressing 0.010 - -
[274]candy 0.978 - - - - - - - -
[743]vegetable juice 0.967 - - - - - - - -
[1578]health food -0.947 - - - - - - - -

Topic Sales Coef Price Coef Prom1 Coef Prom2 Coef Prom3 Coef

[4297]cooked curry 2.070 [476]dessert -0.379 [4643]chocolat 0.121 [3895]cup noodle 0.278 - -

[494]sauce 1.979 [271]chocolat 0.332 [4407]barley tea -0.012 [3394]dessert 0.098 - -
[3287]fruit juice 1.578 [2659]chewing gum 0.210 - - [5483]soup -0.073 - -
[7176]yogurt -1.340 [5007]personal ice (cream -0.168 - - [3393]dessert 0.012 - -
[3068]candy 1.283 [4407]barley tea 0.089 - - - - - -
[3847]cup noodle 1.181 [6584]100% fruit juice 0.078 - - - - - -
[3010]dressing -1.159 [1672]cup noodle 0.073 - - - - - -
[6936]candy 1.014 [1621]snack -0.069 - - - - - -
[7260]dessert -0.960 [5021]yogurt -0.055 - - - - - -
[6831]carbonated flavor 0.936 [6586]vegetable juice 0.053 - - - - - -

6
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Figure 1: Overview of Model 
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Figure 1: Sales of a Milk Product (JAN: 4902705065161) 

 

 

 

Figure 2: Averaged Topic Distribution for a Product 
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Figure 3: Topic Sales Decomposition 
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Figure 4: Model Fit and Forecasting 

(a) Topic-Hierarchical Factor Regression 

 

(b) Efficient Topic-Hierarchical Factor Regression 

 

(c) Topic Regression 

 

(d) Category Regression 
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Figure5: Estimated Sales in Topics 
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