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WAVELET ANALYSIS OF SPATIO-TEMPORAL DATA

YASUMASA MATSUDA

Abstract. This paper aims to provide a wavelet analysis for spatio-temporal

data which are observed on irregularly spaced stations at discrete time points,
where the spatial covariances show serious non-stationarity caused by local
dependency. A specific example that is used for the demonstration is US pre-
cipitation data observed on about ten thousand stations in every month. By

a reinterpretation of Whittle likelihood function for stationary time series, we
propose a kind of Bayesian regression model for spatial data whose regressors
are given by modified Haar wavelets and try a spatio-temporal extension by

a state space approach. We also propose an empirical Bayes estimation for
the parameters, which is regarded as a spatio-temporal extension of Whittle
likelihood estimation originally defined for stationary time series. We con-
duct the extended Whittle estimate and compare mean square errors of the

forecasts with those of some benchmarks to evaluate its goodness for the US
precipitation data in August from 1987-1997.

1. Introduction

This paper focuses on analysis of spatio-temporal data, which is observations of
regular time series at huge number of stations scattered irregularly over space. We
aim at proposing a method of modelling, estimation and kriging for the kind of
spatio-temporal data whose spatial covariances are not necessarily stationary.

Several kinds of models for space time covariances have been proposed to analyze
spatio-temporal data. The simplest one is a separable covariance that is given
by the product of spatial and temporal covariances, which makes it possible to
give a covariance model separately in space and time. It provides an easy way
to identify models for spatio-temporal data by fitting the product of the temporal
and spatial covariances given by time series models such as autoregressive and
moving average (ARMA) models (Brockwell and Davis, 1991) and spatial models
such as Matérn class (Banerjee et al., 2004), respectively. Separable covariances,
however, restrict covariance structures in the very narrow range in which temporal
correlations on each spatial point must coincide. Nonseparable covariances can
provide a practical class of space time covariances, but require a careful treatment
to guarantee the positive definiteness of the covariance functions. Gneiting (2002)
provides a sufficient condition for the positive definiteness and propose a useful
class of space time covariances that satisfy it.

After a choice of space time covariance models, estimation of the parameters
in the space time covariance model is a next step. Since the Gaussian maximum
likelihood requires calculations of determinant and inverse of the covariance matrix
whose dimension is the number of space time points of the data, MLE is in practice
difficult to apply especially for huge data set. In order to avoid this computational

Key words and phrases. empirical Bayes estimate. Haar wavelet. Kalman filter. kriging.

periodogram. spectral density function. state space model. Whittle likelihood function.

1



2 YASUMASA MATSUDA

difficulty, several methods have been proposed in the literatures. Typical ones that
represents them are the covariance tapering by Kaufman et. al. (2008), predictive
process approach by Banerjee et. al. (2008) and the composite function approach by
Bai et. al. (2012). The composite approach, which is regarded as the combined one
of the other two methods, gave the most satisfactory performances in their empirical
studies, while the number of space time points that the predictive approach can
cope with is the largest of the three methods. In fact, the numbers of space time
points that the three papers analyzed in their empirical studies were about 15,000,
7,000 and 3,000, respectively, and we see that as many as several thousand space
time points are supposed in the composite approach, which is regarded as the one
to represent the existing methods.

In this paper, we have an interest in analysis of huge data set observed at sta-
tions scattered irregularly over so broad space such as all over US continent that
stationary spatial covariances are not necessarily satisfactory models. Specifically,
our main object is to consider a method of modelling spatio-temporal data over as
many as several hundred thousand space time points that shows crucial nonstation-
arity in spatial covariances, for which growing attentions have been paid recently
in areas of both natural and social sciences by rapid progress of data collection
technologies. The existing methods, which basically assume stationary covariances
over as many as several thousand space time points, do not suppose the kind of
spatio-temporal data as their objects of modelling.

This paper proposes a modelling by wavelets, which is an approach completely
different from the existing methodology of covariance model fitting by maximizing
a likelihood approximated in the clever ways to avoid large dimensional matrix
operations. We will employ a kind of Bayesian regression model with regressors
given by wavelets whose regression coefficients have prior distributions, which is
considered as an extension of Fourier analysis of time series (Brockwell and Davis,
1991). The use of wavelets was originally proposed for analysis of nonstationary
time series by Nason et. al. (2000). This paper extends the wavelet model from
time series to spatio-temporal data by using the Haar wavelets that are modified
to let them empirically orthogonalized under irregular sampling.

The striking features of the wavelet model for spatio-temporal data are the fol-
lowing three points. The first one is that it can express nonseparable space time
covariances given with nonstationary spatial covariances and spatially dependent
temporal covariances. The second one is that the use of empirically orthogonal-
ized Haar wavelet makes it possible to calculate the likelihood function, kriging
and forecasting efficiently by just three dimensional matrix operations in Kalman
recursions, which means it opens a way of analysis for huge data set larger than
several hundred thousand. The final one is that it allows any numbers of NAs by
regarding the data as samples of continuous stochastic process expanded by the
modified Haar wavelets.

US precipitation data observed at 11918 stations scattered over US continent
in August from 1987 to 1997 is a typical example that has the features we focus
in this paper. The space time points are about 70,000 with clear appearance of
crucial nonstationarity caused by local dependency of rain falls and the existence of
frequent NAs. We fit the wavelet models to the data and examine the goodness of fit
by performances of kriging and forecasting in order to demonstrate our methodology
by the wavelet modelling.
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2. Fourier analysis of stationary time series

Let {Xt}, t ∈ Z be stationary time series with the covariance function

γ(θ, h) = Cov(Xt, Xt−h),

for a parameter θ ∈ Θ. We assume that the spectral density function f(θ, λ) that
satisfies

γ(θ, h) =

∫ π

−π

exp(ihλ)f(θ, λ)dλ,(1)

exists.
To estimate the parameter θ ∈ Θ by the observations X = (X1, . . . , Xn)

′, we

usually use the maximum likelihood estimator (MLE) θ̂ that maximizes the log
likelihood function

logL(θ) = −1

2
|Γn(θ)| −

1

2
X ′Γn(θ)

−1X,

where Γn(θ) is the n by n covariance matrix whose (i, j)th element is given by
γ(θ, i − j). Since the calculation of the log likelihood function is sometimes time
consuming especially for large sample sizes because of large dimensionality of the
covariance matrix, we often use an approximated likelihood called Whittle likeli-
hood function given by

logLw(θ) = −1

2

[n/2]∑
k=1

{
log f(θ, ωk) +

I(ωk)

f(θ, ωk)

}
,(2)

where ωk = 2πk/n, which is called Fourier frequency, and I(λ) is the periodogram
given by the squared discrete Fourier transform (DFT) on λ, namely by

I(λ) =
1

2πn

∣∣∣∣∣
n∑

t=1

Xt exp(−iλt)

∣∣∣∣∣
2

.(3)

We will give an interpretation for the Whittle likelihood function to show in-
tuitively how it approximates the exact likelihood function. Though many time
series researchers have examined the asymptotic equivalence between the estima-
tors that maximize logL(θ) and logLw(θ) (see e.g. Proposition 10.8.3 of Brockwell
and Davis, 1991), the theories do not directly provide how the exact likelihood is
related with the Whittle likelihood.

Let us consider what model the Whittle likelihood function is the exact likelihood
function for. For independent random variables αk, k = −n/2, . . . , n/2 with mean
0 and variance f(θ, ωk), let us consider the following model

X̃t =

√
2π

n

[n/2]∑
k=−[n/2]

αk exp(iωkt),(4)

which is regarded as a Bayesian regression model whose regression coefficients have
the prior distribution with no error terms. Since the regressors exp(iωkt) for k =
−[n/2], . . . , [n/2] constitute an orthonormal basis that satisfies

1

n

n∑
t=1

exp(iωpt)exp(iωqt) = δpq,
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for Kronecker delta δpq, the DFT of X̃t given by√
1

2πn

n∑
t=1

X̃t exp(−iωkt)(5)

reduces to αk. It follows naturally that the likelihood function for X̃t is equal to
the Whittle likelihood function (2) by considering the likelihood for DFT instead of

X̃t. In other words, the Whittle likelihood in (2) for Xt is regarded as the likelihood

for X̃t in (4), and the use of the Whittle likelihood function for MLE is equivalent

to approximating Xt by X̃t.
The approximation of Xt by X̃t is justified in the sense that they have asymp-

totically equivalent covariance functions. In fact, by simple calculation, we have

Cov(X̃t, X̃t−h) =
2π

n

[n/2]∑
k=−[n/2]

exp(ihωk)f(θ, ωk),(6)

which is a Riemannian approximation for γ(θ, h) in (1).
The frequency domain expression in (4) for time series, which we derive from an

interpretation for the Whittle likelihood, plays a significant role for extension from
time series models to those for spatio-temporal data.

3. Extension to spatio-temporal data

This section proposes a model for spatio-temporal data by an extension of the
frequency domain expression for time series in (4). The crucial point for the ex-
tension is to find an orthogonal basis for irregularly spaced data points, as the
orthogonality of the sinusoidal functions for time series plays a significant role in
deriving the Whittle likelihood.

3.1. Modified Haar wavelets. For the extension of the model in (4) from time
series to spatio-temporal data, it is necessary to find a new orthogonal basis under
the inner product defined by observation stations for spatio-temporal data. Let
sj , j = 1, . . . , n be the locations of observation stations of spatio-temporal data,
which we suppose are scattered irregularly over [0, 1]2. For two functions f and g
defined on sj , let us define the inner product by

< f, g >:=
n∑

j=1

f(sj)g(sj).(7)

The sinusoidal function exp(iωs) no more constitutes an orthogonal basis under
the inner product except for the cases when the stations are regularly spaced to
provide a mesh data.

We construct an orthogonal basis under the inner product by modifying the two
dimensional Haar wavelets. Let us start from the introduction of the one and two
dimensional Haar wavelets that constitute an orthogonal basis over [0, 1] and [0, 1]2,
respectively, under the Lebesgue measure. The mother wavelet over [0, 1] denoted
as ψ(x), which is shown in the upper of Figure 1, produces the orthogonal basis on
L2([0, 1]) given by

ϕk,j(x) := ψ(2kx− j),
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Figure 1. The Haar wavelets on [0, 1] and on [0, 1]2.

for k = 0, 1, . . . , j = 0, . . . , 2k − 1, under the Lebesgue measure (see Theorem 1.1 of
Ogden (1997)). In other words, the one dimensional Haar wavelets satisfy∫

[0,1]

ϕk,j(x)ϕk′,j′(x)dx = ck,jδkk′δjj′

for the positive constant ck,j = 4−k.
Similarly the mother wavelets on [0, 1]2, which are given by the three functions

ψ1(x), ψ2(x) and ψ3(x) defined over [0, 1]2 in lower part of Figure 1, produce the
orthogonal basis on L2([0, 1]2) given by

ϕk,i,j(x1,x2) :=(
ψ1(2

kx1 − i, 2kx2 − j), ψ2(2
kx1 − i, 2kx2 − j), ψ3(2

kx1 − i, 2kx2 − j)
)
,(8)

for k = 0, 1, . . . , i, j = 0, . . . , 2k − 1, under the Lebesgue measure (see Ogden(1997,
page 167)). In other words, the two dimensional Haar wavelets satisfy∫

[0,1]2
ϕ′k,ij(x1, x2)ϕk′,i′j′(x1, x2)dx1dx2 = Ck,ijδkk′δii′δjj′

for the positive definite diagonal matrix Ck,ij = 4−kI3.
Let us modify the two dimensional Haar wavelets to let them constitute the

orthogonal basis under the empirical measure in (7) for irregularly spaced stations
sj , j = 1, . . . , n scattered over [0, 1]2. Let N(D) be the number of the stations
included in D ⊂ [0, 1]2, and Dk,ij ⊂ [0, 1]2 be the support for the Haar wavelet
ϕk,ij , which is give by

Dk,ij = {(x1, x2)|i/2k ≤ x1 ≤ (i+ 1)/2k, j/2k ≤ x2 ≤ (j + 1)/2k} ⊂ [0, 1]2.

Definition 1. In the subregions F l
k,ij , G

l
k,ij in Dk,ij over which the lth component

of the Haar wavelet ϕk,ij takes values 1 and -1, we modify the values 1 and -1 to
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those given by √√√√√N
(
Gl

k,ij

)
N

(
F l
k,ij

) and −

√√√√√N
(
F l
k,ij

)
N

(
Gl

k,ij

) ,
respectively, which we denote as ψ̃l

k,ij(x1, x2) for l = 1, 2, 3. Then the modified Haar
wavelet is defined by

ϕ̃k,ij(x1, x2) =
(
ψ̃1
k,ij(x1, x2), ψ̃

2
k,ij(x1, x2), ψ̃

3
k,ij(x1, x2)

)
.(9)

By simple calculation, it is confirmed that the modified Haar wavelets constitute
a block orthogonal basis under the empirical measure in (7), namely, satisfy

n∑
p=1

ϕ̃′k,ij(sp)ϕ̃k′,i′j′(sp) = Lk,ijδkk′δii′δjj′ ,(10)

where Lk,ij is not a diagonal matrix except for mesh data cases, which means that
the three components are not necessarily mutually orthogonal, and is not always
positive definite. Since the positive definiteness of Lk,ij is crucial for modelling of
spatio-temporal data, we introduce a sufficient condition for it.

Here we show a sufficient condition to guarantee the positive definiteness of
3 × 3 matrix Lk,ij in (10), or equivalently the linear independence of the three n

dimensional vectors given by ϕ̃k,ij =
(
ϕ̃′k,ij(s1), . . . , ϕ̃

′
k,ij(sn)

)′
. Let us denote the

four disjoint equal-area sub-regions in Dk,ij generated from the division of Dk,ij by
the lines x1 = (i+ 0.5)/2k and x2 = (j + 0.5)/2k as El

k,ij , l = 1, 2, 3, 4.

Proposition 1. For observation stations of s1, . . . , sn scattered irregularly over
[0, 1]2, let ϕ̃k,ij(s), k = 0, 1, . . . , i, j = 0. . . . , 2k − 1 be the modified Haar wavelets.
A sufficient condition for the 3× 3 matrix Lk,ij to be positive definite is that each
of the four disjoint sub-regions El

k,ij , l = 1, 2, 3, 4 in Dk,ij contains at least one
observation station.

The proof is given in Section 6. Let P be the set of (k, i, j)s that satisfy the
sufficient condition for the positive definiteness of Lk,ij . In the following subsec-

tions, the block orthogonal basis ϕ̃k,ij for (k, i, j) ∈ P plays a role in spatial and
spatio-temporal extension of the frequency domain expression in (4) for time series.

3.2. Wavelet model for spatio-temporal data. We shall extend the frequency
domain expression in (4) for time series to that for spatial and moreover spatio-
temporal models by employing the modified Haar wavelets in (8) that constitute
the block orthogonal basis under the empirical measure in (7). Let us start from the
modelling of spatial data where observation stations are located in sp, p = 1, . . . , n
scattered irregularly over [0, 1]2, for which we define P as the set of (k, i, j)s that
guarantee the positive definiteness of Lk,ij in (10) by Proposition 1. In analogy
with the frequency domain expression in (4) for time series, we extend it to spatial
data model by

Z(sp) =
∑

(k,i,j)∈P

ϕ̃k,ij(sp)βk,ij + εp,(11)

where εp is independent and identically distributed random variables with mean
0 and variance σ2, which we call nugget effect, and βk,ij is the three dimensional
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independent random vector with mean 0 and variance matrix Ak,ijI3 for the 3× 3
identity matrix I3, which is a wavelet version of spectral density in analogy with
the time series expression in (4).

Unlike the stationary covariances given by (6) for (4), our proposed model in
(11) has nonstationary covariances. In fact, by simple calculations, the covariance
function is evaluated as

Cov (Z(sp), Z(sq)) =
∑

(k,i,j)∈P

ϕ̃k,ij(sp)ϕ̃
′
k,ij(sq)Ak,ij + σ2δpq,

which shows nonstationarity by the nature of the Haar wavelets.
Next we shall conduct a spatio-temporal extension from the spatial model in

(11) by state space models. Suppose that , for time points t = 1, . . . , T , stations
are located in st,p, p = 1, . . . , nt that are scattered irregularly over [0, 1]2, on which
we observe Z(t, st,p). We allow st,p to depend on time to account for an existence

of NA. Let ϕ̃k,ij(t, s) be the modified Haar wavelets defined for the stations at
time t, and Pt for the set of (k, i, j) that satisfy the sufficient condition for the
positive definiteness of Lk,ij in (10). Let P0 = ∩T

t=1Pt. For each t, we propose the
spatial model in (11) to Z(t, st,p) and conduct temporal extension by regarding the
regression coefficients βk,ij as the state vector that follows autoregressive models.
Let βk,ij(1) be the initial state vectors that are three dimensional independent
random vectors with mean 0 and variance matrix given by Ak,ijI3, we propose the
state space models for spatio-temporal data by

Z(t, st,p) =
∑

(k,i,j)∈P0

ϕ̃k,ij(t, st,p)βk,ij(t) + εp(t),(12)

βk,ij(t+ 1) = ρk,ijβk,ij(t) + uk,ij(t),

for t = 1, . . . , T , where uk,ij(t) is the three dimensional independent random vectors
with mean 0 and variance matrix given by

(1− ρ2k,ij)Ak,ijI3,

and we assume that |ρk,ij | < 1.
The model in (12) can express non-separable space time covariance functions.

In fact, by simple calculations, we have

Cov (Z(t, u), Z(t− h, v))(13)

=
∑

(k,i,j)∈P0

ϕ̃k,ij(t, u)ϕ̃
′
k,ij(t− h, v)Ak,ijρ

h
k,ij + σ2δuvδt,t−h,

from which the spatial and temporal covariances are not separated unless ρk,ij is a
constant.

3.3. Parametric modelling of sapce time covariance functions. We shall
propose a specific parametric form for the functions Ak,ij and ρk,ij in the wavelet

model (12). Let Dk,ij be the support for the modified Haar wavelet ϕ̃k,ij . Since

Ak,ij and ρk,ij are the quantities that describe the strength for the wavelet ϕ̃k,ij
defined over Dk,ij , they can be regarded as mappings from Dk,ij to R. The point
for the modelling is how we find the parametric mappings to describe the space
time covariance function in (13).
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A sufficient condition for (13) to be well defined by the convergent series is that

∞∑
k=0

max
i,j

|Ak,ij | <∞,

and |ρk,ij | < 1. As a model that satisfies the sufficient condition, we propose, for
0 < τk,ij < 1 and Bk,ij that is positive and uniformly bounded,

Ak,ij = Bk,ij(1− τk,ij)τ
k
k,ij .

From the functional form in (13) for h = 0, it can be seen that Bk,ij and τk,ij specify
a magnitude and a smoothness for spatial covariance structures, respectively, while
ρk,ij describes temporal correlation structures.

We shall identify Bk,ij , τk,ij and ρk,ij with the functions f1, f2 and f3 defined
over [0, 1]2 through the integral averages

|Dk,ij |−1

∫
Dk,ij

fm(x)dx,(14)

for m = 1, 2 and 3, respectively, where |Dk,ij | is the area of the domain Dk,ij . The
underlying function fm(x) is given by a Fourier expansion

fm(x) = a0 +
∑
p∈Q

{
am,p cos(ω

′
px) + bm,p sin(ω

′
px)

}
,(15)

where ωp is a frequency (2πip/C1, 2πjp/C2)
′ for the set Q of mesh points (ip, jp)

except for the origin over the upper half plane of R2 and positive constants C1

and C2. It follows that the Fourier expansion for each of the underlying functions
provides each of Bk,ij , τk,ij and ρk,ij with the 2|Q|+1 dimensional parametric form,
which will give a specific parametric form for the space time covariance function as
a result.

3.4. Whittle likelihood estimate. This section considers estimation for a pa-
rameter that describes the scalar functions Ak,ij and ρk,ij in the spatio-temporal
model in (12), when we observe in the stations st,p, t = 1, : . . . , T, p = 1, . . . , nt.
To show explicitly the dependency on the parameter, we express the functions as
Ak,ij(θ) and ρk,ij(θ) for the parameter θ ∈ Θ.

In analogy with the discrete Fourier transform for time series, let us define the
wavelet transform for the spatial data Z(t) = Z(t, st,1), . . . , Z(t, st,nt))

′ at time t.

Let Φ̃k,ij(t) be the nt × 3 matrix given by
(
ϕ̃′k,ij(t, st,1), . . . , ϕ

′
k,ij(t, st,nt)

)′
. Then

the wavelet transform (WT) is defined by the ordinary least square (OLS) estimator

for the coefficient on the regressor Φ̃k,ij(t) for (k, i, j) ∈ P0, namely by

wk,ij(t) =
(
Φ̃′

k,ij(t)Φ̃k,ij(t)
)−1

Φ̃′
k,ij(t)Z(t),(16)

which is the 3 dimensional vector that corresponds with the OLS estimator for
βk,ij(t) in (12).

By the block orthogonality of Φ̃k,ij(t) shown in (10), the state space model for
Z(t, st,p) in (12) reduces to, for (k, i, j) ∈ P0,

wk,ij(t) = βk,ij(t) + fk,ij(t),(17)

βk,ij(t+ 1) = ρk,ij(θ)βk,ij(t) + uk,ij(t),
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where fk,ij(t) is the independent three dimensional random vector with mean 0 and

variance matrix σ2(Φ̃′
k,ij(t)Φ̃k,ij(t))

−1.
Let us evaluate the likelihood function for the WT that follows the state space

expression in (17) by Kalman recursion. Put

µk,ij(t) = E(βk,ij(t)|wk,ij(t), . . . , wk,ij(1)),

Qk,ij(t) = V ar(βk,ij(t)|wk,ij(t), . . . , wk,ij(1)),

mk,ij(t+ 1) = E(βk,ij(t+ 1)|wk,ij(t), . . . , wk,ij(1)),

Pk,ij(t+ 1) = V ar(βk,ij(t+ 1)|wk,ij(t), . . . , wk,ij(1)),

which are evaluated by the Kalman recursion when we initialize by mk,ij(1) = 0
and Pk,ij(1) = Ak,ijI3, namely by

vk,ij(t) = wk,ij(t)−mk,ij(t),

Fk,ij(t) = Pk,ij(t) + σ2
(
Φ̃′

k,ij(t)Φ̃k,ij(t)
)−1

,

µk,ij(t) = mk,ij(t) + Pk,ij(t)F
−1
k,ij(t)vk,ij(t),(18)

Qk,ij(t) = Pk,ij(t)− Pk,ij(t)F
−1
k,ij(t)Pk,ij(t),

mk,ij(t+ 1) = ρk,ijµk,ij(t),

Pk,ij(t+ 1) = ρ2k,ijQk,ij(t) + (1− ρ2k,ij)Ak,ijI3,

for t = 1, . . . , T and (k, i, j) ∈ P0.
Define the 3× 3 periodogram matrix in analogy with (3) for time series by

Ik,ij(t) := (wk,ij(t)−mk,ij(t, θ)) (wk,ij(t)−mk,ij(t, θ))
′
.

Then the likelihood function for the WT is evaluated as

logLww(θ) := −1

2

T∑
t=1

∑
(k,i,j)∈P0

{
tr

(
Ik,ij(t)F

−1
k,ij(t, θ)

)
+ log |Fk,ij(t, θ)|

}
,(19)

which we call the wavelet version of Whittle likelihood function in analogy with
(2) for time series. The parameter θ that describes the functions Ak,ij and ρk,ij in
(12) is estimated by maximizing the Whittle likelihood function, which provides an
efficient algorithm conducted just by the three dimensional matrix operations.

3.5. Kriging and forecasting. Following the spatio-temporal data analysis lit-
eratures, we define estimation for the values on unknown points at 1 ≤ t ≤ T as
kriging and that for the values on any points at t > T as forecasting. Both kriging
and forecasting can be conducted efficiently as a result of the Kalman filtering in
(18). The kriging for a spatial point u at time 1 ≤ t ≤ T is given by∑

(k,i,j)∈P0

ϕ̃k,ij(t, u)µk,ij(t)

for which the mean squared error is evaluated as∑
(k,i,j)∈P0

ϕ̃k,ij(t, u)Qk,ij(t)ϕ̃
′
k,ij(t, u) + σ2,

while the forecasting for a spatial point u at time T + 1 is given by∑
(k,i,j)∈P0

ϕ̃k,ij(T, u)mk,ij(T + 1)
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for which the mean squared error is evaluated as∑
(k,i,j)∈P0

ϕ̃k,ij(T, u)Pk,ij(T + 1)ϕ̃′k,ij(T, u) + σ2.

3.6. Mean function estimation. We have been considering the case when the
mean function is assumed to be 0 for spatio-temporal data. Here we will consider
the case when the mean function is not ignored. Let g(t, s) be a mean function at
time t and spatial point s. We will consider the case when the mean function given
by a regression form is inserted in the spatio-temporal model in (12), which is given
by

Z(t, st,p) = g(t, st,p) +
∑

(k,i,j)∈P0

ϕ̃k,ij(t, st,p)β(t) + εt,p,(20)

g(t, st,p) =

q∑
i=1

Xi(t, st,p)αi(t),

for independent variables Xi(t, s) and temporally dependent regression coefficients
αi(t), i = 1, . . . , q.

First, we assume that the case when Ak,ij and σ2 are known in (20). Suppose
we aim to estimate the coefficients α(t0) = (α1(t0), . . . , αq(t0))

′ at a temporal point
t0, 1 ≤ t0 ≤ T . Let α̂(t0) be the initial estimate for α(t0), which is typically the
OLS

α̂(t0) = {X ′(t0)X(t0)}
−1
X ′(t0)Z(t0).

Follow the recursion:

(1) Calculate the wavelet transform in (16) at t0 for the residual data given by

Z̃(t0, st0,p) = Z(t0, st0,p)−
q∑

i=1

Xi(t0, st0,p)α̂i(t0),(21)

for p = 1, . . . , nt0 .
(2) Evaluate µk,ij(t0) in the recursion (18) when we initialize the Kalman filter

as mk,ij(t0 − 1) = 0 and Pk,ij(t0 − 1) = Ak,ij .
(3) Calculate the residual process by

Ẑ(t0, st0,p) = Z(t0, st0,p)−
∑

(k,i,j)∈P0

ϕ̃k,ij(t0, st0,p)µk,ij(t0)

for p = 1, . . . , nt0 .
(4) Estimate α(t0) by the OLS for the residual

α̂(t0) = {X ′(t0)X(t0)}
−1
X ′(t0)Ẑ(t0).

(5) Return to (1).

Conducting the recursion until it converges, we have the best linear unbiased estima-
tor for α(t0) given by the converged one under the covariance structures identified
by Ak,ij and σ

2, which we call the wavelet version of generalized least square (GLS)
estimator.

In the practical situation when Ak,ij and σ2 are unknown, we need to estimate
them in prior to estimate the mean function. For the residual with the OLS for
α(t0), apply the Whittle likelihood estimation to the OLS residual to obtain the
estimators for θ and σ2. And replacing the parameters with the estimators in the
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recursive procedures, we estimate the mean function by following the recursion with
the estimated parameters until it converges.

4. Empirical examples

This section examines the empirical performances of the wavelet modelling pro-
posed in Section 3 by applying to real and simulated data. First, we apply it to
US precipitation data, which are observations over about 70,000 space time points
that shows crucial nonstationarity in the spatial covariances, to catch the empirical
properties. Next, we conduct simulation studies to confirm whether they still hold
generally for simulated samples generated by the exact model that we identify in
the real analysis.
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Figure 2. The locations of 11918 stations for US precipitation data.

4.1. Applications to real data. Let us start from real data analysis by the
wavelet methods. We focus on US precipitation data, which are observations of
the total monthly precipitation collected at 11918 stations scattered irregularly all
over US, and will examine the empirical performances of the wavelet modelling by
using specifically the yearly observations in August from 1987 to 1997.

The data are available in the web site:

http://www.image.ucar.edu/Data/US.monthly.met/USmonthlyMet.shtml.

The locations of the observation stations are shown in Figure 2, in which it is found
that they are irregularly scattered all over US continent. All of the stations do not
necessarily conduct observation every month. Table 1 shows the numbers of the
stations that have the observations in August from 1987 to 1997, from which we
find that NAs happened frequently.

We fit the wavelet model in (20) to the yearly precipitation in August for the
ten years from 1987 to 1996, where we take constant and height of the stations as
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year 87 88 89 90 91 92 93 94 95 96 97
no. 7042 7118 7176 7079 7009 7055 7043 6927 6823 6716 6747

Table 1. The numbers of stations that have the observations for
US monthly precipitation in August from 1987 to 1997.

regressors for the mean function. Based on the fitted model, we conduct kriging
and forecasting for some spatial points in 1997 to examine the goodness of fit.

Parametric model in (14) for Ak,ij and ρk,ij in the wavelet model (12) must be
specified for application to the yearly data in August. We will employ the specific
case when we identify Ak,ij by

Ak,ij = Bk,ij(1− τ)τk

for a constant τ that does not depend on k, i, j. It means that the smoothness for
the spatial covariances is assumed to be constant all over the US continent, while
the magnitudes of them and temporal correlations may be spatially dependent by
spatial dependencies of B and ρ, respectively And for the specific modelling of the
spatial dependent Bk,ij and ρk,ij , we set C1 = C2 = 1.2 with Q = {(i, j)||i| ≤ 2, 0 ≤
j ≤ 2} ∩ {(i, j)|i > 0 or j > 0} in (15), which means that we employ the model
with the 50 parameters for the data size of 69,988 as a result.

We conduct Whittle estimation in (19) to estimate the parameters in the model
when the mean function estimated by OLS is deleted from the original data in each
year from 1987 to 1996. And with the estimated parameters, we conduct kriging
and forecasting for some points in 1997 when we estimate the mean function by the
recursive procedure in section 3.6. For the locations of the points for kriging and
forecasting, we chose locations with high temporal correlations as well as randomly
scattered points to see the forecasting performances in relations with the temporal
correlations.

As a result of Whittle estimation, τ and σ2 are estimated as 0.83 and 6.34,
respectively. Since the 24 parameters to describe each of Bk,ij and ρk,ij are too
many to show the estimated values here, we summarise them in Figure 3, which
shows the figures of the underlying functions in (14) for Bk,ij and ρk,ij identified
with the estimated parameters. Table 2 describes the averages of the squared errors
of kriging and forecasting for 100 points randomly chosen from 6747 stations in 1997
and those of forecasting for 125 points in 1997 that have the temporal correlations
identified as being larger than 0.95 by the underlying function for ρk,ij . Note that
kriging and forecasting were calculated by the model estimated with the data until
1996, as if the selected points in 1997 for kriging and forecasting were unknown.
As the benchmarks for comparisons, the weighted averages of the data in 1997 and
1996 for kriging and forecasting, respectively, are calculated by the normal kernel
with the bandwidths given by 0.1, 1, 2 and ∞, where the one with the bandwidth
∞ means just the sample average of the data.

Figure 3, which are the identified figures of the underlying functions for Bk,ij

and ρk,ij , detects well the spatial dependencies of the spatial covariances and the
temporal correlations. And Table 2 shows that the wavelet model has the best
performances in kriging and forecasting except for the one case, which means the
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Figure 3. The identified figures of the underlying functions in
(14) for the magnitudes Bk,ij and temporal correlations ρk,ij in
the upper and lower, respectively.

wavelet weighted average
bandwidth 0.1 1 2 ∞
kriging 6.61 6.75 7.07 8.27 18.08
forecast 1 20.23 67.91 42.53 36.41 18.22
forecast 2 6.65 14.38 13.73 12.52 9.20

Table 2. MSEs of the kriging and forecasting 1 for 100 randomly
chosen points in 1997 and those of the forecasting 2 for 125 points
that have the temporal correlations identified as being larger than
0.95.

reasonable goodness of fit for the identified wavelet model. The temporal corre-
lation at the location for forecasting has crucial effects for the forecasting perfor-
mance. Precisely, the forecasting performances of the weighted averages depend
on the choice of the bandwidth in relations with the temporal correlations, while
the wavelet method adjusts automatically to the temporal correlation to provide a
better forecast.



14 YASUMASA MATSUDA

wavelet weighted average
bandwidth 0.1 1 2 ∞
kriging 8.15 14.59 16.23 27.27 32.51

(1.10) (2.04) (2.49) (7.16) (9.05)
forecast 1 29.58 47.60 36.03 33.94 32.50

(7.68) (10.56) (9.41) (9.52) (9.05)
forecast 2 15.58 21.15 19.21 21.83 22.90

(9.91) (12.84) (11.93) (16.50) (19.29)
Table 3. Averages and standard deviations in parenthesis of
MSEs of kriging and forecasting for the data points in the 11th
year, where the locations of the points for forecasting and kriging
were selected to correspond exactly with those used in the real
analysis in Table 2.

4.2. Simulation studies. In order to confirm the observations obtained through
the applications to US precipitation data, we will conduct simulation studies by
the exact model identified in the real analysis.

We simulate 100 sets of spatio-temporal data for 11 years by the estimated model
in the real analysis when the locations of the stations are designed to be exactly
the same as those of original data. We did not include the mean function in the
simulation model for simplicity. By the first 10 years data set, we conduct Whittle
likelihood estimation in (19) for the parameters as if they were unknown and com-
pare the estimators with the true values to evaluate the estimation performances.
And for the last 11th year spatial data set, we conduct kriging and forecasting
based on the estimated model to see their performances in comparisons with the
benchmarks by the weighted averages.

We will summarize the results of the estimation, kriging and forecasting for the
100 sets of simulated data to show the performances as simple as possible. Figure
4 shows the figures of median, 5% and 95% points of the estimated underlying
functions for B and ρ with the true values as functions of latitudes when longitude
is fixed as 36.5. Table 3 shows the averages and standard deviations of the mean
squared errors of kriging and forecasting for the 100 points and those of forecasting
for the 125 points, where the locations of the points for forecasting and kriging were
selected to correspond exactly with those used in the real analysis.

Figure 4 demonstrates the reasonable performances of Whittle estimators. The
estimators have almost no bias and the true values are included within the 90%
intervals empirically evaluated by the 100 estimators. Table 3 confirms the obser-
vations that we stated through the results in Table 2. The averages of MSEs for
all the cases in Table 3 are similar to those of Table 2, which are all included in the
intervals within one standard deviations. The wavelet method automatically ad-
justs to the temporal correlation in the point for forecasting to provide reasonable
kriging and forecasting, while the weighted averages require careful choice of the
bandwidth in relations with the temporal correlation that is usually unknown.

5. discussion

This paper propose a model for spatio-temporal data by an interpretation of
Whittle likelihood function in stationary time series. The striking feature of the
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Figure 4. The true values and 5%, 95% and 50% points of the
estimators as functions of longitudes with the latitude being 36.5.
The upper and lower figures show those of the underlying functions
for the magnitude and temporal correlation, respectively.

proposed model is that it opens a way for analysis of nonstationary huge spatio-
temporal data set larger than several hundred thousand by the Kalman recursion
for Whittle likelihood estimation, kriging and forecasting.

We state some points that are to be studied in the futures. First one is the
nonstationary extension of the stationary temporal covariances that depend just on
the time lag h in the nonseparable space time covariances in (13). In order to allow
nonstationary also in the temporal dimension, there are two possible ways. One is to
apply random walk model instead of the autoregressive model to the state vectors in
(12). This approach is expected to be effective for nonstationary data in both space
and time when the sampling is conducted regularly in time but irregularly in space
such as yearly collection of land price data at many locations, which are popular in
social science areas. The other one is the use of three dimensional Haar wavelets
to construct an orthogonal basis under irregular sampling over three dimensional
space. Then the model by the modified three dimensional Haar wavelets directly
describe nonstationary covariances not only in space but also in time not via the
state space temporal extension. This approach is expected to be effective for spatio-
temporal data collected irregularly in both space and time, which are frequently
observed in natural science areas.
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Second one is the use of continuous wavelets other than the Haar wavelets.
Since the Haar wavelets are used as a basis for our modelling, kriged and forecast
values model are necessarily piecewise constants. An extension of Haar wavelets to
continuous ones that can keep the orthogonality under irregular sampling must be
conducted to have continuous estimates. Presently the extension is possible only
in mesh data cases.

Third one is a multivariate extension of our wavelet model, which we expect is
possible by the method of coregionalization (Banerjee et. al. (2004)). It requires
intensive considerations in the space time points where a part of components of
observations are missing,

Finally, it is a challenging problem to construct asymptotic theories for the
wavelet models in the fixed domain asymptotics (see Stein (1999)), when the length
of time is fixed. The problem reduces to the very simple one to estimate the
parameters c and δ in independent samples Xk, k = 1, . . . , n with mean 0 and
variance cδk for 0 < δ < 1. The difficulty lies in the asymptotic decay of the
variance as n tends to infinity.

6. proof

In this section, we will prove Proposition 1. Put N(El
k,ij) = nl for l = 1, 2, 3, 4.

Let us prove by contradiction. Assume that Lk,ij is singular. Since ϕ̃k,ij is linearly
dependent, there exist the non-zero constants k1, k2 and k3 that satisfy

k1
1

n1 + n2
+ k2

1

n1 + n3
+ k3

1

n1 + n4
= 0

k1
1

n1 + n2
− k2

1

n2 + n4
− k3

1

n2 + n3
= 0

−k1
1

n3 + n4
+ k2

1

n1 + n3
− k3

1

n2 + n3
= 0

−k1
1

n3 + n4
− k2

1

n2 + n4
+ k3

1

n1 + n4
= 0.

It follows that the matrix given by

B =

 1
n1+n2

1
n1+n3

1
n1+n4

1
n1+n2

− 1
n2+n4

− 1
n2+n3

− 1
n3+n4

1
n1+n3

− 1
n2+n3


has the rank that must be less than 3. By elementary row operations, the matrix
B reduces to the upper triangular matrix given by

1
n1+n2

1
n1+n3

1
n1+n4

0 − n1+n2+n3+n4

(n2+n4)(n1+n3)
− n1+n2+n3+n4

(n1+n4)(n2+n3)

0 0 −2n4(n1+n2+n3+n4)
(n1+n4)(n2+n3)

 .
n4 must be 0 to let the matrix B be singular, which contradicts the assumption
that n1, n2, n3, n4 must be all larger than 1.
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