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We consider Gaussian semiparametric estimation (GSE) for two-dimensional intrinsically stationary random fields

(ISRFs) observed on a regular grid and derive its asymptotic properties. Originally GSE was proposed to estimate

long memory time series models in a semiparametric way either for stationary or nonstationary cases. We try an

extension of GSE for time series to anisotropic ISRFs observed on two dimensional lattice that include isotropic

fractional Brownian fields (FBF) as special cases, which have been employed to describe many physical spatial

behaviours. The GSE extended to ISRFs is consistent and has a limiting normal distribution with variance inde-

pendent of any unknown parameters as sample size goes to infinity, under conditions we specify in this paper. We

conduct a computational simulation to compare the performances of it with those of an alternative estimator on

the spatial domain.

Keywords: Anisotropic Random Fields; Discrete Fourier Transform; Fractional Brownian Fields; Intrinsically

Stationary Random Fields; Spectral Density Function

1. Introduction
An intrinsically stationary random field (ISRF) has been applied for modelling of statistical dependence

in spatial data and discussed extensively both in theory and practice. See e.g. Chilès and Delfiner

(2012), Cressie (1993), Gikhman and Skorokhod (2004), Huang et al. (2011), Itô (1953), Lee et al.

(2016), Matheron (1973), Solo (1992), Stein (1999), Yaglom (1957) and the references therein. Let

{𝑋 (𝒔) : 𝒔 ∈ 𝑹𝑑} be a 𝑑-dimensional random field. Though an ISRF can be difined for any integer 𝑑,

we specialize to the two-dimensional ISRF, 𝑑 = 2 throughout this paper. Because the case of 𝑑 = 2

is much important in practice and the theoretical results developed in the subsequent sections can be

generalized for a larger 𝑑 but their derivation is prohibitively lengthy.

If the increment 𝑍𝒉 (𝒔) = 𝑋 (𝒔 + 𝒉) − 𝑋 (𝒔) for any fixed 𝒉(∈ 𝑹2) = (ℎ1, ℎ2)′ where ′ means the

transpose is a stationary random field, {𝑋 (𝒔)} is called an ISRF . Then {𝑋 (𝒔)} is characterized by

𝐸 (𝑋 (𝒔 + 𝒉) − 𝑋 (𝒔)) = 0,

Var(𝑋 (𝒔 + 𝒉) − 𝑋 (𝒔)) = 2𝛾(𝒉),
where 2𝛾(𝒉) is the variogram function (Chilès and Delfiner (2012), Cressie (1993)). If 𝑋 (0) = 0 where

0 = (0, 0)′, we have

Cov(𝑋 (𝒔), 𝑋 ( 𝒕)) = 𝛾( 𝒕) + 𝛾(𝒔) − 𝛾( 𝒕 − 𝒔). (1)

Let (𝝀, 𝒉) be the inner product, 𝜆1ℎ1 + 𝜆2ℎ2, and ‖ 𝝀 ‖ be the norm,
√
(𝜆2

1
+ 𝜆2

2
for 𝝀 = (𝜆1, 𝜆2)′

and 𝒉 = (ℎ1, ℎ2)′(∈ 𝑹2). Then if 2𝛾(𝒉) is a continuous function on 𝑹2 satisfying 𝛾(0) = 0, it has the
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spectral representation

2𝛾(𝒉) =
∫
𝑹2

1 − cos((𝝀, 𝒉))
(2𝜋)2

𝐺 (𝑑𝝀) +𝑄(𝒉), (2)

where 𝑄(𝒉) (≥ 0) is a quadratic form and 𝐺 (𝝀) is a positive, symmetric measure such that ‖ 𝝀 ‖2 𝐺 (𝝀)
is continuous at the origin and ∫

𝑹2

‖ 𝝀 ‖2

1+ ‖ 𝝀 ‖2
𝐺 (𝑑𝝀) < ∞. (3)

See Chilès and Delfiner (2012), Cressie (1993), Solo (1992), Yaglom (1957).

Hereafter we assume that 𝑄(𝒉) ≡ 0 and 𝐺 (𝝀) is absolutely continuous with density 𝑔(𝝀). Then (2)

and (3) reduce to

2𝛾(𝒉) =
∫
𝑹2

1 − cos((𝝀, 𝒉))
(2𝜋)2

𝑔(𝝀)𝑑𝝀, (4)

and ∫
𝑹2

‖ 𝝀 ‖2

1+ ‖ 𝝀 ‖2
𝑔(𝝀)𝑑𝝀 < ∞, (5)

respectively.

An ISRF is said to be isotropic if 𝛾(𝒉) depends only on ‖ 𝒉 ‖, or equivalently when 𝑔(𝝀) depends

only on ‖ 𝝀 ‖. Otherwise it is said to be anisotropic.

An interesting class of ISRFs that has been applied to spatial data analysis is a fractional Brownian

field (FBF). See e.g. Adler (1981), Mandelbrot and Van Ness (1968), Samorodnitsky and Taqqu (1994),

Zhu and Stein (2002) and the references therein for empirical or theoretical details. FBF is a Gaussian

isotropic ISRF with 2𝛾(𝒉) =𝐶 ‖ 𝒉 ‖2𝐻 , which is shown in Yaglom (1957) to correspond to

𝑔(𝝀) =𝐶𝐻𝐾𝐻 ‖𝝀‖−2−2𝐻 , (6)

where

𝐾𝐻 = 𝜋22𝐻+2Γ(𝐻 + 1)/Γ(1 − 𝐻),
𝐶 is a scale parameter and 𝐻 is called the Hurst effect, which is a spatial memory parameter with a

larger value corresponding to a stronger correlations. See Chilès and Delfiner (2012), Cressie (1993),

Huang et al. (2011), Lee et al. (2016), Matheron (1973), Solo (1992) and the references therein. 𝐻 must

be in (0, 1) to satisfy (5).

The aim of this paper is to establish asymptotic properties of Gaussian semiparametric estimation

(GSE) when it is applied to lattice samples of a class of ISRFs which includes the FBF as a special

case. Specifically we consider an ISRF whose spectral density is defined by

𝑔(𝝀) = 𝑔𝑜 (𝝀)‖𝝀‖−2−2𝐻 .

If 𝑔𝑜 (𝝀) is a constant, it reduces to FBF. If it is not a constant, especially depends on the direction of

𝝀, it is an anisotropic ISRF.

Originally GSE was proposed to estimate semiparametric long memory time series models(Künsch

(1987), Robinson (1995), Velasco (1999b)). We show that GSE is still consistent and has the limiting

normal distribution as the sample size goes to infinity for the ISRF mentioned above.

The rest of paper is organized as follows. In Section 2, we specify a class of ISRFs in a semiparamet-

ric way and adjust the original GSE for time series to that for ISRFs in the two kinds of ways. The first
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one is a straightforward extension, while the second one is modified to achieve a better performance

in finite samples to reduce bias caused by aliasing effects. Section 3 shows that the estimators are con-

sistent and have the limiting normal distribution with mean 0 and variance independent of unknown

parameters. In Section 4, we conduct some computational experiments to compare the performance of

our estimators to those of an alternative one on the spatial domain by Zhu and Stein (2002). Finally

concluding remarks are shown in Section 5. The technical lemmas and the propositions are shown in

the Supplementary Material(Yajima and Matsuda (2023)). Though some of them have already been

given by Yajima and Matsuda (2020b), they are also included in Yajima and Matsuda (2023) to make

the paper self-contained.

2. Models and estimators

Hereafter we assume that {𝑋 (𝒔), 𝒔 ∈ 𝑅2} is a Gaussian ISRF on 𝑅2 and the sampling sites are square

lattices denoted by 𝑠𝑞𝑟 = (𝑞, 𝑟), 𝑞, 𝑟 = 1, . . . , 𝑛 and, hence, the sample size is 𝑛2. Then 𝑋 (𝒔) is denoted

by 𝑋 (𝑠𝑞𝑟 ).
We have to remark the two points in these assumptions. First it is difficult but important to construct

a non Gaussian ISRF. The difficulty is in that a nonlinear transformation of an ISRF is no longer an

ISRF. If {𝑋 (𝒔)} is a stationary Gaussian random field and 𝐺 (𝑥) is a nonlinear function, {𝐺 (𝑋 (𝒔))} is

a non Gaussian stationary random field. However it does not hold if {𝑋 (𝒔)} is a Gaussian ISRF. Next

it is also interesting to derive asymptotic properties of the GSE under a diffrent sampling scheme like

irregulary spaced data or infill asymptotics(Cressie (1993)). These issues are to be considered in future.

We denote 𝑔(𝝀) by 𝑔(𝜆1, 𝜆2). We consider the following class of the density functions.

Assumption 2.1. 𝑋 (𝒔) is a Gaussian ISRF with the spectral density 𝑔(𝜆1, 𝜆2) expressed by

𝑔(𝜆1, 𝜆2) = 𝑔𝑜 (𝜆1, 𝜆2) ‖ 𝝀 ‖−2𝐻−2, 0 < 𝐻 < 1,

where 𝑔𝑜 (𝜆1, 𝜆2) is a nonnegative with 𝑔𝑜 (0, 0) > 0, symmetric, 𝑔𝑜 (𝜆1, 𝜆2) = 𝑔𝑜 (−𝜆1,−𝜆2), twice con-
tinuously differentiable function for −∞ < 𝜆1, 𝜆2 < ∞ and is bounded with bounded first and second
order partial derivatives.

If 𝑔𝑜 (𝜆1, 𝜆2) is a constant, it reduces to an FBF. Otherwise, it allows aninsotropic models that in-

clude a moving average random field of FBFs or an additive model being composed of an FBF and a

stationary random field (Yajima and Matsuda (2020a)).

Now we introduce Gaussian semiparametric estimation (GSE) of 𝐻. First we construct discrete

Fourier transforms (DFTs) of the tapered observations. Tapering observations has been helpful for both

time series and spatial data analysis (Dahlhaus (1983), Dahlhaus and Künsch (1983), Guyon (1995),

Priestley (1981)) to avoid a leakage effect or reduce bias of estimators. Following Velasco (1999a), we

define a sequence of data tapers {ℎ𝑡 : 𝑡 = 1, . . . , 𝑛}.

Definition 2.1. Let 𝑝 be a positive integer. {ℎ𝑡 : 𝑡 = 1, . . . , 𝑛} is called a sequence of data tapers of

order 𝑝 if it satisfies the following conditions.

(1) ℎ𝑡 is positive and symmetric around 𝑡 = 𝑛/2 with max1≤𝑡≤𝑛 ℎ𝑡 = 1.

(2) For any 𝑛 > 0, there exists a constant 𝑏, 0 < 𝑏 < ∞, which may depend on 𝑛 so that
∑𝑛

𝑡=1 ℎ2
𝑡 = 𝑏𝑛

holds.
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(3) For 𝑁 = 𝑛/𝑝, which we assume as an integer, the kernel 𝐷 𝑝 =
∑𝑛

𝑡=1 ℎ𝑡 exp(𝑖𝜆𝑡) satisfies

𝐷 𝑝 (𝜆) = 𝑎𝑛 (𝜆)
𝑛𝑝−1

[sin(𝑁𝜆/2)/sin(𝜆/2)] 𝑝 , (7)

where 𝑎𝑛 (𝜆) is a complex function, whose modulus is bounded and bounded away from zero,
with 𝑝 − 1 derivatives, all bounded in modulus as 𝑛 increases for 𝜆 ∈ [−𝜋, 𝜋].

A few examples of data tapers are given in the Supplementary Material included in Yajima and
Matsuda (2023). Hereafter for 𝑝 = 1, we assume ℎ𝑡 = 1 for any 𝑡. Then 𝐷1 (𝜆) reduces to the Dirichlet
kernel, given by

𝐷1 (𝜆) = exp(𝑖(𝑛 + 1)/2) sin(𝑛𝜆/2)/sin(𝜆/2).
Then we define the tapered DFT 𝑤𝑝 (𝜔 𝑗1 , 𝑗2 ) and the periodogram 𝐼𝑝 (𝜔 𝑗1 , 𝑗2 ) by

𝑤𝑝 (𝜔 𝑗1 , 𝑗2 ) =
1

2𝜋
∑𝑛

𝑡=1 ℎ2
𝑡

𝑛∑
𝑞,𝑟=1

ℎ𝑞ℎ𝑟 𝑋 (𝑠𝑞𝑟 ) exp(𝑖(𝜔 𝑗1 , 𝑗2 , 𝑠𝑞𝑟 )),

𝐼𝑝 (𝜔 𝑗1 , 𝑗2 ) = |𝑤𝑝 (𝜔 𝑗1 , 𝑗2 ) |2,

respectively, where 𝜔 𝑗1 , 𝑗2 is the bivariate Fourier frequency,

𝜔 𝑗1 , 𝑗2 = (𝜔 𝑗1 , 𝜔 𝑗2 )′ =
(

2𝜋 𝑗1

𝑛
,

2𝜋 𝑗2

𝑛

) ′
, −

[ (𝑛 − 1)
2

]
≤ 𝑗1, 𝑗2 ≤

[𝑛

2

]
,

and [𝑥] is the integer part of 𝑥. Hence (𝜔 𝑗1 , 𝑗2 , 𝑠𝑞𝑟 ) = 𝑞𝑤 𝑗1 + 𝑟𝑤 𝑗2 . Next we define the normalized
tapered DFT by

𝑣𝑝 (𝜔 𝑗1 , 𝑗2 ) =
𝑤𝑝 (𝜔 𝑗1 , 𝑗2 ){

𝐺 (𝜔2
𝑗1
+𝜔2

𝑗2
)−(𝐻+1)

}1/2
,

𝑣𝑝𝑅 (𝜔 𝑗1 , 𝑗2 ) = Re(𝑣𝑝 (𝜔 𝑗1 , 𝑗2 )),
𝑣𝑝𝐼 (𝜔 𝑗1 , 𝑗2 ) = Im(𝑣𝑝 (𝜔 𝑗1 , 𝑗2 )),

where 𝐺 = 𝑔𝑜 (0, 0)/(8𝜋2).
Now we construct the GSE based on the periodogram. We denote by 𝐺0 and 𝐻0 the true parameters,

and by 𝐺 and 𝐻 any admissible values. Then let �̃�𝑝𝑅 ( 𝑗1, 𝑗2) and �̃�𝑝𝐼 ( 𝑗1, 𝑗2) be 𝑣𝑝𝑅 (𝜔 𝑗1𝑝𝜉 , 𝑗2𝑝𝜉 ) and
𝑣𝑝𝐼 (𝜔 𝑗1𝑝𝜉 , 𝑗2𝑝𝜉 ) evaluated at 𝐻 = 𝐻0 and 𝐺 = 𝐺0 respectively. Define the closed interval of admissible
estimators of 𝐻0, H = [Δ1,Δ2], where Δ1 and Δ2 are numbers chosen such that 0 < Δ1 < Δ2 < 1. We
can choose Δ1 and Δ2 arbitrarily close to 0 and 1 respectively. Consider the objective function

𝑄(𝐺, 𝐻) =
1

𝑚

∑
( 𝑗1 , 𝑗2) ∈𝑆𝑛

{
log

(
𝐺 (𝜔2

𝑗1𝑝𝜉
+ 𝜔2

𝑗2𝑝𝜉
)−𝐻−1

)
+
(𝜔2

𝑗1𝑝𝜉
+𝜔2

𝑗2𝑝𝜉
)𝐻+1

𝐺
𝐼𝑝 (𝜔 𝑗1𝑝𝜉 , 𝑗2𝑝𝜉 )

}
, (8)

where 𝑆𝑛 is the set of frequencies used for estimation defined by

𝑆𝑛 =

{
( 𝑗1, 𝑗2) |0 <

(
𝑗1 𝑝𝜉

𝑛

)2

+
(

𝑗2 𝑝𝜉

𝑛

)2

≤ 𝑟2
𝑈,𝑛, 0 < 𝑗1, 𝑗2, 𝑏𝐿 ≤ 𝑗2

𝑗1
≤ 𝑏𝑈

}
,
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with 0 < 𝑏𝐿 < 1 < 𝑏𝑈 and 𝑚 is the cardinality of 𝑆𝑛. 𝜉 is a fixed integer or diverges to ∞ as 𝑛 →∞.

We note that by approximating an integral by its Riemann sum, 𝑚 satisfies

𝑚 = �̃� +𝑂 (𝑟𝑈,𝑛) = 𝜃𝑈 − 𝜃𝐿
2

𝑟2
𝑈,𝑛 +𝑂 (𝑟𝑈,𝑛), (9)

where

�̃� =
∫ ∫

�̃�𝑛

𝑑𝑥𝑑𝑦,

�̃�𝑛 =
{
(𝑥, 𝑦) |0 ≤ 𝑥2 + 𝑦2 ≤ 𝑟2

𝑈,𝑛, 0 < 𝑥, 𝑦, 𝑏𝐿 ≤ 𝑦

𝑥
≤ 𝑏𝑈

}
,

𝜃𝑈 = arctan 𝑏𝑈 ,
(
>

𝜋

4

)
, 𝜃𝐿 = arctan 𝑏𝐿 ,

(
<

𝜋

4

)
,

𝑟𝑈,𝑛 = 𝑛𝑟𝑈,𝑛/(𝑝𝜉),

respectively.

Then the first estimator is defined by

(�̂�𝑛, �̂�𝑛) = arg min
0<𝐺<∞,𝐻 ∈H

𝑄(𝐺, 𝐻).

An essential difference from time series is that the components of the bivariate Fourier frequency,

𝜔 𝑗1𝑝𝜉 and 𝜔 𝑗2𝑝𝜉 are not able to behave independently since the ratio 𝑗2/ 𝑗1 is bounded and bounded

away from 0. Furthermore 𝑟𝑈,𝑛 and 𝜉 have to be chosen appropriately in a way to ensure that

(𝜔2
𝑗1𝑝𝜉

+𝜔2
𝑗2𝑝𝜉

)𝐻0+1

𝐺0
𝐼𝑝 (𝜔 𝑗1𝑝𝜉 , 𝑗2𝑝𝜉 ) = �̃�2

𝑝𝑅 (𝜔 𝑗1𝑝𝜉 , 𝑗2𝑝𝜉 ) + �̃�2
𝑝𝐼 (𝜔 𝑗1𝑝𝜉 , 𝑗2𝑝𝜉 )

are independently and identically distributed asymptotically so that �̂�𝑛 and �̂�𝑛 are consistent and

asymptotically normally distributed.

Now we show a more explicit computational form of �̂�𝑛 and �̂�𝑛, which we call the first estimator

ignoring aliasing effects. Hereafter for notational simplicity
∑

implies
∑

( 𝑗1 , 𝑗2) ∈𝑆𝑛 unless otherwise

specified. If we solve the following equation on 𝐺 given a fixed 𝐻

𝜕𝑄

𝜕𝐺
=

1

𝑚

∑(
1

𝐺
−

(𝜔2
𝑗1𝑝𝜉

+𝜔2
𝑗2𝑝𝜉

)𝐻+1𝐼𝑝 (𝜔 𝑗1𝑝𝜉 , 𝑗2𝑝𝜉 )
𝐺2

)
= 0,

the solution is

�̂� (𝐻) = 1

𝑚

∑
(𝜔2

𝑗1𝑝𝜉
+𝜔2

𝑗2𝑝𝜉
)𝐻+1𝐼𝑝 (𝜔 𝑗1𝑝𝜉 , 𝑗2𝑝𝜉 ).

By substituting �̂� (𝐻) to 𝐺 in (8),

𝑄(�̂� (𝐻), 𝐻) = log �̂� (𝐻) − 𝐻 + 1

𝑚

∑
log(𝜔2

𝑗1𝑝𝜉
+𝜔2

𝑗2𝑝𝜉
) + 1.

Consequently

�̂�𝑛 = arg min
𝐻 ∈H

𝑅(𝐻),
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where

𝑅(𝐻) = log �̂� (𝐻) − 𝐻 + 1

𝑚

∑
log(𝜔2

𝑗1𝑝𝜉
+𝜔2

𝑗2𝑝𝜉
).

Let us introduce the second estimator accounting for aliasing effects. The first estimator ignores

aliasing effects caused by lattice sampling of continuous data. Because the spectral density function of

the ISRF on square lattices is given by

�̃�(𝜆) = 𝑔(𝜆) +
∑

(𝑝,𝑞)≠(0,0)
𝑔(𝜆 + 2𝜋(𝑝, 𝑞)),−𝜋 < 𝜆1, 𝜆2 ≤ 𝜋,

where the second term on the right hand side is caused by aliasing, which is not negligible for processes

when high frequency components are significant. Hence we incorporate it in the objective function by

the integral approximation,

(2𝜋)−2

∫
| |𝜆 | |>2𝜋

𝐺 | |𝜆 | |−2𝐻−2𝑑𝜆 = 𝐺
{
2𝐻 (2𝜋)2𝐻+1

}−1
= 𝐺 𝑓 (𝐻),

which is expected to ease the bias caused from aliasing. Consequently the objective function 𝑄(𝐺, 𝐻)
is defined by

𝑄∗(𝐺, 𝐻)

=
1

𝑚

∑
( 𝑗1 , 𝑗2) ∈𝑆𝑛

log
[
𝐺

{
(𝜔2

𝑗1𝑝𝜉
+𝜔2

𝑗2𝑝𝜉
)−𝐻−1 + 𝑓 (𝐻)

}]
+ 𝐼𝑝 (𝜔 𝑗1𝑝𝜉 , 𝑗2𝑝𝜉 )

𝐺
{
(𝜔2

𝑗1𝑝𝜉
+𝜔2

𝑗2𝑝𝜉
)−𝐻−1 + 𝑓 (𝐻)

} .(10)

Then the estimator is defined by

(𝐺∗
𝑛, 𝐻∗

𝑛) = arg min
0<𝐺<∞,𝐻 ∈H

𝑄∗(𝐺, 𝐻).

Similar to �̂�𝑛, 𝐻∗
𝑛 is given by

𝐻∗
𝑛 = arg min

𝐻
𝑅∗(𝐻),

where

𝑅∗(𝐻) = log 𝐺∗(𝐻) + 1

𝑚

∑
log{(𝜔2

𝑗1𝑝𝜉
+𝜔2

𝑗2𝑝𝜉
)−𝐻−1 + 𝑓 (𝐻)},

𝐺∗(𝐻) = 1

𝑚

∑ 𝐼𝑝 (𝜔 𝑗1𝑝𝜉 , 𝑗2𝑝𝜉 )
(𝜔2

𝑗1𝑝𝜉
+𝜔2

𝑗2𝑝𝜉
)−𝐻−1 + 𝑓 (𝐻) .

3. Theoretical results

We assumed that 𝑋 (0) = 0. If 𝑋 (0) ≠ 0, we replace 𝑋 (𝒔) by �̃� (𝒔) = 𝑋 (𝒔) − 𝑋 (0) because �̃� (𝒔) has

the same variogram 2𝛾(𝒉) as 𝑋 (𝒔) and �̃� (0) = 0. Practically 𝑋 (0) is likely to be unknown. However

it does not lose any generality because our estimator is based on the DFT’s of the Fourier frequencies
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and hence ∑
𝑞,𝑟

ℎ𝑞ℎ𝑟 exp
{
𝑖(𝜔 𝑗1𝑝, 𝑗2𝑝 , 𝑠𝑞𝑟 )

}
=

{∑
𝑞

ℎ𝑞 exp(𝑖𝜔 𝑗1𝑝𝑞)
} {∑

𝑟

ℎ𝑟 exp(𝑖𝜔 𝑗2𝑝𝑟)
}

= 0,

for 𝑗1 ≠ 0 or 𝑗2 ≠ 0. Consequently the DFTs of 𝑋 (𝒔) are identical to those of �̃� (𝒔), which is an advan-

tage of our estimators.

The following assumptions on 𝑟𝑈,𝑛, 𝑟𝑈,𝑛 and 𝜉 are introduced. Then the assumption on 𝑚 is deter-

mined by (9).

Assumption 3.1. (i) As 𝑛 tends to ∞, for 𝑝 = 1, 𝑟𝑈,𝑛 → 0, 𝑟𝑈,𝑛 →∞ and log 𝑛 = 𝑂 (log 𝑟𝑈,𝑛),
(ii) As 𝑛 tends to ∞, for 𝑝 ≥ 2, 𝑟𝑈,𝑛 → 0,𝑟𝑈,𝑛 →∞ and 𝜉 →∞.

Assumption 3.2. (i) As 𝑛 tends to ∞, for 𝑝 = 1, 𝑟𝑈,𝑛 = 𝑜(𝑟−1/2
𝑈,𝑛 ) ,𝑟𝑈,𝑛 →∞ and log 𝑛 = 𝑂 (log 𝑟𝑈,𝑛).

Furthermore 𝜉−1 = 𝑜𝑟
−1/2−𝜖
𝑈,𝑛 ) for some 𝜖 > 0 if 𝐻 ≤ 1/2 and 𝜉−1 = 𝑜(𝑟−(𝐻/(2(1−𝐻 ))−𝜖

𝑈,𝑛 ) for some
𝜖 > 0 if 𝐻 > 1/2,

(ii) As 𝑛 tends to ∞, for 𝑝 ≥ 2, 𝑟𝑈,𝑛 = 𝑜(𝑟−1/2
𝑈,𝑛 ), 𝑟𝑈,𝑛 →∞ and 𝜉−𝑝 = 𝑜(𝑟−1

𝑈,𝑛).

Then we have the following asymptotic properties of the estimators.

Theorem 3.1. Under Assumption 3.1, �̂�𝑛 and 𝐻∗
𝑛 converge to 𝐻0 in probability as 𝑛 →∞.

Theorem 3.2. Under Assumptions 3.2, 𝑚1/2 (�̂�𝑛 − 𝐻0) and 𝑚1/2 (𝐻∗
𝑛 − 𝐻0) converge to 𝑁 (0, 1) in

distribution as 𝑛 →∞.

Remark 3.1. Here we give some remarks on the assumptions.

(1) It follows from Assumption 3.1.(i) and (ii) that for the consistency of the estimator 𝜉 can be fixed

for 𝑝 = 1 contrary to 𝑝 ≥ 2. Because Proposition 3.2.(2) of the Supplementary Material in Yajima

and Matsuda (2023) shows that the covariance between 𝑣∗𝑗1𝑝𝜉 , 𝑗2𝑝𝜉 and 𝑣∗𝑘1𝑝𝜉 ,𝑘2𝑝𝜉
is small if

max( 𝑗𝑖 , 𝑘𝑖), (𝑖 = 1, 2) is large for 𝑝 = 1 while for 𝑝 ≥ 2, it can be large even if max( 𝑗𝑖 , 𝑘𝑖), (𝑖 =
1, 2) is large with ( 𝑗1, 𝑗2) and (𝑘1, 𝑘2) being closer to each other and 𝜉 being fixed. However to

ensure the asymptotic normality of the estimator for 𝑝 = 1, 𝜉 has to diverge to ∞ and moreover

the speed of its divergence depends on the unknown 𝐻 if 𝐻 > 1/2.

(2) We give examples of 𝑟𝑈,𝑛 and 𝜉 that satisfy Assumptions 3.1 and 3.2. Put 𝑟𝑈,𝑛 = 𝑐1𝑛−𝜏𝑈 and

𝜉 = 𝑐2𝑛𝜏𝜉 with positive constants, 𝑐𝑖 (𝑖 = 1, 2) . First consider Assumption 3.1. For 𝑝 = 1, the

assumptin is satisfied if 0 < 𝜏𝑈 < 1− 𝜏𝜉 . 𝜏𝜉 can be 0, which implies that 𝜉 is fixed. While 𝜏𝜉 > 0

is necessary for 𝑝 ≥ 2.

(3) Assumption 3.2 holds if 𝜏𝑈 and 𝜏𝜉 satisfy

max((1 − 𝜏𝜉 )/3, 1 − 𝜏𝜉 (1 + 2/(1 + 2𝜖)) < 𝜏𝑈 < 1 − 𝜏𝜉 , 𝑝 = 1, 𝐻 ≤ 1/2,

max((1 − 𝜏𝜉 )/3, 1 − 𝜏𝜉 (1 + 2(1 − 𝐻)/(𝐻 + 2(1 − 𝐻)𝜖))) < 𝜏𝑈 < 1 − 𝜏𝜉 ,

𝑝 = 1, 𝐻 > 1/2,
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max((1 − 𝜏𝜉 )/3, 1 − (𝑝 + 1)𝜏𝜉 )) < 𝜏𝑈 < 1 − 𝜏𝜉 , 𝑝 ≥ 2.

(4) The spatial domain estimator proposed by Zhu and Stein (2002), which is used as the benchmark

in the simulation studies of the next section, has the consistent order of 1/𝑛 if the true underlying

ISRF is FBF. While for 𝑝 ≥ 2, the consistrncy order of ou estimator is 𝑚1/2 = 𝑂 (1/𝑛1−𝜏𝑈−𝜏𝜉 )
with 1 − 𝜏𝑈 − 𝜏𝜉 < 2/3, which implies that our estimator is less efficient than that of Zhu and

Stein (2002). However if the true underlying ISRF is not FBF, it does hold no longer. As the

simulation studies of the next section reveals that the estimator of Zhu and Stein (2002) is much

biased but our estimator is still consistent and has the same consistecy order. It shows that our

estimator is more robust than their estimator.

Now we prove these theorems. Hereafter 𝐶 is a generic constant which can change depending on

each context. We only consider (�̂�𝑛, �̂�𝑛) because the assertion for (𝐺∗
𝑛, 𝐻∗

𝑛) is shown in a similar way.

Proof of Theorem 3.1. We shall show the result by following the proof of Theorem 1 of Robinson

(1995). However we have to prove some assertions in different ways from those for time series models.

For example the summation by parts formula used in the proof of Theorem 1 of Robinson (1995) is not

applicable to ISRFs. Define 𝑆(𝐻) by

𝑆(𝐻) = 𝑅(𝐻) − 𝑅(𝐻0)

= log �̂� (𝐻) − log �̂� (𝐻0) +
1

𝑚

∑
log{(𝜔2

𝑗1𝑝𝜉
+𝜔2

𝑗2𝑝𝜉
)𝐻0−𝐻 }.

For 𝛿 > 0, let 𝑁𝛿 = {𝐻 : |𝐻 − 𝐻0 | < 𝛿} and 𝑁 𝛿 = (−∞,∞) − 𝑁𝛿 . Then

𝑃( |�̂�𝑛 − 𝐻0 | ≥ 𝛿) = 𝑃(�̂�𝑛 ∈ 𝑁 𝛿 ∩H)
= 𝑃( inf

𝑁 𝛿∩H
𝑅(𝐻) ≤ inf

𝑁𝛿∩H
𝑅(𝐻))

≤ 𝑃( inf
𝑁 𝛿∩H

𝑆(𝐻) ≤ 0).

Now define H1 = {𝐻 : Δ ≤ 𝐻 ≤ Δ2} where Δ = Δ1 when 𝐻0 < 1
2 + Δ1 and 𝐻0 ≥ Δ > 𝐻0 − 1

2 otherwise.

When 𝐻0 ≥ 1
2 + Δ1, define H2 = {𝐻 : Δ1 ≤ 𝐻 < Δ}, and otherwise take H2 to be empty. Then

𝑃( |�̂�𝑛 − 𝐻0 | ≥ 𝛿) ≤ 𝑃( inf
H1∩𝑁 𝛿

𝑆(𝐻) ≤ 0) + 𝑃(inf
H2

𝑆(𝐻) ≤ 0). (11)

First we shall prove that the first probability on the right hand side of (11) converges to 0. We apply

the method developed by Walker (1964). Because the formula on the summation by parts, which is

used by (3.2) of Robinson (1995) for a time series model, is not applicable to ISRFs. We shall show

that 𝑆(𝐻1) (= 𝑅(𝐻1) − 𝑅(𝐻0)) converges to a positive value in probability for any 𝐻1 (≠ 𝐻0). Then if

we choose any constant, 𝐾 (𝐻1, 𝐻0)(say) that is less than it, we have

lim
𝑛→∞ 𝑃(𝑆(𝐻1) > 𝐾 (𝐻1, 𝐻0)) = 1. (12)

Next we show that there exists 𝐿 𝛿,𝑛 (𝐻1) such that

|𝑅(𝐻2) − 𝑅(𝐻1) | ≤ 𝐿 𝛿,𝑛 (𝐻1) (13)
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for all 𝐻1 ∈ H1, 𝐻2 ∈ H1 with |𝐻1 − 𝐻2 | < 𝛿 (𝛿 possibly depending on 𝐻1) and

lim
𝑛→∞ 𝑃(𝐿 𝛿,𝑛 (𝐻1) < 𝐾 (𝐻1, 𝐻0)) = 1, (14)

for a sufficiently small 𝛿. Then applying (12), (13) and (14) instead of (15), (18) and (19) in Lemma 2

of Walker (1964), we have the assertion.

𝑆(𝐻) can be expressed as

𝑆(𝐻) =𝑈 (𝐻) −𝑇 (𝐻),
where

𝑇 (𝐻) = 𝑇1 (𝐻) +𝑇2 (𝐻) +𝑇3 (𝐻),

𝑇1 (𝐻) = log{ �̂� (𝐻0)
𝐺0

} − log{ �̂� (𝐻)
𝐺 (𝐻) },

𝑇2 (𝐻) = log{𝑛2

�̃�

∫ ∫
𝐷𝑛

{(2𝜋𝑝𝜉)2 (𝑥2 + 𝑦2)}𝐻−𝐻0 𝑑𝑥𝑑𝑦}

− log{ 1

𝑚

∑
(𝜔2

𝑗1𝑝𝜉
+𝜔2

𝑗2𝑝𝜉
)𝐻−𝐻0 },

𝑇3 (𝐻) = (𝐻 − 𝐻0)
1

𝑚

∑
log{𝜔2

𝑗1𝑝𝜉
+𝜔2

𝑗2𝑝𝜉
}

−(𝐻 − 𝐻0)
𝑛2

�̃�

∫ ∫
𝐷𝑛

log{(2𝜋𝑝𝜉)2 (𝑥2 + 𝑦2)}𝑑𝑥𝑑𝑦,

𝐷𝑛 = {(𝑥, 𝑦) |0 ≤ 𝑥2 + 𝑦2 ≤ ( 𝑟𝑈,𝑛

𝑝𝜉
)2, 0 < 𝑥, 𝑦, 𝑏𝐿 ≤ 𝑦

𝑥
≤ 𝑏𝑈 },

𝑈 (𝐻) = log{𝑛2

�̃�

∫ ∫
𝐷𝑛

{(2𝜋𝑝𝜉)2 (𝑥2 + 𝑦2)}𝐻−𝐻0 𝑑𝑥𝑑𝑦}

−(𝐻 − 𝐻0)
𝑛2

�̃�

∫ ∫
𝐷𝑛

log{(2𝜋𝑝𝜉)2 (𝑥2 + 𝑦2)}𝑑𝑥𝑑𝑦,

𝐺 (𝐻) = 𝐺0
1

𝑚

∑
(𝜔2

𝑗1𝑝𝜉
+𝜔2

𝑗2𝑝𝜉
)𝐻−𝐻0 .

Then

𝑈 (𝐻) = log{𝑛2

�̃�

∫ ∫
𝐷𝑛

(𝑥2 + 𝑦2)𝐻−𝐻0 𝑑𝑥𝑑𝑦}

−(𝐻 − 𝐻0)
𝑛2

�̃�

∫ ∫
𝐷𝑛

log(𝑥2 + 𝑦2)𝑑𝑥𝑑𝑦

= log{(𝜃𝑈 − 𝜃𝐿) 𝑛2

�̃�

1

2(𝐻 − 𝐻0 + 1) [𝑟
2(𝐻−𝐻0+1) ]𝑟𝑈,𝑛/(𝑝𝜉 )

0
}

−(𝐻 − 𝐻0) (𝜃𝑈 − 𝜃𝐿) 𝑛2

�̃�
[𝑟2 log 𝑟 − 𝑟2

2
]𝑟𝑈,𝑛/(𝑝𝜉 )

0

= (𝐻 − 𝐻0) − log{(𝐻 − 𝐻0) + 1}. (15)
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The first equality follows from 𝑛𝐷𝑛 = �̃�𝑛 and hence∫ ∫
𝐷𝑛

𝑑𝑥𝑑𝑦 =
�̃�

𝑛2
.

Then it follows from (15) and Propositions 3.3-3.5 of the Supplementary Material in Yajima and

Matsuda (2023) that for any 𝐻1 (≠ 𝐻0), 𝑆(𝐻1) converges in probability to (𝐻1 − 𝐻0) − log{(𝐻1 −
𝐻0) + 1} , a positive constant as 𝑛 →∞.

While we have

𝑅(𝐻2) − 𝑅(𝐻1) =𝑈 (𝐻2) −𝑈 (𝐻1) −
3∑
𝑖=1

(𝑇𝑖 (𝐻2) −𝑇𝑖 (𝐻1)).

Next set 𝐾 (𝐻1, 𝐻0) so that 0 < 𝐾 (𝐻1, 𝐻0) < (𝐻1 − 𝐻0) − log{(𝐻1 − 𝐻0) + 1 and choose 𝜏 and 𝛿 of

Proposition 3.6 of the Supplementary Material in Yajima and Matsuda (2023) so that (𝐶𝑈 +𝐶2+𝐶3)𝛿+
𝜏 < 𝐾 (𝐻1, 𝐻0). Then we define 𝐿 𝛿,𝑛 (𝐻1) = (𝐶𝑈 + 𝐶2 + 𝐶3)𝛿 + 𝐿1, 𝛿,𝑛 (𝐻1). Consequently 𝐿 𝛿,𝑛 (𝐻1)
satisfies (13) and (14).

Now we shall show that the second probability on the right hand side of (11) converges to 0 as

𝑛 →∞. Define

𝑌 (𝐻) = 1

𝑚

∑
(

𝑗2
1
+ 𝑗2

2

𝑞
)𝐻−𝐻0 ( 𝑗2

1 + 𝑗2
2 )𝐻0+1𝐼𝑝 (𝜔 𝑗1𝑝𝜉 , 𝑗2𝑝𝜉 ),

where 𝑞 = exp( 1
𝑚

∑
log( 𝑗2

1
+ 𝑗2

2
)). Note 𝑞 ≤ 𝑟2

𝑈,𝑛.

Then

𝑆(𝐻) = log(𝑌 (𝐻)/𝑌 (𝐻0)).
We define 𝑎 𝑗1 , 𝑗2 by

𝑎 𝑗1 , 𝑗2 =

⎧⎪⎪⎨⎪⎪⎩
( 𝑗

2
1
+ 𝑗2

2
𝑞 )Δ−𝐻0 , 0 < 𝑗2

1
+ 𝑗2

2
≤ 𝑞

( 𝑗
2
1
+ 𝑗2

2
𝑞 )Δ1−𝐻0 , 𝑞 < 𝑗2

1
+ 𝑗2

2
≤ 𝑟2

𝑈,𝑛

Since

inf
H2

𝑌 (𝐻) ≥ 1

𝑚

∑
𝑎 𝑗1 , 𝑗2 ( 𝑗2

1 + 𝑗2
2 )𝐻0+1𝐼𝑝 (𝜔 𝑗1𝑝𝜉 , 𝑗2𝑝𝜉 ),

𝑃(inf
H2

𝑆(𝐻) ≤ 0)

= 𝑃(inf
H2

𝑌 (𝐻) ≤ 𝑌 (𝐻0))

≤ 𝑃( 1

𝑚

∑
(𝑎 𝑗1 , 𝑗2 − 1) ( 𝑗2

1 + 𝑗2
2 )𝐻0+1𝐼𝑝 (𝜔 𝑗1𝑝𝜉 , 𝑗2𝑝𝜉 ) ≤ 0). (16)

We shall show the probability of (16) converges to 0 as 𝑛 →∞. First we evaluate 1
𝑚

∑(𝑎 𝑗1 , 𝑗2 − 1). We

have

log 𝑞 =

∫ ∫
�̃�𝑛

log(𝑥2 + 𝑦2)𝑑𝑥𝑑𝑦 +𝑂 (𝑟𝑈,𝑛 log 𝑟𝑈,𝑛)
𝑚

(17)
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=
2(𝜃𝑈 − 𝜃𝐿) [𝑟2 log 𝑟 − 𝑟2/2]𝑟𝑈,𝑛

0
+ 𝑜(𝑟2

𝑈,𝑛)
(𝜃𝑈 − 𝜃𝐿)𝑟2

𝑈,𝑛 + 𝑜(𝑟2
𝑈,𝑛)

= log 𝑟2
𝑈,𝑛 − 1 + 𝑜(1).

While ∑
0< 𝑗2

1
+ 𝑗2

2
≤𝑞,𝑏𝐿 ≤ 𝑗2/ 𝑗1≤𝑏𝑈

𝑎 𝑗1 , 𝑗2

= 𝑞𝐻0−Δ
∫ 𝜃𝑈

𝜃𝐿

∫ √
𝑞

0
𝑟2(Δ−𝐻0)+1𝑑𝜃𝑑𝑟 + 𝑜(𝑟2

𝑈,𝑛)

=
(𝜃𝑈 − 𝜃𝐿)𝑞

2(Δ − 𝐻0 + 1) + 𝑜(𝑟2
𝑈,𝑛). (18)

From (17), ∑
𝑞≤ 𝑗2

1
+ 𝑗2

2
≤𝑟2

𝑈,𝑛 ,𝑏𝐿 ≤ 𝑗2/ 𝑗1≤𝑏𝑈
𝑎 𝑗1 , 𝑗2

= 𝑞𝐻0−Δ1

∫ 𝜃𝑈

𝜃𝐿

∫ 𝑟𝑈,𝑛

√
𝑞

𝑟2(Δ1−𝐻0)+1𝑑𝜃𝑑𝑟 + 𝑜(𝑟2
𝑈,𝑛)

=
(𝜃𝑈 − 𝜃𝐿)𝑞𝐻0−Δ1 (𝑟2(Δ1−𝐻0+1)

𝑈,𝑛 − 𝑞Δ1−𝐻0+1)
2(Δ1 − 𝐻0 + 1) + 𝑜(𝑟2

𝑈,𝑛)

=
(𝜃𝑈 − 𝜃𝐿) (exp (Δ1 − 𝐻0 + 1) − 1)𝑞

2(Δ1 − 𝐻0 + 1) + 𝑜(𝑟2
𝑈,𝑛). (19)

By noting (9), (17), (18) and (19),

1

𝑚

∑
𝑎 𝑗1 , 𝑗2 =

1

𝑒(Δ − 𝐻0 + 1) +
exp(Δ1 − 𝐻0 + 1) − 1

𝑒(Δ1 − 𝐻0 + 1) + 𝑜(1).

Hence there exists Δ and 𝜂 so that Δ − 𝐻0 + 1 > 1/2 and

1

𝑚

∑
(𝑎 𝑗1 , 𝑗2 − 1)

> 𝜂 + 𝑜(1).

Then the probability of (16) satisfies the following relations,

𝑃( 1

𝑚

∑
(𝑎 𝑗1 , 𝑗2 − 1) (�̃�𝑝𝑅 ( 𝑗1, 𝑗2)2 + �̃�𝑝𝐼 ( 𝑗1, 𝑗2)2) ≤ 0) (20)

= 𝑃( 1

𝑚

∑
(𝑎 𝑗1 , 𝑗2 − 1) (�̃�𝑝𝑅 ( 𝑗1, 𝑗2)2 + �̃�𝑝𝐼 ( 𝑗1, 𝑗2)2 − 1)

≤ − 1

𝑚

∑
(𝑎 𝑗1 , 𝑗2 − 1))

≤ 𝑃( 1

𝑚
|
∑

(𝑎 𝑗1 , 𝑗2 − 1) (�̃�𝑝𝑅 ( 𝑗1, 𝑗2)2 + �̃�𝑝𝐼 ( 𝑗1, 𝑗2)2 − 1) |
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≥ 1

𝑚

∑
(𝑎 𝑗1 , 𝑗2 − 1))

≤ 𝑃( 1

𝑚
|
∑

(𝑎 𝑗1 , 𝑗2 − 1) (�̃�𝑝𝑅 ( 𝑗1, 𝑗2)2 + �̃�𝑝𝐼 ( 𝑗1, 𝑗2)2 − 1) | ≥ 𝜂 + 𝑜(1))

≤ 𝐸 [{ 1
𝑚 |∑(𝑎 𝑗1 , 𝑗2 − 1) (�̃�𝑝𝑅 ( 𝑗1, 𝑗2)2 + �̃�𝑝𝐼 ( 𝑗1, 𝑗2)2 − 1) |}2]

(𝜂 + 𝑜(1))2

Now we consider the second order moment of the numerator of the last inequality. In the same way

for 𝐴(𝐻) of Proposition 3.3 of the Supplementary Material in Yajima and Matsuda (2023), we express

it as

𝐸 [{ 1

𝑚
|
∑

(𝑎 𝑗1 , 𝑗2 − 1) (�̃�𝑝𝑅 ( 𝑗1, 𝑗2)2 + �̃�𝑝𝐼 ( 𝑗1, 𝑗2)2 − 1) |}2] (21)

= 𝐸 [{ 1

𝑚
|

∑
( 𝑗1 , 𝑗2) ∈𝑆′𝑛

+
∑

( 𝑗1 , 𝑗2) ∈𝑆𝑛\𝑆′𝑛
|}2]

= 𝐸 [{ 1

𝑚
|𝑉1 +𝑉2 |}2], (say),

where

𝑆′
𝑛 = {( 𝑗1, 𝑗2) |0 < ( 𝑗1 𝑝𝜉

𝑛
)2 + ( 𝑗2 𝑝𝜉

𝑛
)2 ≤ 𝑟2

𝐿,𝑛, 0 < 𝑗1, 𝑗2, 𝑏𝐿 ≤ 𝑗2

𝑗1
≤ 𝑏𝑈 }.

Put 𝑟𝐿,𝑛 = 𝑛𝑟𝐿,𝑛/(𝑝𝜉) and assume that 𝑟𝐿,𝑛/𝑟𝑈,𝑛 → 0 and 𝑟𝐿,𝑛 →∞ as 𝑛 →∞.

Then

𝐸

(
𝑉2

1

𝑚2

)
(22)

=
1

𝑚2
[

∑
( 𝑗1 , 𝑗2) ∈𝑆′𝑛

(𝑎 𝑗1 , 𝑗2 − 1)𝐸{�̃�2
𝑝𝑅 ( 𝑗1, 𝑗2) + �̃�2

𝑝𝐼 ( 𝑗1, 𝑗2) − 1}]2

+ 1

𝑚2

∑
( 𝑗1 , 𝑗2) , (𝑙1 ,𝑙2) ∈𝑆′𝑛

(𝑎 𝑗1 , 𝑗2 − 1) (𝑎𝑙1 ,𝑙2 − 1)

×2[{𝐸 (�̃�𝑝𝑅 ( 𝑗1, 𝑗2)�̃�𝑝𝑅 (𝑙1, 𝑙2))}2 + {𝐸 (�̃�𝑝𝑅 ( 𝑗1, 𝑗2)�̃�𝑝𝐼 (𝑙1, 𝑙2))}2

+{𝐸 (�̃�𝑝𝐼 ( 𝑗1, 𝑗2)�̃�𝑝𝑅 (𝑙1, 𝑙2))}2 + {𝐸 (�̃�𝑝𝐼 ( 𝑗1, 𝑗2)�̃�𝑝𝐼 (𝑙1, 𝑙2))}2] .

It follows from Proposition 3.2 of the Supplementary Material in Yajima and Matsuda (2023) that

every moment is bounded unifomly in 𝑗𝑖 , 𝑙𝑖 (𝑖 = 1, 2). While by noting (17)and Δ−𝐻0 +1 > 1/2, similar

to (18).

1

𝑚

∑
( 𝑗1 , 𝑗2) ∈𝑆′𝑛

|𝑎 𝑗1 , 𝑗2 − 1|

≤ 1

𝑚

∑
( 𝑗1 , 𝑗2) ∈𝑆′𝑛

(𝑎 𝑗1 , 𝑗2 + 1)
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= 𝑂
���

𝑞𝐻0−Δ𝑟
2(Δ−𝐻0+1)
𝐿,𝑛

𝑟2
𝑈,𝑛

�� +𝑂

(
( 𝑟𝐿,𝑛
𝑟𝑈,𝑛

)2

)
= 𝑂

(
( 𝑟𝐿,𝑛
𝑟𝑈,𝑛

)2(Δ−𝐻0+1)
)
+𝑂

(
( 𝑟𝐿,𝑛
𝑟𝑈,𝑛

)2

)
= 𝑜(1).

Consequently 𝐸 (𝑉2
1
/𝑚2) = 𝑜(1).

Now we consider 𝐸 (𝑉2
2
/𝑚2). It can be expanded in the same way as 𝐸 (𝑉2

1
/𝑚2) by replacing∑

( 𝑗1 , 𝑗2) ∈𝑆′𝑛 by
∑

( 𝑗1 , 𝑗2) ∈𝑆𝑛\𝑆′𝑛 . It follows from (18) and (19) that
∑

( 𝑗1 , 𝑗2) ∈𝑆𝑛\𝑆′𝑛 𝑎 𝑗1 , 𝑗2 = 𝑂 (𝑟2
𝑈,𝑛) =

𝑂 (𝑚). Similarly
∑

( 𝑗1 , 𝑗2) ∈𝑆𝑛\𝑆′𝑛 𝑎2
𝑗1 , 𝑗2

= 𝑂 (𝑟2
𝑈,𝑛) = 𝑂 (𝑚). Then noting that 𝑟𝐿.𝑛 →∞ as 𝑛 →∞, it is

shown in the same way as for 𝐸{𝐴2
2
(𝐻)} of Proposition 3.3 of the Supplementary Material in Yajima

and Matsuda (2023) that 𝐸 (𝑉2
2
/𝑚2) = 𝑜(1). Hence the probability of (20) converges to 0 as 𝑛 →∞,

which assures that �̂�𝑛 is a consistent estimator of 𝐻0.

Proof of Theorem 3.2. We shall show the result by following the proof of Theorem 2 of Robinson

(1995) with different evaluations for some intermediate assertions. Theorem 3.1 holds under the present

conditions and implies that with probability approaching 1 as 𝑛 →∞, �̂�𝑛 satisfies

0 =
𝑑𝑅(�̂�𝑛)

𝑑𝐻
=

𝑑𝑅(𝐻0)
𝑑𝐻

+ 𝑑2𝑅(�̃�𝑛)
𝑑𝐻2

(�̂�𝑛 − 𝐻0), (23)

where |�̃�𝑛 − 𝐻0 | ≤ |�̂�𝑛 − 𝐻0 |. For the assertion, it suffices to show that

𝑑2𝑅(�̃�𝑛)
𝑑𝐻2

=
𝑑2𝑅(𝐻0)

𝑑𝐻2
+ 𝑜𝑝 (1)

= 1 + 𝑜𝑝 (1), (24)

and 𝑚1/2 𝑑𝑅 (𝐻0)
𝑑𝐻 converges to 𝑁 (0, 1) in distribution as 𝑛 →∞. (24) are proved by Proposition 3.7 of

the Supplementary Material in Yajima and Matsuda (2023).

Now we consider 𝑚1/2 𝑑𝑅 (𝐻0)
𝑑𝐻 . Define

𝜈( 𝑗1, 𝑗2) = log(𝜔2
𝑗1𝑝𝜉

+𝜔2
𝑗2𝑝𝜉

) − 1

𝑚

∑
𝑙1 ,𝑙2

log(𝜔2
𝑙1𝑝𝜉

+𝜔2
𝑙2𝑝𝜉

)

= log( 𝑗2
1 + 𝑗2

2 ) −
1

𝑚

∑
𝑙1 ,𝑙2

log(𝑙2
1 + 𝑙2

2).

By noting
∑

𝜈( 𝑗1, 𝑗2) = 0 and �̂� (𝐻0) = 𝐺 (𝐻0) + 𝑜𝑝 (1), which follows from the proof of Proposition

3.3 of the Supplementary Material in Yajima and Matsuda (2023), similar to (4.11) of Robinson (1995),

𝑚1/2 𝑑𝑅(𝐻0)
𝑑𝐻

=
1

𝑚1/2

∑
𝜈( 𝑗1, 𝑗2) (𝜔2

𝑗1𝑝𝜉
+𝜔2

𝑗2𝑝𝜉
)𝐻0+1𝐼𝑝 (𝜔 𝑗1𝑝𝜉 , 𝑗2𝑝𝜉 )

1
𝑚

∑(𝜔2
𝑗1𝑝𝜉

+𝜔2
𝑗2𝑝𝜉

)𝐻0+1𝐼𝑝 (𝜔 𝑗1𝑝𝜉 , 𝑗2𝑝𝜉 )

= 𝑚−1/2
∑

𝜈( 𝑗1, 𝑗2) (�̃�2
𝑅 ( 𝑗1, 𝑗2) + �̃�2

𝐼 ( 𝑗1, 𝑗2) − 1) (1 + 𝑜𝑝 (1)).
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Similar to (21), we express

𝑚−1/2
∑

𝜈( 𝑗1, 𝑗2) (�̃�2
𝑅 ( 𝑗1, 𝑗2) + �̃�2

𝐼 ( 𝑗1, 𝑗2) − 1)

= 𝑚−1/2
∑

( 𝑗1 , 𝑗2) ∈𝑆′𝑛
+𝑚−1/2

∑
( 𝑗1 , 𝑗2) ∈𝑆𝑛\𝑆′𝑛

= 𝑇1 +𝑇2, (say),

where

𝑆′
𝑛 = {( 𝑗1, 𝑗2) |0 < ( 𝑗1 𝑝𝜉

𝑛
)2 + ( 𝑗2 𝑝𝜉

𝑛
)2 ≤ 𝑟2

𝐿,𝑛, 0 < 𝑗1, 𝑗2, 𝑏𝐿 ≤ 𝑗2

𝑗1
≤ 𝑏𝑈 }.

Hereafter we set 𝑟𝐿,𝑛 = (𝑝𝜉/𝑛)1−𝜏𝑟 𝜏𝑈,𝑛 with max(0, 1/2− 1/𝑝) < 𝜏 < 1/2. Then note that 𝑟𝐿,𝑛 = 𝑟 𝜏𝑈,𝑛.

Now we show that 𝑇1 = 𝑜𝑝 (1) and 𝑇2 converges to 𝑁 (0, 1) as 𝑚 →∞.

First for any 𝜖 > 0,

𝑃( |𝑇1 | > 𝜖)
≤ 𝐸 (𝑇2

1 )/𝜖2.

Then similar to (22),

𝐸 (𝑇2
1 )

=
1

𝑚
[

∑
( 𝑗1 , 𝑗2) ∈𝑆′𝑛

𝜈( 𝑗1, 𝑗2)𝐸{�̃�2
𝑝𝑅 ( 𝑗1, 𝑗2) + �̃�2

𝑝𝐼 ( 𝑗1, 𝑗2) − 1}]2

+ 1

𝑚

∑
( 𝑗1 , 𝑗2) , (𝑙1 ,𝑙2) ∈𝑆′𝑛

𝜈( 𝑗1, 𝑗2)𝜈(𝑙1, 𝑙2)

×2[{𝐸 (�̃�𝑝𝑅 ( 𝑗1, 𝑗2)�̃�𝑝𝑅 (𝑙1, 𝑙2))}2 + {𝐸 (�̃�𝑝𝑅 ( 𝑗1, 𝑗2)�̃�𝑝𝐼 (𝑙1, 𝑙2))}2

+{𝐸 (�̃�𝑝𝐼 ( 𝑗1, 𝑗2)�̃�𝑝𝑅 (𝑙1, 𝑙2))}2 + {𝐸 (�̃�𝑝𝐼 ( 𝑗1, 𝑗2)�̃�𝑝𝐼 (𝑙1, 𝑙2))}2] .

It follows from Proposition 3.2 of the Supplementary Material in Yajima and Matsuda (2023) that

every moment is bounded uniformly in 𝑗𝑖 , 𝑙𝑖 (𝑖 = 1, 2). Hence

𝐸 (𝑇2
1 ) = 𝑂

( {(log 𝑟2
𝐿,𝑛)𝑟2

𝐿,𝑛}2

𝑚

)
.

Since 𝑟𝐿,𝑛 = 𝑟 𝜏𝑈,𝑛 = 𝑂 (𝑚𝜏/2) with 𝜏 < 1/2, we have 𝐸 (𝑇2
1
) = 𝑜(1), which implies 𝑇1 = 𝑜𝑝 (1).

Next consider 𝑇2. The cardinality of 𝑆𝑛\𝑆′
𝑛 is 𝑚(1 + 𝑜(1)) and hence, hereafter it can be assumed to

be 𝑚. Now we shall show that 𝑚, 𝜈( 𝑗1, 𝑗2), �̃�𝑝𝑅 ( 𝑗1, 𝑗2) and �̃�𝑝𝐼 ( 𝑗1, 𝑗2) satisfy the conditions imposed

on 𝑚∗, 𝛼( 𝑗1, 𝑗2),𝑣1 ( 𝑗1, 𝑗2) and 𝑣2 ( 𝑗1, 𝑗2) of Proposition 3.8 of the Supplementary Material in Yajima

and Matsuda (2023) respectively.

First evaluate 𝜈( 𝑗1, 𝑗2). We have max |𝜈( 𝑗1, 𝑗2) | = 𝑂 (log 𝑚) = 𝑜(𝑚).
Next ∑

𝑆𝑛\𝑆′𝑛
𝜈( 𝑗1, 𝑗2)2
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=
∑
𝑆𝑛

−
∑
𝑆′𝑛

=
∑
𝑆𝑛

−𝑂 (𝑚𝜏 log 𝑚).

Using

𝑥 log 𝑥 =
1

2

𝑑

𝑑𝑥
[𝑥2 (log 𝑥 − 1

2
)],

𝑥(log 𝑥)2 =
𝑑

𝑑𝑥
[ 𝑥2

2
((log 𝑥)2 − log 𝑥 + 1

2
)],

we have ∑
𝑆𝑛

𝜈2
𝑗1 , 𝑗2

=
∑

(log( 𝑗2
1 + 𝑗2

2 ))2

−
(∑(𝑘1 ,𝑘2) ∈𝑆𝑛 log(𝑘2

1
+ 𝑘2

2
))2

𝑚

=
∫ 𝑟𝑈,𝑛

0

∫ 𝜃𝑈

𝜃𝐿

𝑟 (log(𝑟2))2𝑑𝑟𝑑𝜃 +𝑂 (𝑟𝑈,𝑛 (log 𝑟𝑈,𝑛)2)

−
[
∫ 𝑟𝑈,𝑛

0

∫ 𝜃𝑈
𝜃𝐿

𝑟 log(𝑟2)𝑑𝑟𝑑𝜃 +𝑂 (𝑟𝑈,𝑛 log 𝑟𝑈,𝑛)]2∫ 𝑟𝑈,𝑛

0

∫ 𝜃𝑈
𝜃𝐿

𝑑𝑟𝑑𝜃 +𝑂 (𝑟𝑈,𝑛)

=
𝜃𝑈 − 𝜃𝐿

2
𝑟2
𝑈,𝑛 +𝑂 (𝑟𝑈,𝑛 (log 𝑟𝑈,𝑛)2)

=
𝜃𝑈 − 𝜃𝐿

2
𝑟2
𝑈,𝑛 + 𝑜(𝑟2

𝑈,𝑛)

= 𝑚 + 𝑜(𝑟2
𝑈,𝑛).

Next ∑
( 𝑗1 , 𝑗2) ∈𝑆𝑛\𝑆′𝑛

|𝜈 𝑗1 , 𝑗2 |𝑙

≤
∑

( 𝑗1 , 𝑗2) ∈𝑆𝑛
|𝜈 𝑗1 , 𝑗2 |𝑙

=
∑

( 𝑗1 , 𝑗2) ∈𝑆𝑛
| log(( 𝑗2

1 + 𝑗2
2 )/𝑟2

𝑈,𝑛) −
∑

(𝑘1 ,𝑘2) ∈𝑆𝑛 log((𝑘2
1
+ 𝑘2

2
)/𝑟2

𝑈,𝑛))
𝑚

|𝑙

≤ 2𝑙
∑

( 𝑗1 , 𝑗2) ∈𝑆𝑛
| log(( 𝑗2

1 + 𝑗2
2 )/𝑟2

𝑈,𝑛) |𝑙

= 𝑂 (𝑟2
𝑈,𝑛

∫
𝑥2+𝑦2≤1

| log(𝑥2 + 𝑦2) |𝑙𝑑𝑥𝑑𝑦)
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= 𝑂 (𝑚).
Next define the 2-dimensional vector �̃�𝑝 ( 𝑗1, 𝑗2) by �̃�𝑝 ( 𝑗1, 𝑗2) = (�̃�𝑝𝑅 ( 𝑗1, 𝑗2), �̃�𝑝𝐼 ( 𝑗1, 𝑗2))′ and the 2×2

covariance matrix Σ 𝑗 𝑝,𝑘 𝑝 by 𝐸 [�̃�𝑝 ( 𝑗1, 𝑗2)�̃�𝑝 (𝑘1, 𝑘2)′].
Now we evaluate Σ 𝑗 𝑝,𝑘 𝑝 . First assume that 𝑝 ≥ 2. From1/2 − 1/𝑝 < 𝜏 and Proposition 3.2 of the

Supplementary Material in Yajima and Matsuda (2023),

Σ 𝑗 𝑝, 𝑗 𝑝 =
1

2
𝐼2 +𝑂 (𝑚−𝜏𝜉−2) +𝑂 (𝑟2

𝑈,𝑛) =
1

2
𝐼2 + 𝑜(𝑚−1/2),

Σ 𝑗 𝑝,𝑘 𝑝 = 𝑂 (𝜉−𝑝) = 𝑜(𝑚−1/2).
Hence the limiting distribution of 𝑇2 is 𝑁 (0, 1).

Next consider the case of 𝑝 = 1. For 𝐻 ≤ 1/2, if we set 𝜏 sufficiently close to 1/2 so that 𝑚1/2 =
𝑜(𝑚𝜏/2𝜉 (log 𝑛)−2) , then Proposition 3.2 of the Supplementary Material in Yajima and Matsuda (2023)

assures that

Σ 𝑗 , 𝑗 =
1

2
𝐼2 +𝑂 (𝑚−(𝜏/2)𝜉−1) +𝑂 (𝑟2

𝑈,𝑛) =
1

2
𝐼2 + 𝑜((𝑚−1/2),

Σ 𝑗 ,𝑘 = 𝑂 ((log 𝑛)2𝑚−(𝜏/2)𝜉−1) = 𝑜(𝑚−1/2).

Similarly for 𝐻 > 1/2, if we set 𝜏 sufficiently close to 1/2 so that 𝑚1/2 = 𝑜((𝑚𝜏/2𝜉)2−2𝐻 (log 𝑛)−2) ,

then Proposition 3.2 of the Supplementary Material in Yajima and Matsuda (2023) assures that

Σ 𝑗 , 𝑗 =
1

2
𝐼2 +𝑂 ((𝑚𝜏/2𝜉)2𝐻−2) +𝑂 (𝑟2

𝑈,𝑛) =
1

2
𝐼2 + 𝑜(𝑚−1/2),

Σ 𝑗 ,𝑘 = 𝑂 ((log 𝑛)2 (𝑚𝜏/2𝜉)2𝐻−2) = 𝑜(𝑚−1/2).
Consequently we have the assertion.

4. Simulation studies
This section examines empirical properties of Gaussian semiparametric estimation (GSE) in (8) and

(10) for a spatial memory parameter 𝐻 in Assumption 2.1 in comparisons with alternative estimation

by spatial domains. Here we focused on the spatial domain estimator by Zhu and Stein (2002) as

the benchmark, who assumed that 𝑔0 in Assumption 2.1 is a constant. Our main interests are in the

comparisons between them especially when 𝑔0 is not a constant.

To conduct the comparisons, we simulate spatial data on lattice points. We examine the following

two cases for 𝑔0 (𝑥) in Assumption 2.1. In Case 1, the constant function

𝑔0 (𝜔1, 𝜔2) = 1,

is employed, while in Case 2, the function that depends on frequencies as

𝑔0 (𝜔1, 𝜔2) = |1 + 𝑒−𝑖𝜔1 + 𝑒−𝑖𝜔2 |2

is designed. We simulate 𝑋𝐻 (𝑠, 𝑡), a pure fractional Brownian field of Case 1, over 200 × 200 lattice

points via the frequency domain method by Stein (2002) for 0 < 𝐻 ≤ 0.75, while we obtain 𝑌 (𝑠, 𝑡) of

Case 2 by the moving average of 𝑋𝐻 (𝑠, 𝑡) given as

𝑌 (𝑠, 𝑡) = 𝑋𝐻 (𝑠, 𝑡) + 𝑋𝐻 (𝑠 − 1, 𝑡) + 𝑋𝐻 (𝑠, 𝑡 − 1),
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Figure 1. Empirical bias and root mean squared error (RMSE) as functions of 𝐻 for our Gaussian semiparametric

estimator in (8) and the bias corrected version in (10), and those of Zhu and Stein (2002), evaluated by 100

simulations for Cases 1 and 2.

which has the function 𝑔0 indicated in Case 2. We simulated 100 data sets of Cases 1 and 2 with

𝐻 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.75, for which we examined the empirical comparisons.

We calculated GSE with and without the bias correction term together with Zhu and Stein (2002)

for the simulated data, where we designed the bandwidth as {| |𝜔 | | < 𝜋/4} for GSE and chose the filter

1 with 𝑀 = 2 for 𝑘 = 1, 2, 3, 4 for Zhu and Stein (2002). In Figure 1, we show empirical bias and root

mean squared error (RMSE) as functions of 𝐻 for the three estimators.

We find from Figure 1 that GSE without the bias correction term is negatively biased for a small H

less than 0.2, which is corrected by the bias correction term, and that GSE has similar performances in

terms of bias and RMSE for both Cases 1 and 2. On the other hand, Stein estimator is seriously biased

with larger RMSE for Case 2. Constancy for 𝑔0 is critical for Zhu and Stein to work efficiently, which

needs care when it is not guaranteed. We claim that GSE is a good alternative to the estimator of Zhu

and Stein (2002) when the function 𝑔0 in Assumption 2.1 depends on frequencies.

5. Concluding remarks
This paper proposed Gaussian semiparametric estimation (GSE) for anisotropic ISRFs which include

an FBF as special cases. GSE is consistent and asymptotically normally distributed with known vari-
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ance independent of unknown parameters. The simulation study shows that though estimators based on

empirical variograms show better performance than GSE if the true underlying model is a pure FBF,

GSE is more robust against anisotropic deviations from a pure FBF in the sense that it is much less

biased and has a smaller mean squared error.

Throughout this paper we considered an FBF and its anisotropic extensions. Our GSE is applicable

to more general random fields beyond them. In the following we consider the two examples and outline

the estimation procedure for them. The first one is the model for an ISRF proposed by Istats (2007). In

this model, 𝑔(𝜆1, 𝜆2) is defined by

𝑔(𝜆1, 𝜆2) =‖ 𝝀 ‖−2𝐻−2 𝑔0 (𝜆1, 𝜆2), 0 < 𝐻 < 1,

where 𝑔0 (𝜆1, 𝜆2) = ℎ(𝜆1/‖ 𝝀 ‖, 𝜆2/‖ 𝝀 ‖) with a positive function ℎ(𝑥1, 𝑥2) and 𝑔0 (0, 0) can take any

nonnegative value.

Then the anisotropicity depends only on the ratio 𝜆2/𝜆1 (= 𝛽), say, since

ℎ(𝜆1/‖ 𝝀 ‖, 𝜆2/‖ 𝝀 ‖) = ℎ(1/
√

1 + 𝛽2, 𝛽/
√

1 + 𝛽2).

Then the objective function is defined by

𝑄(𝐺𝛽 , 𝐻) =

1

𝑚

𝑚∑
𝑗1=1

{
log

(
𝐺𝛽 (𝜔2

𝑗1𝑝𝜉
+𝜔2

𝑗1𝑝𝛽𝜉
)−𝐻−1

)
+
(𝜔2

𝑗1𝑝𝜉
+𝜔 𝑗1𝑝𝛽𝜉 )𝐻+1

𝐺𝛽
𝐼𝑝 (𝜔 𝑗1𝑝𝜉 , 𝜔 𝑗1𝑝𝛽𝜉 )

}
,

where 𝐺𝛽 = ℎ(1/
√

1 + 𝛽2, 𝛽/
√

1 + 𝛽2)/(8𝜋2). Then we define �̂�𝛽,𝑛, �̂�𝛽,𝑛 by

(�̂�𝛽,𝑛, �̂�𝛽,𝑛) = arg min
0<𝐺𝛽<∞,𝐻 ∈[Δ1 ,Δ2 ]

𝑄(𝐺𝛽 , 𝐻),

with 0 < Δ1 < Δ2 < 1.

Let 𝛽𝑘 (𝑘 = 1, . . . , 𝐾) be integers with 𝛽𝑘 ≠ 𝛽𝑘′ (𝑘 ≠ 𝑘 ′). Then under some conditions on 𝑝, 𝑟𝑈,𝑛, 𝜉, 𝑚
and ℎ(𝑥1, 𝑥2), �̂�𝛽𝑘 ,𝑛 converges to 𝐻0 in probability as 𝑛 →∞, and

𝑚1/2 (�̂�𝛽𝑘 ,𝑛 − 𝐻0), 𝑘 = 1, . . . , 𝐾,

are asymptotically independent and their limiting distribution is 𝑁 (0, 1) as 𝑛 →∞. Hence the estimator

�̂�𝑛 =
𝐾∑
𝑘=1

�̂�𝛽𝑘 ,𝑛/𝐾

has the limiting distribution of 𝑚1/2 (�̂�𝑛 − 𝐻) is 𝑁 (0, 1/𝐾).
The second one is a fractional Brownian sheet (FBS), which is another popular class of random

fields. A FBS {𝑋 ( 𝒕); 𝒕 ∈ 𝑹𝑑} is defined by Adler (1981), Herbin (2006) as a Gaussian random field

whose covariance function is given by

Cov(𝑋 (𝒔), 𝑋 ( 𝒕)) =𝐶
𝑑∏
𝑖=1

(𝑠2𝐻𝑖
𝑖 + 𝑡2𝐻𝑖

𝑖 − |𝑠𝑖 − 𝑡𝑖 |2𝐻𝑖 ), 0 < 𝐻𝑖 < 1,
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where 𝒔 = (𝑠1, · · · , 𝑠𝑑)′ and 𝒕 = (𝑡1, · · · , 𝑡𝑑)′. For 𝑑 = 2, define the objective function by

𝑄(𝐺, 𝐻1, 𝐻2) =

1

𝑚2

∑
( 𝑗1 , 𝑗2) ∈𝑆1𝑛×𝑆2𝑛

⎧⎪⎪⎨⎪⎪⎩log
(
𝐺 (𝜔−2𝐻1−1

𝑗1𝑝𝜉
𝜔−2𝐻2−1

𝑗2𝑝𝜉
)
)
+
(𝜔2𝐻1+1

𝑗1𝑝𝜉
𝜔2𝐻2+1

𝑗2𝑝𝜉
)

𝐺
𝐼𝑝 (𝜔 𝑗1𝑝𝜉 , 𝑗2𝑝𝜉 )

⎫⎪⎪⎬⎪⎪⎭
where 𝐺 =𝐶/(16𝜋2), and 𝑚 is the cardinality of 𝑆𝑖𝑛 for

𝑆𝑖𝑛 =

{
𝑗𝑖 : 0 <

𝑗𝑖 𝑝𝜉

𝑛
≤ 𝑟𝑈,𝑛

}
, 𝑖 = 1, 2.

Then we define �̂�𝑛, �̂�𝑖𝑛 (𝑖 = 1, 2) by

(�̂�𝑛, �̂�1𝑛, �̂�2𝑛) = arg min
0<𝐺<∞,𝐻𝑖 ∈[Δ1 ,Δ2 ] (𝑖=1,2)

𝑄(𝐺, 𝐻1, 𝐻2),

with 0 < Δ1 < Δ2 < 1. Under some condtions on 𝑝, 𝑟𝑈,𝑛, 𝜉 and 𝑚, �̂�𝑖𝑛 converges to 𝐻𝑖0 in probability

as 𝑛 →∞ for 𝑖 = 1, 2, and

𝑚(�̂�1𝑛 − 𝐻10, �̂�2𝑛 − 𝐻20)′

converges in distribution to 𝑁 (0, 𝐼2) as 𝑛 →∞.

Recently Shen and Hsing (2020) considered estimation of a mutifractional Browninan motion

(MFBM), a generalization of the FBF in which the Hurst effect 𝐻 depends on 𝒕 . Let

𝐷 (𝐻) =
(∫

𝑹𝑑

1 − cos 𝑥1

‖ 𝒙 ‖2𝐻+𝑑 𝑑𝒙

)1/2

, 0 < 𝐻 < 1,

where 𝑥1 is the first component of 𝒙. Then an MFBM {𝑋 ( 𝒕) : 𝒕 ∈ (0, 1)𝑑} is defined as a Gaussian

random field whose covariance function is given by

Cov (𝑋 (𝒔), 𝑋 ( 𝒕)) =
𝜎2D (𝐻 (𝒔), 𝐻 ( 𝒕)) ×

(
‖ 𝒔 ‖𝐻 (𝒔)+𝐻 ( 𝒕) + ‖ 𝒕 ‖𝐻 (𝒔)+𝐻 ( 𝒕) − ‖ 𝒔 − 𝒕 ‖𝐻 (𝒔)+𝐻 ( 𝒕)

)
,

where 𝜎2 ∈ (0,∞), 𝐻 ( 𝒕) is a Hölder continuous function with the range in (0, 1) and

D(𝐻 (𝒔), 𝐻 ( 𝒕)) = [2𝐷 (𝐻 (𝒔)𝐷 (𝐻 ( 𝒕))]−1𝐷2 ((𝐻 (𝒔) + 𝐻 ( 𝒕))/2).

They proposed an estimation procedure of 𝐻 ( 𝒕) based on the differenced data of 𝑋 ( 𝒕) and investigated

their asymptotic properties in the framework of infill asymptotics. It is an important and interesting

issue in future to consider whether our GSE is applicable to estimate 𝐻 ( 𝒕) and to compare its asymptotic

properties with those of their estimator.

Supplementary Material

Supplement to Gaussian semiparametric estimation of two-dimensional intrinsically stationary
fields
The lemmas and propositions that are necessary to prove Theorems 3.1 and 3.2 are given.
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