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LOCAL POLYNOMIAL REGRESSION FOR SPATIAL DATA ON R
d

DAISUKE KURISU AND YASUMASA MATSUDA

Abstract. In this study, we develop a general asymptotic theory of local polynomial (LP) re-

gression for spatial data observed at irregularly spaced locations in a sampling region Rn ⊂ R
d.

We adopt a stochastic sampling design that can generate irregularly spaced sampling sites in a

flexible manner and include both pure increasing and mixed increasing domain framework. We first

introduce a nonparametric regression model for spatial data defined on R
d and then establish the

asymptotic normality of LP estimators with general order p ≥ 1. We also propose methods for

constructing confidence intervals and establish uniform convergence rates of LP estimators. Our

dependence structure conditions on the underlying random field cover a wide class of random fields

such as Lévy-driven continuous autoregressive moving average random fields. As an application of

our main results, we also discuss a two-sample testing problem for mean functions and their partial

derivatives.

1. Introduction

Recently, a considerable interest has been paid on statistical inference of spatial regression models

for geostatistical data analysis in many economic and scientific fields such as spatial econometrics,

ecology, and seismology. Particularly, nonparametric methods for spatial data have also been the

focus of attention. There is fairly extensive literature on the local constant (LC) , local linear (LL),

and local polynomial (LP) estimators for dependent data. For stationary time series, we refer to

Hansen (2008) and Zhao and Wu (2008) for LC estimators and Masry (1996a,b), and Masry and

Fan (1997) for LP estimators. For nonstationary time series, we refer to Kristensen (2009) and Vogt

(2012) for LC estimators, and Zhou and Wu (2009) and Zhang and Wu (2015) for LL estimators

for quantile curves and conditional mean functions, respectively. For stationary spatial data on

Z
d, we refer to El Machkouri and Stoica (2010) and Jenish (2012) for LC estimators and Hallin

et al. (2004) and El Machkouri et al. (2017) for LL estimators. For spatial data on R
d, we refer

to Kurisu (2019) and Kurisu (2022) who investigate LC estimators for the stationary and locally

stationary case, respectively. We also refer to Robinson (2011) for other recent contribution for

possibly nonstationary spatial data. Notably, there seems no theoretical results on the statistical

properties of LP estimators for (irregularly spaced) spatial data on both Z
d and R

d and even the

properties of LC estimators are not known, especially under our model.

The goal of this paper is to make progress in this literature by developing a general asymptotic

theory for LP estimators of any order p ≥ 1 for nonstationary spatial data on R
d. The contributions

of this paper are as follows.
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First, we propose a nonparametric model for spatial data {Y (xn,i)}ni=1 observed at irregularly

spaced sampling sites {xn,i}ni=1 over a sampling region Rn ⊂ R
d (d ≥ 1). Precisely, each Y (xn,i) is

explained by the sum of a deterministic spatial trend function (i.e. mean function), a random field

on R
d that represents spatial dependence, and a location specific measurement error (see Section

2.1 for details). In many scientific fields, such as ecology, geology, meteorology, and seismology,

sampling points are naturally irregular. In fact, measurement stations cannot be placed on a

regular grid owing to physical constraints. To cope with irregularly spaced sampling sites, we

adopt the stochastic sampling scheme of Lahiri (2003a), which allows the sampling sites to have a

non-uniform density in the sampling region and allows the number of sampling sites n to grow at

a different rate compared to the volume of the sampling region An. This scheme accommodates

both the pure increasing domain case (limn→∞An/n = κ ∈ (0,∞)) and the mixed increasing

domain case (limn→∞An/n = 0). From a theoretical point of view, this scheme covers all possible

asymptotic regimes, since it is well known that the sample mean is not consistent under the infill

asymptotics (Lahiri (1996)). See Lahiri (2003b), Lahiri and Zhu (2006), Matsuda and Yajima

(2009), Bandyopadhyay et al. (2015), Kurisu et al. (2021), and Kurisu (2022) for discussions on

the stochastic spatial sampling design. We note that our model can be seen as an extension of

the model considered in Müller and Watson (2021) who investigate inference on sample means

of irregularly spaced spatial data under stochastic sampling design, to nonparametric regression

models.

Second, we (i) establish the asymptotic normality of the LP estimators of the mean function

of the proposed model, (ii) construct an estimator for their asymptotic variances, and (iii) derive

uniform convergence rates of the LP estimators over compact sets. The LP estimators are broad

enough to include the estimation of conditional moment, distribution, density functions, and their

partial derivatives, and our theoretical results are applicable to irregularly spaced time series (d = 1)

as well as spatial data (d ≥ 2). The results (i) and (ii) enable us to give expressions for the bias

and variance/covariance matrix (of the joint asymptotic distribution) of these LP estimators and

to construct confidence intervals of the LP estimators, which is also important when performing

a hypothesis test on the mean function. To establish the result (iii), we first consider general

kernel estimators and derive their uniform convergence rates. Since the estimators include many

kernel-based estimators such as, kernel density, LC, LL, and LP estimators for random fields on

R
d with irregularly spaced sampling sites, the results are of independent theoretical interest. We

note that the general results are also useful for evaluating both the bias and variance terms of

the LP estimators. Particularly, the results on uniform convergence rates enable us to predict the

values of the mean function uniformly on a spatial region that does not contain sampling sites. As

an application of our main results, we discuss a two-sample test for the mean functions and their

partial derivatives, which also seems a novel result for irregularly spaced spatial data. Additionally,

in the literature of causal inference, regression discontinuity designs (RDDs), which are based on

local polynomial fitting for the mean functions for both treatment and control groups, is known as

an important tool for analyzing the (local) average treatment effect of interventions (cf. Hahn et al.

(2001) and Calonico et al. (2014)). Existing methods for RDDs build on asymptotic properties of

LP estimators for i.i.d. data even for spatial data (cf. Keele and Titiunik (2015) and Ehrlich and

Seidel (2018)). We believe our results pave the way for a new framework of RDDs for spatially

dependent data.
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Third, we provide examples of random fields that can be covered by our assumptions. Specifically,

we show that a broad class of Lévy-driven moving average (MA) random fields, which includes

continuous autoregressive moving average (CARMA) random fields (cf. Brockwell and Matsuda

(2017)), satisfies our assumptions. The CARMA random fields are known as a rich class of models

for spatial data that can represent non-Gaussian random fields as well as Gaussian random fields

if the driving Lévy random measures are purely non-Gaussian (cf. Brockwell and Matsuda (2017),

Matsuda and Yajima (2018), and Kurisu (2022)). However, mixing properties of Lévy-driven

MA random fields have not been investigated since it is often difficult to check mixing conditions

as considered in Lahiri and Zhu (2006) and Bandyopadhyay et al. (2015) for general (possibly

non-Gaussian) random fields on R
d except for a class of Gaussian processes. We show that a

wide class of Lévy-driven MA random fields can be approximated by mn-dependent random fields

with mn → ∞ as n → ∞. As a result, this study also contributes to the flexible modeling of

nonparametric, nonstationary and possibly non-Gaussian random fields on R
d by addressing an

open question on the dependence structure of statistical models built on Lévy-driven MA random

fields.

To the best of our knowledge, our work is the first attempt to establish an asymptotic theory

on local polynomial fitting for spatial models on R
d by (i) establishing the asymptotic normality

and uniform convergence rates of the LP estimators of the mean function of the proposed model,

(ii) proposing methods for constructing confidence intervals of the LP estimators, and (iii) showing

the applicability of our theoretical results for a wide class of Lévy-driven MA random fields. From

a theoretical point of view, the present paper builds on Lahiri (2003a) and Lahiri and Zhu (2006),

but our theoretical analysis differs substantially from those references in several important points.

Specifically, (i) we extend the coupling technique used in Yu (1994) to irregularly spatial data to

establish uniform convergence rates of the LP estimators. This extension is non-trivial since there

is no natural ordering for spatial data and the number of observations in each block constructed

is random, and hence our approach to blocking construction for establishing uniform rates is quite

different from those in Lahiri (2003a) and Lahiri and Zhu (2006) whose proofs essentially rely on

approximating the characteristic function of the weighted sample mean by that of independent

blocks. (ii) We explore concrete random fields that satisfy our assumptions in detail, while Lahiri

(2003a) and Lahiri and Zhu (2006) lack a detailed discussion on random fields that satisfy their

mixing conditions and other regularity conditions. Verification of our regularity conditions to

Lévy-driven MA fields is indeed non-trivial and relies on several probabilistic techniques from Lévy

process theory and theory of infinitely divisible random measures (cf. Bertoin (1996), Sato (1999),

and Rajput and Rosinski (1989)). Further, in our framework, we cannot use common techniques for

the analysis of (equidistant) time series to show the asymptotic normality or uniform convergence of

estimators due to the irregularly spaced observations. Specifically, it seems not possible to construct

a martingale difference sequence, as is common in the analysis of temporally dependent data.

The rest of the paper is organized as follows. In Section 2, we introduce our nonparametric

regression model for spatial data with irregularly spaced sampling sites. In Section 3, we define

local polynomial estimators as solutions of a multivariate weighted least squares problem. In Section

4, we establish the asymptotic normality of the LP estimators and construct estimators of their

asymptotic variances. In Section 5 we provide the uniform convergence rates of a general kernel

estimators and as a special case, we provide the uniform convergence rates of the LP estimators.
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In Section 6, we provide examples of the random fields that satisfies our assumptions. All proofs

are included in Appendix.

1.1. Notation. For any vector x = (x1, . . . , xq)
′ ∈ R

q, let |x| = ∑q
j=1 |xj | and ‖x‖ =

√∑q
j=1 x

2
j

denote the �1-norm and �2-norms of x, respectively. For any set A ⊂ R
d and any vector a =

(a1, . . . , ad)
′ ∈ (0,∞)d, let |A| denote the Lebesgue measure of A, let [[A]] denote the number of

elements in A, and let aA = {(a1x1, . . . adxd) : x = (x1, . . . , xd) ∈ A}. For any positive sequences

an, bn, we write an � bn if there is a constant C > 0 independent of n such that an ≤ Cbn
for all n, an ∼ bn if an � bn and bn � an. For a sequence of random variables {Xi}i≥1, let

σ({Xi}i≥1) denote the σ-field generated by {Xi}i≥1. Let EX denote the expectation with respect

to a sequence of random variables {Xi}i≥1 and let P·|X and E·|X denote the conditional probability

and expectation given σ({Xi}i≥1). For any real-valued random variable X and τ ∈ (0, 1), let

q1−τ = inf{x ∈ R : P (X ≤ x) ≥ 1− τ} be the (1− τ)-quantile of X. For a ∈ R and b > 0, we use

the shorthand notation [a± b] = [a− b, a+ b].

2. Settings

In this section, we discuss the mathematical settings of our model (Section 2.1), sampling design

(Section 2.2) and spatial dependence structure (Section 2.3).

2.1. Model. Consider the following nonparametric regression model:

Y (xn,i) = m

(
xn,i

An

)
+ η

(
xn,i

An

)
e(xn,i) + σε

(
xn,i

An

)
εi, (2.1)

:= m

(
xn,i

An

)
+ en,i + εn,i, xn,i = (xni,1, . . . , xni,d)

′ ∈ Rn, i = 1, . . . , n,

where Rn =
∏d

j=1[−An,j/2, An,j/2]
d, An =

∏d
j=1An,j ,

xn,i

An
=
(
xni,1

An,1
, . . . ,

xni,d

An,d

)′
with An,j → ∞

as n → ∞, m : Rd → R is the mean function, e = {e(x) : x ∈ R
d} is a random field defined on

R
d with E[e(x)] = 0 and E[e2(x)] = 1 for any x ∈ R

d, η : Rd → (0,∞) is the variance function

of spatially dependent random variables {en,i}, {εi} is a sequence of i.i.d. random variables such

that E[εi] = 0 and E[ε2i ] = 1, and σε : Rd → (0,∞) is the variance function of random variables

{εn,i}. Intuitively, the mean function m represents deterministic spatial trend, the random field

e represents spatial correlation, and the random variables {εn,i} can represent location specific

measurement error. We note that our model is an extension of the model considered in Müller and

Watson (2021). The above setup (2.1) is broad enough to include estimating function of the form

mF (z) = E[F (Y (x))|x/An = z] by using the new data set {(F (Y (xn,i)),xn,i)}ni=1. Note that these

functions include the conditional moment, conditional distribution, conditional density functions,

and their partial derivatives with respect to z.

We assume the following condition on the mean function m, the variance function η, and {εn,j}:
Assumption 2.1. Let Uz be a neighborhood of z = (z1, . . . , zd) ∈ (−1/2, 1/2)d.

(i) The mean function m is (p + 1)-times continuously partial differentiable on Uz and define

∂j1...jLm(z) := ∂m(z)/∂zj1 . . . zjL, 1 ≤ j1, . . . , jL ≤ d, 0 ≤ L ≤ p+ 1. When L = 0, we set

∂j1...jLm(z) = ∂j0m(z) = m(z).

(ii) The function η is continuous over Uz and η(z) > 0.
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(iii) The random variables {εi}ni=1 are i.i.d. with E[ε1] = 0, E[ε21] = 1, E[|ε1|q1 ] < ∞ for some

integer q1 > 4, and the function σε(·) is continuous over Uz with σε(z) > 0.

2.2. Sampling design. To account for irregularly spaced data, we consider the stochastic sampling

design. First, we define the sampling region Rn. For j = 1, . . . , d, let {An,j}n≥1 be a sequence of

positive numbers such that An,j → ∞ as n → ∞. We consider the following set as the sampling

region.

Rn =
d∏

j=1

[−An,j/2, An,j/2].

Next, we introduce our (stochastic) sampling designs. Let g(z) = g(z1, . . . , zd) be a probability

density function on R0 = [−1/2, 1/2]d, and let {Xn,i}i≥1 be a sequence of i.i.d. random vectors

with probability density A−d
n g(x/An) = A−d

n g(x1/An,1, . . . , xd/An,d) where An =
∏d

j=1An,j . We

assume that the sampling sites xn,1, . . . ,xn,n are obtained from the realizations of random vectors

Xn,1, . . . ,Xn,n. To simplify the notation, we will write xn,i and Xn,i as xi = (xi,1, . . . , xi,d)
′ and

Xi = (Xi,1, . . . , Xi,d)
′, respectively.

We summarize conditions on the stochastic sampling design as follows:

Assumption 2.2. Recall that Uz is a neighborhood of z ∈ (−1/2, 1/2)d. Let g be a probability

density function with support R0 = [−1/2, 1/2]d.

(i) An/n → κ ∈ [0,∞) as n → ∞,

(ii) {Xi = (Xi,1, . . . , Xi,d)
′}ni=1 is a sequence of i.i.d. random vectors with density A−d

n g(·/An)

and g is continuous over Uz and g(z) > 0.

(iii) {Xi}ni=1, e = {e(x) : x ∈ R
d}, and {εi}ni=1 are mutually independent.

Condition (i) implies that our sampling design allows both the pure increasing domain case

(limn→∞An/n = κ ∈ (0,∞)) and the mixed increasing domain case (limn→∞An/n = 0). This im-

plies that our study addresses the infill sampling criteria in the stochastic design case (cf. Cressie

(1993) and Lahiri (2003b)), which is of interest in geostatistical and environmental monitoring

applications (cf. Lahiri and Zhu (2006)). Condition (ii) implies that the sampling density can

be nonuniformly distributed over the sampling region Rn =
∏d

j=1[−An,j/2, An,j/2]. It is straight-

forward to extend the definition of the sampling region Rn to a more general case that includes

non-standard shapes (e.g., ellipsoids, polyhedrons, and non-convex sets) as considered in Lahiri and

Zhu (2006).

2.3. Dependence structure. We assume that random field e satisfies a mixing condition. First,

we define the α- and β-mixing coefficients for the random field e. Let Fe(T ) = σ({e(x) : x ∈ T})
be the σ-field generated by the variables {e(x) : x ∈ T}, T ⊂ R

d. For any two subsets T1 and T2

of Rd, let

ᾱ(T1, T2) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ Fe(T1), B ∈ Fe(T2)},

β̄(T1, T2) = sup
1

2

J∑
j=1

K∑
k=1

|P (Aj ∩Bk)− P (Aj)P (Bk)|,

where the supremum for β̄(T1, T2) is taken over all pairs of (finite) partitions {A1, . . . , AJ} and

{B1, . . . , BK} of Rd such that Aj ∈ Fe(T1) and Bk ∈ Fe(T2). The α- and β-mixing coefficients of
5



the random field e is defined as

α(a; b) = sup{ᾱ(T1, T2) : d(T1, T2) ≥ a, T1, T2 ∈ R(b)},
β(a; b) = sup{β̄(T1, T2) : d(T1, T2) ≥ a, T1, T2 ∈ R(b)}.

where a, b > 0, d(T1, T2) = inf{|x− y| : x ∈ T1,y ∈ T2}, and R(b) is the collection of all the finite

disjoint unions of cubes in R
d with a total volume not exceeding b. Moreover, we assume that there

exist a non-increasing functions α1 and β1 with α1(a), β1(a) → 0 as a → ∞ and a non-decreasing

functions �1 and �2 (that may be unbounded) such that

α(a; b) ≤ α1(a)�1(b), β(a; b) ≤ β1(a)�2(b).

Remark 2.1. The definitions of the α- and β-mixing coefficients are based on the argument in

Bradley (1989). It is important to restrict the size of the index sets T1 and T2 in the definition of

α- (or β-) mixing coefficients. Let us define the β-mixing coefficient of a random field e similarly

to the time series as follows: For any subsets T1 and T2 of Rd, the β-mixing coefficient between

Fe(T1) and Fe(T2) is defined by β̃(T1, T2) = sup
∑J

j=1

∑K
k=1|P (Aj ∩Bk)− P (Aj)P (Bk)|/2, where

the supremum is taken over all partitions {Aj}Jj=1 ⊂ Fe(T1) and {Bk}Kk=1 ⊂ Fe(T2) of Rd. Let

O1 and O2 be half-planes with boundaries L1 and L2, respectively. For each a > 0, define β(a) =

sup{β̃(O1,O2) : d(O1,O2) ≥ a}. According to Theorem 1 in Bradley (1989), if {e(x) : x ∈ R
2} is

strictly stationary, then β(a) = 0 or 1 for a > 0. This implies that if a random field e is β-mixing

(lima→∞ β(a) = 0), then it is automatically m dependent, that is, β(a) = 0 for some a > m, where

m is a positive constant. To allow a certain flexibility, we restrict the size of T1 and T2 in the

definitions of α(a; b) and β(a; b). We refer to Bradley (1993) and Doukhan (1994) for more details

on mixing coefficients for random fields.

For the asymptotic normality of the LP estimators, we assume the following conditions for the

random field e:

Assumption 2.3. For j = 1, . . . , d, let {An1,j}n≥1 and {An2,j}n≥1 be sequences of positive numbers

such that min
{
An2,j ,

An1,j

An2,j
,
An,jhj

An1,j

}
→ ∞ as n → ∞.

(i) The random field e is stationary and E[|e(0)|q2 ] < ∞ for some integer q2 > 4.

(ii) Define σe(x) = E[e(0)e(x)]. Assume that σe(0) = 1 and
∫
Rd |σe(v)|dv < ∞.

(iii) The random field e is α-mixing with mixing coefficients α(a; b) such that as n → ∞,

A(1)
n

⎛⎝α
1−2/q
1 (An2) +

∞∑
k=An1

kd−1α
1−2/q
1 (k)

⎞⎠�
1−2/q
1 (A(1)

n ) → 0,

where q = min{q1, q2}, A(1)
n =

∏d
j=1An1,j, An1 = min1≤j≤dAn1,j, and An2 = min1≤j≤dAn2,j.

The sequences {An1,j} and {An2,j} will be used in the large-block-small-block argument, which

is commonly used in proving CLTs for sums of mixing random variables. Specifically, An1,j corre-

sponds to the side length of large blocks, while An2,j corresponds to the side length of small blocks.

In Section 6, we provide examples of random fields that satisfy Assumptions 2.3 and 4.1 below. In

particular, a wide class of Lévy-driven moving average (MA) random fields that includes continuous

autoregressive and moving average (CARMA) random fields (cf. Brockwell and Matsuda (2017))

satisfies our assumptions.
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3. Local polynomial regression of order p

In this section, we introduce local polynomial (LP) estimators of order p ≥ 1 for the estimation

of derivatives of the mean function m of the model (2.1).

Define

D = [[{(j1, . . . , jL) : 1 ≤ j1 ≤ · · · ≤ jL ≤ d, 0 ≤ L ≤ p}]],
D̄ = [[{(j1, . . . , jp+1) : 1 ≤ j1 ≤ · · · ≤ jp+1 ≤ d}]],

(sj1...jL1, . . . , sj1...jLd) ∈ Z
d
≥0 such that sj1...jLk = [[{j� : j� = k, 1 ≤ � ≤ L}]], and define

sj1...jL ! =
d∏

k=1

sj1...jLk!.

When L = 0, we set (j1, . . . , jL) = j0 = 0 and sj1...jL ! = 1. Note that
∑d

k=1 sj1...jLk = L. Further,

for p ≥ 1 and z ∈ [−1/2, 1/2]d, define

M(z) :=

(
m(z), ∂1m(z), . . . , ∂dm(z),

∂11m(z)

2!
,
∂12m(z)

1!1!
, . . . ,

∂ddm(z)

2!
,

. . . ,
∂1...1m(z)

p!
,
∂1...2m(z)

(p− 1)!1!
. . . ,

∂d...dm(z)

p!

)′

=

(
1

sj1...jL !
∂j1,...jLm(z)

)′

1≤j1≤···≤jL≤d,0≤L≤p

∈ R
D.

We define the local polynomial regression estimator of order p forM(z) as a solution of the following

problem:

β̂(z) := arg min
β∈RD

n∑
i=1

⎛⎝Y (Xi)−
p∑

L=0

∑
1≤j1≤···≤jL≤d

βj1...jL

L∏
�=1

(
Xi,j� −An,j�zj�

An,j�

)⎞⎠2

KAh (Xi −Anz)

(3.1)

= (β̂0(z), β̂1(z), . . . , β̂d(z), β̂11(z), . . . , β̂dd(z), . . . , β̂1...1(z), . . . , β̂d...d(z))
′

= (β̂j1...jL(z))
′
1≤j1≤···≤jL≤d,0≤L≤p,

where β = (βj1...jL)
′
1≤j1≤···≤jL≤d,0≤L≤p, K : Rd → R is a kernel function, and each hj is a sequence

of positive constants (bandwidths) such that hj → 0 as n → ∞, and where

KAh(Xi −Anz) = K

(
Xi,1 −An,1z1

An,1h1
, . . . ,

Xi,d −An,dzd
An,dhd

)
and

∑
1≤j1≤···≤jL≤d βj1...jL

∏L
�=1(Xi,j� −An,j�zj�)/An,j� = β0 when L = 0.

To compute the LP estimators, we introduce some notations: Y := (Y (X1), . . . , Y (Xn))
′,

X := (X̃1, . . . , X̃n) =

⎛⎜⎜⎜⎜⎝
1 . . . 1

(X1−Anz)1
An

. . .
(Xn−Anz)1

An
... . . .

...
(X1−Anz)p

An
. . .

(Xn−Anz)p
An

⎞⎟⎟⎟⎟⎠ =

(
1 . . . 1
ˇ(X1 −Anz) . . . ˇ(Xn −AnZ)

)
,

W := diag (KAh (X1 −Anz) , . . . ,KAh (Xn −Anz)) ,
7



where

(Xi −Anz)L
An

=

(
L∏

�=1

(
Xi,j� −An,j�zj�

An,j�

))′

1≤j1≤···≤jL≤d

.

The minimization problem (3.1) can be rewritten as

β̂(z) = arg min
β∈RD

(Y −X ′β)′W (Y −X ′β) =: arg min
β∈RD

Qn(β).

Then the first order condition of the problem (3.1) is given by

∂

∂β
Qn(β) = −2XWY + 2XWX ′β = 0.

Hence the solution of the problem (3.1) is given by

β̂(z) = (XWX ′)−1XWY

=

[
n∑

i=1

KAh (Xi −Anz) X̃iX̃
′
i

]−1 n∑
i=1

KAh (Xi −Anz) X̃iY (Xi).

We assume the following conditions on the kernel function K:

Assumption 3.1. Let K : Rd → R be a kernel function such that

(i)
∫
K(z)dz = 1.

(ii) The kernel function K is bounded and supported on SK ⊂ [−1/2, 1/2]d with Uz ⊂ SK .

(iii) Define κ
(r)
0 :=

∫
Kr(z)dz, κ

(r)
j1,...,jM

:=
∫ ∏M

�=1 zj�K
r(z)dz, and

ž := (1, (z)′1, . . . , (z)
′
p)

′, (z)L =

(
L∏

�=1

zj�

)′

1≤j1≤···≤jL≤d

, 1 ≤ L ≤ p.

The matrix S =
∫ ( 1

ž

)
(1 ž′)K(z)dz is non-singular.

4. Main results

In this section, we discuss asymptotic properties of the LP estimators defined in Section 3. In

particular, we establish the asymptotic normality of the LP estimator (Section 4.1) and estimation

of the asymptotic variance of the LP estimators (Section 4.2).

4.1. Asymptotic normality of local polynomial estimators. We assume the following condi-

tions for the sample size n, bandwidths hj , constants An,j , An1,j , and An2,j , and mixing coefficients

α(a; b):

Assumption 4.1. Recall q = min{q1, q2}, A(1)
n =

∏d
j=1An1,j, and An1 = min1≤j≤dAn1,j. Define

An1 = max1≤j≤dAn1,j, An2 = max1≤j≤dAn2,j, and Anh = max1≤j≤dAn,jhj. As n → ∞,

(i) hj → 0 for 1 ≤ j ≤ d.

(ii) nh1 . . . hd → ∞.

(iii) Anh1 . . . hd × h2j1 . . . h
2
jp

→ ∞ for 1 ≤ j1 ≤ · · · ≤ jp ≤ d.

(iv) Anh1 . . . hd × h2j1 . . . h
2
jp
h2jp+1

→ cj1...jp+1 ∈ [0,∞) for 1 ≤ j1 ≤ · · · ≤ jp+1 ≤ d.
8



(v)
(
Anh1...hd

A
(1)
n

)
α1(An2)�1(Anh1 . . . hd) → 0,(

A
(1)
n

Anh1 . . . hd

)
An1∑
k=1

k2d−1α
1−4/q
1 (k) → 0,

{(
An1

An1

)d(
An2

An1

)
+

(
A

(1)
n

Ad
n1

)( (
Anh

)d
Anh1 . . . hd

)(
An1

Anh

)} An1∑
k=1

kd−1α
1−2/q
1 (k) → 0.

We need Condition (ii) to compute the asymptotic variances of the LP estimators. Conditions

(iii) and (iv) are concerned with the rates of convergence of variance and bias terms of the LP

estimators, respectively. Condition (v) is concerned with the large-block-small-block argument

to show the asymptotic normality of the LP estimators. Indeed, we use the first condition to

approximate a weighted sum of spatially dependent data of the form

n∑
i=1

KAh (Xi)H
−1

(
1

X̌i

)
(en,i + εn,i)

by a sum of independent large blocks. The second condition is used to apply Lyapunov’s central

limit theorem to the sum of independent blocks. The third conditions is used to show the asymptotic

negligibility of a sum of small blocks. See the proof of Theorem 4.1 for detailed definitions of large

and small blocks.

Define

H := diag(1, h1, . . . , hd, h
2
1, h1h2, . . . , h

2
d, . . . , h

p
1, h

p−1
1 h2, . . . , h

p
d) ∈ R

D×D.

Throughout Sections 4.1, 4.2, and 4.3, we set z = 0 without loss of generality. Extending the

results in this section to the case z ∈ (−1/2, 1/2)d is straightforward.

Theorem 4.1 (Asymptotic normality of local polynomial estimators). Suppose Assumptions 2.1,

2.2, 2.3, 3.1, and 4.1 hold. Then, as n → ∞, the following result holds:√
Anh1 . . . hd

(
H
(
β̂(0)−M(0)

)
− S−1B(d,p)M (d,p)

n (0)
)

d→ N

⎛⎜⎝
⎛⎜⎝ 0

...

0

⎞⎟⎠ ,

{
κ(η2(0) + σ2

ε(0))

g(0)
+ η2(0)

∫
σe(v)dv

}
S−1KS−1

⎞⎟⎠ ,

where

B(d,p) =

∫ (
1

ž

)
(z)′p+1K(z)dz ∈ R

D×D̄, K =

∫ (
1

ž

)
(1 ž′)K2(z)dz ∈ R

D×D,

M (d,p)
n (z) =

(
∂j1...jp+1m(z)

sj1...jp+1 !

p+1∏
�=1

hj�

)′

1≤j1≤···≤jp+1≤d

=

(
∂1...1m(z)

(p+ 1)!
hp+1
1 ,

∂1...2m(z)

p!
hp1h2, . . . ,

∂d...dm(z)

(p+ 1)!
hpd

)′
∈ R

D̄.

Theorem 4.1 differs from the asymptotic normality of LP estimators under i.i.d. observations in

several points. First, the convergence rates of the LP estimators depends not on the sample size n ex-

plicitly but on the volume of the sampling region An. Second, the asymptotic variance is represented
9



as a sum of two components {κ(η2(0) + σ2
ε(0))}S−1KS−1/g(0) and η2(0)

(∫
σe(v)dv

)
S−1KS−1.

When the sampling design satisfies the mixed increasing domain asymptotics, that is, κ = 0, then

the asymptotic variance depends only on the second term, which represents the effect of the spatial

dependence, and does not includes σ2
ε(0), the effect of the measurement error {εn,j}. This is com-

pletely different from i.i.d. case. We also note that the form of the asymptotic variance in Theorem

4.1 is different from that of Theorem 4 in Masry (1996b) who investigates asymptotic properties of

LP estimators for equidistant time series. Indeed, in his result, the variance term that corresponds

to the second term of the asymptotic variance in our result does not appear. When the sampling

design satisfies the pure increasing domain asymptotics, that is, κ ∈ (0,∞), then the asymptotic

variance depends on both first and second terms. In this case, the asymptotic variance includes

the effect of the sampling design 1/g(0), which implies that the more likely the sampling sites are

distributed around 0, the more accurate the estimation of M(0). Moreover, if η(·) ≡ 0, then the

asymptotic variance coincides with that of i.i.d. case.

Remark 4.1 (General form of the mean squared error of ∂j1...jLm̂(0)). Define

b(d,p)n (x) := B(d,p)M (d,p)
n (x)

= (bn,0(x), bn,1(x), . . . , bn,d(x),

bn,11(x), bn,12(x), . . . , bn,dd(x), . . . , bn,1...,1(x), bn,1...2(x), . . . , bn,d...d(x))
′

and let ej1...jL = (0, . . . , 0, 1, 0, . . . , 0)′ be a D-dimensional vector such that e′j1...jLb
(d,p)
n (x) =

bj1...jL(x). Theorem 4.1 yields that

bn,j1,...,jL(0) =
∑

1≤j1,1≤···≤j1,p+1≤d

∂j1,1...j1,p+1m(0)

sj1,1...j1,p+1 !

p+1∏
�1=1

hj1,�1κ
(1)
j1...jLj1,1...j1,p+1

,

for 1 ≤ j1 ≤ · · · ≤ jL ≤ d, 0 ≤ L ≤ p, and the mean squared error (MSE) of the LP estimator

∂j1...jLm̂(x) is given as follows:

MSE(∂j1...jLm̂(0))

= E
[
(∂j1...jLm(0)− ∂j1...jLm̂(0))2

]
=

{
sj1...jL !

(S−1ej1...jL)
′B(d,p)M

(d,p)
n (0)∏L

�=1 hj�

}2

+

(
κ(η2(0) + σ2

ε(0))

g(0)
+ η2(0)

∫
σe(v)dv

)
(sj1...jL !)

2 e′j1...jLS
−1KS−1ej1...jL

Anh1 . . . hd ×
(∏L

�=1 hj�

)2 . (4.1)

4.2. Estimation of asymptotic variances. An estimator of the asymptotic variance of the sta-

tistics β̂(0) can be constructed by using leave-one (or two)-out estimators. For z ∈ (−1/2, 1/2)d,

let m̂−I(z) be the LP estimator (of order p) of m(z) computed without {(Y (Xi),Xi)}i∈I , I ⊂
{1, . . . , n}.

Define

ĝ(0) =
1

nh1 . . . hd

n∑
i=1

KAh(Xi),
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V̂n,1(0) =
1

nh1 . . . hd

n∑
i=1

KAh(Xi)
(
Y (Xi)− m̂−{i}(Xi/An)

)2
,

V̂n,2(0) =
An

nh1 . . . hd

n−1∑
i=1

KAh(Xi)KAh(Xi+1)

× (Y (Xi)− m̂−{i,i+1}(Xi/An)
) (

Y (Xi+1)− m̂−{i,i+1}(Xi+1/An)
)
,

Note that m̂−{i}(z) and m̂−{i,i+1}(z) are leave-i-out and leave-(i, i + 1)-out version of m̂(z), re-

spectively and then m̂−{i}(z) and Xi (or m̂−{i,i+1}(z) and {Xi,Xi+1}) are independent under

Assumption 2.2.

Proposition 4.1. Under the assumptions of Theorem 4.1, as n → ∞,

V̂n(0) :=
(An/n)V̂n,1(0)

ĝ2(0)
+

(κ
(2)
0 )−1V̂n,2(0)

ĝ2(0)

p→ κ(η2(0) + σ2
ε(0))

g(0)
+ η2(0)

∫
σe(v)dv.

Theorem 4.1 and Proposition 4.1 enable us to construct confidence intervals of ∂j1...jLm(0).

Consider a confidence interval of the form

Cn,j1...jL(1− τ) =

⎡⎢⎢⎣∂j1...jLm̂(0)±

√√√√√√ V̂n(0) (sj1...jL !)
2
(
e′j1...jLS

−1KS−1ej1...jL

)
Anh1 . . . hd

(∏L
�=1 hj�

)2 q1−τ/2

⎤⎥⎥⎦ ,

where q1−τ is the (1− τ)-quantile of the standard normal random variable. Then we can show the

asymptotic validity of the confidence interval as follows:

Corollary 4.1. Let τ ∈ (0, 1). Under the assumptions of Theorem 4.1 with

Anh1 . . . hd

(
(S−1ej1...jL)

′B(d,p)M (d,p)
n (0)

)2 → 0

as n → ∞. Then, limn→∞ P (∂j1...jLm(0) ∈ Cn,j1...jL(1− τ)) = 1− τ .

4.3. Two-sample test for spatially dependent data. In this section, we discuss two-sample

tests for the derivatives of the mean function as an application of our main results.

Consider the following nonparametric regression model:

Y1(x1,�1) = m1

(
x1,�1

An

)
+ η1

(
x1,�1

An

)
e1(x1,�1) + σε,1

(
x1,�1

An

)
ε1,�1 , �1 = 1, . . . , n1

Y2(x2,�2) = m2

(
x2,�2

An

)
+ η2

(
x2,�2

An

)
e2(x2,�2) + σε,2

(
x2,�2

An

)
ε2,�2 , �2 = 1, . . . , n2,

where x1,�1 ,x2,�2 ∈ Rn, e = {e(x) = (e1(x), e2(x))
′ : x ∈ R

d} is a bivariate stationary random field

such that E[ek(0)] = 0, E[e2k(0)] = 1, and {εk,�k} is a sequence of i.i.d. random variables such that

E[εk,�k ] = 0, k = 1, 2.

Assume that {xk,�k} are realizations of a sequence of random variables {Xk,�k} with density

A−1
n gk(·/An) where gk(·) is a probability density function with support [−1/2, 1/2]d, k = 1, 2.

Assumption 4.2. The bivariate random field e satisfies the following conditions:

(i) E[|ek(0)|q2 ] < ∞, k = 1, 2 for some integer q2 > 4.

(ii) Define Σe(x) = (σe,jk(x))1≤j,k≤2 where σe,jk(x) = E[ej(0)ek(x)], j, k = 1, 2. Assume that

σe,kk(0) = 1, k = 1, 2 and
∫
Rd |σe,jk(v)|dv < ∞, j, k = 1, 2.
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(iii) The random field e is α-mixing with mixing coefficients α(a; b) ≤ α1(a)�1(b) such that as

n → ∞,

A(1)
n

⎛⎝α
1−2/q
1 (An2) +

∞∑
k=An1

kd−1α
1−2/q
1 (k)

⎞⎠�
1−2/q
1 (A(1)

n ) → 0,

where q = min{q1, q2}, A(1)
n =

∏d
j=1An1,j, An1 = min1≤j≤dAn1,j, and An2 = min1≤j≤dAn2,j.

Here, {An1,j}n≥1 and {An2,j}n≥1 are sequences of constants such that min
{
An2,j ,

An1,j

An2,j
,
An,jhj

An1,j

}
→

∞ as n → ∞, and q1 is the integer that appear in Assumption 2.1.

(iv) {X1,�1}n1
�1=1, {X2,�2}n2

�2=1, e, {ε1,�1}n1
�1=1, and {ε2,�2}n2

�2=1 are mutually independent.

In Section 6, we give examples of bivariate random fields that satisfies Assumptions 4.1 and 4.2.

We note that a wide class of bivariate Lévy-driven MA random fields satisfies our assumptions.

We are interested in testing the null hypothesis

H0,j1...jL : ∂j1...jLm1(0)− ∂j1...jLm2(0) = 0 (4.2)

against the alternative H1,j1...jL : ∂j1...jLm1(0)− ∂j1...jLm2(0) �= 0.

Define Mk(0) as M(0) with m = mk and βk(0) as LP estimators of order p for Mk(0) computed

by using {(Yk(xk,�k),xk,�k)}, bandwidths h1, . . . , hd, and a common kernel function K, k = 1, 2,

respectively. The next theorem is a building block of the two-sample test (4.2).

Proposition 4.2. Suppose Assumptions 2.1, 2.2 (i), 3.1, 4.1, and 4.2 hold with m = mk, η = ηk,

σε = σε,k, {εj} = {εk,�k}, g = gk, k = 1, 2. Moreover, assume that n = n1, n1/n2 → θ ∈ (0,∞) as

n1 → ∞ and (η1(0),−η2(0))
(∫

Σe(v)dv
)
(η1(0),−η2(0))

′ ≥ 0. Then, as n → ∞,√
Anh1 . . . hd

{
H
(
(β1(0)− β2(0))− (M1(0)−M2(0))

)− (Bn1(0)−Bn2(0))
}

d→ N

⎛⎜⎝
⎛⎜⎝ 0

...

0

⎞⎟⎠ ,
(
V 1(0) + V 2(0)− 2V 3(0)

)
S−1KS−1

⎞⎟⎠ ,

where

Bn1(0) = S−1B(d,p)M
(d,p)
n1 (0), Bn2(0) = S−1B(d,p)M

(d,p)
n2 (0),

V 1(0) =

(
κ(η21(0) + σ2

ε,1(0))

g1(0)
+ η21(0)

∫
σe,11(v)dv

)
,

V 2(0) =

(
θκ(η22(0) + σ2

ε,2(0))

g2(0)
+ η22(0)

∫
σe,22(v)dv

)
,

V 3(0) = η1(0)η2(0)

∫
σe,12(v)dv,

where M
(d,p)
nk (0) are defined as M

(d,p)
n (0) with m = mk.

An estimator of the asymptotic variance of the statistics β1(0) − β2(0) can be constructed as

follows. For z ∈ (−1/2, 1/2)d, let m̂k,−Ik(z) be the LP estimator (of order p) of mk(z) computed

without {(Yk(Xk,�k),Xk,�k)}�k∈Ik , Ik ⊂ {1, . . . , nk}, k = 1, 2.
12



Define

gnk
(0) =

1

nkh1 . . . hd

nk∑
�k=1

KAh(Xk,�k),

V n,1k(0) =
1

nkh1 . . . hd

nk∑
�k=1

KAh(Xk,�k)
(
Yk(Xk,�k)− m̂k,−{�k}(Xk,�k/An)

)2
, k = 1, 2,

V n,2k(0) =
An

nkh1 . . . hd

nk−1∑
�k=1

KAh(Xk,�k)KAh(Xk,�k+1)

× (Yk(Xk,�k)− m̂k,−{�k,�k+1}(Xk,�k/An)
)

× (Yk(Xk,�k+1)− m̂k,−{�k,�k+1}(Xk,�k+1/An)
)
, k = 1, 2,

V n,3(0) =
An

n1n2h1 . . . hd

n1∑
�1=1

n2∑
�2=1

KAh(X1,�1)KAh(X2,�2)

× (Y1(X1,�1)− m̂1,−{�1}(X1,�1/An)
) (

Y2(X2,�2)− m̂2,−{�2}(X2,�2/An)
)
.

Proposition 4.3. Under the assumptions of Theorem 4.2, as n → ∞,

V̌n(0) :=

{
(An/n1)V n,11(0) + (V̂n,21(0)/κ

(2)
0 )

g2n1
(0)

}
+

{
(An/n2)V n,12(0) + (V̂n,22(0)/κ

(2)
0 )

g2n2
(0)

}

− 2
(V n,3(0)/κ

(2)
0 )

gn1
(0)gn2

(0)

p→ V 1(0) + V 2(0)− 2V 3(0).

Define the test statistics

Tn,j1...jL :=

√
Anh1 . . . hd

(∏L
�=1 hj�

)2
(∂j1...jLm̂1(0)− ∂j1...jLm̂2(0))√

V n(0) (sj1...jL !)
2
(
e′j1...jLS

−1KS−1ej1...jL

) .

The asymptotic properties of the test statistics under both null and alternative hypotheses are

given as follows:

Corollary 4.2. Let τ ∈ (0, 1/2). Under the assumptions of Theorem 4.2 with

Anh1 . . . hd

(
(S−1ej1...jL)

′B(d,p)M
(d,p)
n1 (0)

)2 → 0, n → ∞.

Then, limn→∞ P (|Tn,j1...jL | ≥ q1−τ/2) = τ under H0,j1...jL and limn→∞ P (|Tn,j1...jL | ≥ q1−τ/2) = 1

under H1,j1...jL, where q1−τ is the (1− τ)-quantile of the standard normal random variable.

5. Uniform convergence of local polynomial estimators

In this section, we consider general kernel estimators and derive their uniform convergence rates

(Section 5.1). Building on the results, we derive the uniform convergence rates of the LP estimators

for the mean function of the model (2.1) (Section 5.2).
13



5.1. Uniform convergence rates for general kernel estimators. For j = 1, 2, 3, let fj : R
d →

R be functions such that fj is continuous on R0,δ := (−1/2− δ, 1/2 + δ)d for some δ > 0. Define

Ψ̂I(z) =
1

n2A−1
n h1 . . . hd

n∑
i=1

KAh(Xi −Anz)

× f1,Ah (Xi −Anz) f2,A (Xi −Anz) f3,A (Xi)ZXi , (5.1)

Ψ̂II(z) =
1

nh1 . . . hd

n∑
i=1

KAh(Xi −Anz)

× f1,Ah (Xi −Anz) f2,A (Xi −Anz) f3,A (Xi) , (5.2)

where fj,Aa(x) = fj

(
x1

An,1a1
, . . . , xd

An,dad

)
for a = (a1, . . . ad)

′ ∈ (0,∞)d and {ZXi}ni=1 is a sequence

of real-valued random variables. Many kernel estimators, such as kernel density, Nadaraya-Watson,

and LP estimators, can be represented by combining special cases of estimators (5.1) or (5.2). In

this study, we use the uniform convergence rates of these estimators with

f1 ∈
{
e′j1...jL

(
1

x̌

)
, e′j1,1...j1,L1

(
1

x̌

)
(1 x̌′)ej2,1...j2,L2

}
,

f2 ∈
{
1,

L∏
�=1

xj�

}
, f3 ∈

{
1, η, σε, {∂j1...jp+1m}1≤j1≤···≤jp+1≤d

}
, ZXi ∈ {e(Xi), εi} .

We assume the following conditions for the sampling sites {Xi}ni=1:

Assumption 5.1. Let g be a probability density function with support R0 = [−1/2, 1/2]d.

(i) An/n → κ ∈ [0,∞) as n → ∞,

(ii) {Xi = (Xi,1, . . . , Xi,d)
′}ni=1 is a sequence of i.i.d. random vectors with density A−d

n g(·/An)

and g is continuous and positive on R0.

(iii) {Xi}ni=1 and {Zx : x ∈ R
d} are independent.

We also assume the following conditions on the bandwidth hj , the random field {Zx : x ∈ R
d},

and functions fj :

Assumption 5.2. For j = 1, . . . , d, let {An1,j}n≥1, {An2,j}n≥1 be sequence of positive numbers.

(i) The random field {Zx : x ∈ R
d} is stationary and E[|Z0|q2 ] < ∞ for some integer q2 > 4.

(ii) Define σZ(x) = E[Z0Zx]. Assume that
∫
Rd |σZ(v)|dv < ∞.

(iii) min
{
An2,j ,

An1,j

An2,j
,
An,jhj

An1,j

}
→ ∞ as n → ∞.

(iv) The random field {Zx : x ∈ R
d} is β-mixing with mixing coefficients β(a; b) ≤ β1(a)�2(b)

such that as n → ∞, hj → 0, 1 ≤ j ≤ d,

sup
v∈R0,δ

∣∣∣∣f2(h1v1, . . . , hdvd)f2(h1, . . . , hd)

∣∣∣∣ ∈ (cf2 , Cf2) for some 0 < cf2 < Cf2 < ∞, (5.3)

A
(1)
n

(An1)d
∼ 1,

A
1
2
n (h1 . . . hd)

1
2

n1/q2(An1)d(log n)
1
2
+ι

� 1 for some ι ∈ (0,∞), (5.4)√
n2Anh1 . . . hd

(A
(1)
n )2 log n

β1(An2)�2(Anh1 . . . hd) → 0, (5.5)
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where

A(1)
n =

d∏
j=1

An1,j , An1 = max
1≤j≤d

An1,j , An1 = min
1≤j≤d

An1,j ,

An2 = max
1≤j≤d

An2,j , An2 = min
1≤j≤d

An2,j .

(iv) f1 : Rd → R is Lipschitz continuous on R
d, i.e., |f1(v1) − f1(v2)| ≤ Lf1 |v1 − v2| for some

Lf1 ∈ (0,∞) and all v1,v2 ∈ R
d, and f2 and f3 are continuous on R0,δ.

When ZXi = εi, we interpret {Zx : x ∈ R
d} as a set of i.i.d. random variable and in this

case σZ(x) = 0 if x �= 0. Condition (5.5) is concerned with large-block-small-block argument

for β-mixing sequences. To derive uniform convergence rates of kernel estimators, we need to

care about the effect of non-equidistant sampling sites when applying a maximal inequality and

it requires additional work compared with the case that sampling sites are equidistant. Indeed,

in place of using results for (regularly spaced) stationary sequence, which cannot be applied to

the analysis of irregularly spaced nonstationary data, we construct “exactly” independent blocks

of observations and apply results for independent data to the independent blocks since there is no

practical guidance for introducing an order to spatial points as opposed to time series. Precisely,

we first reduce the dependent data to not asymptotically but exactly independent blocks in finite

sample by extending the blocking technique in Yu (1994)(Corollary 2.7), which does not require

regularly spaced sampling sites. Then apply a maximal inequality for independent and possibly

not identically distributed random variables to the independent blocks. In Section 6, we will show

that a wide class of Lévy-driven MA random fields satisfies our β-mixing conditions.

Remark 5.1 (Discussion on β-mixing conditions). Lahiri (2003b) established central limit theo-

rems for weighted sample means of bounded spatial data under α-mixing conditions. Lahiri’s proof

relies essentially on approximating the characteristic function of the weighted sample mean by that

of independent blocks using the Volkonskii-Rozanov inequality (cf. Proposition 2.6 in Fan and Yao

(2003)) and then showing that the characteristic function corresponding to the independent blocks

converges to the characteristic function of its Gaussian limit. However, characteristic functions are

difficult to capture the uniform behavior of the LP estimators over compact sets so we rely on a dif-

ferent argument than that of Lahiri (2003b). Indeed, we use a stronger blocking argument tailored

to β-mixing sequences; cf. Lemma 4.1 in Yu (1994). Further, we cannot apply other techniques

for dependent data such as m-dependent approximation under a physical dependence structure (cf.

El Machkouri et al. (2013)) since the technique is designed for regularly spaced random fields on

Z
d. We also note that it is not known that the results corresponding to Corollary 2.7 in Yu (1994)

hold for α-mixing sequences; see Remark (ii) right after the proof of Lemma 4.1 in Yu (1994).

We assume the following conditions on the kernel function K:

Assumption 5.3. Let K : Rd → R be a kernel function such that

(i)
∫
K(z)dz = 1.

(ii) The kernel function K is bounded and supported on [−CK , CK ]d ⊂ [−1/2, 1/2]d for some

CK > 0. Moreover, K is Lipschitz continuous on R
d, i.e., |K(v1)−K(v2)| ≤ LK |v1 − v2|

for some LK ∈ (0,∞) and all v1,v2 ∈ R
d.
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(iii) Define κ
(r)
0 :=

∫
Kr(z)dz, κ

(r)
j1,...,jM

:=
∫ ∏M

�=1 zj�K
r(z)dz, and

ž := (1, (z)′1, . . . , (z)
′
p)

′, (z)L =

(
L∏

�=1

zj�

)′

1≤j1≤···≤jL≤d

, 1 ≤ L ≤ p.

The matrix S =
∫ ( 1

ž

)
(1 ž′)K(z)dz is non-singular.

The next result provides uniform convergence rates of Ψ̂I and Ψ̂II.

Proposition 5.1. Suppose that Assumptions 5.1, 5.2, and 5.3 hold. Then as n → ∞, we have

sup
z∈[−1/2,1/2]d

∣∣∣Ψ̂I(z)− E[Ψ̂I(z)]
∣∣∣ = Op

(
|f2(h1, . . . , hd)|

√
log n

n2A−1
n h1 . . . hd

)
, (5.6)

sup
z∈[−1/2,1/2]d

∣∣∣Ψ̂II(z)− E[Ψ̂II(z)]
∣∣∣ = Op

(
|f2(h1, . . . , hd)|

√
log n

nh1 . . . hd

)
. (5.7)

5.2. Uniform estimation of the derivatives of the mean function. In this section, we provide

uniform convergence rates of the LP estimators. We assume the following condition on the mean

function m, the variance function η, and {εn,j}:
Assumption 5.4. Recall R0 = [−1/2, 1/2]d.

(i) The mean function m is (p+ 1)-times continuously partial differentiable on R0 and define

∂j1...jLm(z) := ∂m(z)/∂zj1 . . . zjL, 1 ≤ j1, . . . , jL ≤ d, 0 ≤ L ≤ p+ 1. When L = 0, we set

∂j1...jLm(z) = ∂j0m(z) = m(z).

(ii) The function η is continuous over R0 and infz∈R0 η(z) > 0.

(iii) The sequence of random variables {εj}nj=1 are i.i.d. with E[ε1] = 0, E[ε21] = 1, E[|ε1|q1 ] < ∞
for some integer q1 > 4, and the function σε(·) is continuous over R0 and infz∈R0 σε(z) > 0.

The next result provides uniform convergence rates of LP estimators ∂j1...jLm̂(z).

Theorem 5.1. Define Tn =
∏d

j=1[−1/2+CKhj , 1/2−CKhj ]. Suppose that Assumptions 5.1, 5.2

(i), (ii), (iii), (5.4), (5.5), 5.3, and 5.4 hold with (with Zx = e(x) and q1 ≥ q2). Moreover, assume

that logn
nh1...hd

→ 0 as n → ∞. Then for 1 ≤ j1 ≤ · · · ≤ jL ≤ d, 0 ≤ L ≤ p, as n → ∞, we have

sup
z∈Tn

|∂j1...jLm̂(z)− ∂j1...jLm̂(z)|

= Op

⎛⎜⎝∑1≤j1≤···≤jp+1≤d

∏p+1
�=1 hj�∏L

�=1 hj�
+

√√√√ log n

Anh1 . . . hd

(∏L
�=1 hj�

)2
⎞⎟⎠ .

6. Examples

In this section, we discuss examples of random fields to which our theoretical results can be

applied. To this end, we consider Lévy-driven moving average (MA) random fields and discuss their

dependence structure. Lévy-driven MA random fields include many Gaussian and non-Gaussian

random fields and constitute a flexible class of models for spatial data. We refer to Bertoin (1996)

and Sato (1999) for standard references on Lévy processes, and Rajput and Rosinski (1989) and

Kurisu (2022) for details on the theory of infinitely divisible measures and fields. In particular, we
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show that a broad class of Lévy-driven MA random fields, which includes continuous autoregressive

and moving average (CARMA) random fields as special cases (cf. Brockwell and Matsuda (2017)),

satisfies our assumptions.

Let L = {L(A) = (L1(A), L2(A))′ : A ∈ B(Rd)} be an R
2-valued random measure on the Borel

subsets B(Rd) that satisfies the following conditions:

1. For each sequence {Am}m≥1 of disjoint sets in R
d,

(a) L(∪m≥1Am) =
∑

m≥1L(Am) a.s. whenever ∪m≥1Am ∈ B(Rd),

(b) {L(Am)}m≥1 is a sequence of independent random variables.

2. For every Borel subset A of Rd with finite Lebesgue measure |A|, L(A) has an infinitely

divisible distribution, that is,

E[exp(iθ′L(A))] = exp(|A|ψ(θ)), θ ∈ R
2, (6.1)

where i =
√−1 and ψ is the logarithm of the characteristic function of an R

2-valued

infinitely divisible distribution, which is given by

ψ(θ) = iθ′γ0 − 1

2
θ′Σ0θ +

∫
R2

{
eiθ

′x − 1− iθ′x1{‖x‖≤1}
}
ν0(dx),

where γ0 = (γ0,1, γ0,2)
′ ∈ R

2, Σ0 = (σ0,jk)1≤j,k≤2 is a 2 × 2 positive semi-definite matrix,

and ν0 is a Lévy measure with
∫
R2 min{1, ‖x‖2}ν0(dx) < ∞. If ν0(dx) has a Lebesgue

density, i.e., ν0(dx) = ν0(x)dx, we call ν0(x) as the Lévy density. The triplet (γ0,Σ0, ν0)

is called the Lévy characteristic of L and uniquely determines the distribution of L.

By equation (6.1), the first and second moments of the random measure L are determined by

E[Lj(A)] = μ
(L)
j |A|, Cov(Lj(A), Lk(A)) = σ

(L)
j,k |A|,

where μ
(L)
j = −i∂ψ(0)∂θj

and σ
(L)
j,k = −∂2ψ(0)

∂θj∂θk
.

The following are a couple of examples of Lévy random measures.

• If ψ(θ) = −θ′Σ2
0θ/2 with a 2 × 2 positive semi-definite matrix Σ0, then L is a Gaussian

random measure.

• If ψ(θ) = λ
∫
R2(exp(iθ

′x) − 1)F (dx), where λ > 0 and F is a probability distribution

function with no jump at the origin, then L is a compound Poisson random measure with

intensity λ and jump size distribution F . More specifically,

L(A) =
∞∑
i=1

Ji1{si}(A), A ∈ B(Rd),

where si denotes the location of the ith unit point mass of a Poisson random measure on R
d

with intensity λ > 0 and {Ji} is a sequence of i.i.d. random vectors in R
2 with distribution

function F independent of {si}.
Let φ = (φj,k)1≤j,k≤2 be a measurable function on R

d with φj,k ∈ L1(Rd)∩L∞(Rd). A bivariate

Lévy-driven MA random field with kernel φ driven by a Lévy random measure L is defined by

e(x) =

∫
Rd

φ(x− u)L(du), x ∈ R
d. (6.2)

Define μL = (μ
(L)
1 , μ

(L)
2 )′ and ΣL = (σ

(L)
j,k )1≤j,k≤2. The first and second moments of e(x) satisfy

E[e(0)] = μ(L)

∫
Rd

φ(u)du, Cov(e(0), e(x)) =

∫
Rd

φ(x− u)ΣLφ(u)du.
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We refer to Brockwell and Matsuda (2017) for more details on the computation of moments of

Lévy-driven MA processes.

Before discussing theoretical results, we look at some examples of univariate random fields defined

by (6.2). Let a∗(z) = zp0 + a1z
p0−1 + · · · + ap0 =

∏p0
i=1(z − λi) be a polynomial of degree p0 with

real coefficients and distinct negative zeros λ1, . . . , λp0 , and let b∗(z) = b0 + b1z + · · · + bq0z
q0 =∏q0

i=1(z − ξi) be a polynomial of degree q0 with real coefficients and real zeros ξ1, . . . , ξq0 such

that bq0 = 1 and 0 ≤ q0 < p0 and λ2
i �= ξ2j for all i and j. Define a(z) =

∏p0
i=1(z

2 − λ2
i ) and

b(z) =
∏q0

i=1(z
2 − ξ2i ). Then, the Lévy-driven MA random field driven by an infinitely divisible

random measure L with

φ(x) =

p0∑
i=1

b(λi)

a′(λi)
eλi‖x‖,

where a′ denotes the derivative of the polynomial a, is called a univariate (isotropic) CARMA(p0, q0)

random field. For example, if the Lévy random measure of a CARMA random field is compound

Poisson, then the resulting random field is called a compound Poisson-driven CARMA random

field. In particular, when

φ(x) = (1− ς) exp(λ1‖x‖) + ς exp(λ2‖x‖),
where ς is a parameter that satisfies

−λ2
2 − ξ2λ1

λ2
1 − ξ2λ2

=
ς

1− ς
, λ1 < λ2 < 0, ξ ≤ 0,

then the random field (6.2) is called a CARMA(2, 1) random field. This random field includes

normalized CAR(1) (when ς = 0) and CAR(2) (when ς = −λ1/(λ2 − λ1)) as special cases. See

Brockwell and Matsuda (2017) for more details. We note that although we focus on isotropic case,

it is possible to extend the results in this section to anisotropic Lévy-driven MA random fields.

Remark 6.1 (Connections to Matérn covariance functions). In spatial statistics, Gaussian random

fields with the following Matérn covariance functions play an important role (cf. Matérn, 1986; Stein,

1999; Guttorp and Gneiting, 2006):

M(x; ν, a, σ) = σ2‖ax‖νKν(‖ax‖), ν > 0, a > 0, σ > 0,

where Kν denotes the modified Bessel function of the second kind of order ν (we call ν the index

of Matérn covariance function). Brockwell and Matsuda (2017) showed that in the univariate case,

when the kernel function is φ(x) = ‖ax‖νKν(‖ax‖), which they call a Matérn kernel with index

ν, then the Levy-driven MA random field has a Matérn covariance function with index d/2 + ν.

For example, a normalized CAR(1) random field has a Matérn covariance function since its kernel

function is given by φ(x) = exp(−‖λ1x‖) =
√

(2/π)‖λ1x‖1/2K1/2(‖λ1x‖) for some λ1 < 0.

In general, if φ depends only on ‖x‖, i.e., φ(x) = φ(‖x‖), then e is a strictly stationary isotropic

random field and the second moment of e(x) satisfies

Cov(e(0), e(x)) =

∫
Rd

φ(‖x− u‖)ΣLφ(‖u‖)du.

Consider the following decomposition:

e(x) =

∫
Rd

φ(x− u)ψ0 (‖x− u‖ : mn)L(du) +

∫
Rd

φ(x− u) (1− ψ0 (‖x− u‖ : mn))L(du)
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=: e1,mn(x) + e2,mn(x),

where mn is a sequence of positive constants with mn → ∞ as n → ∞ and ψ0(· : c) : R → [0, 1] is

a truncation function defined by

ψ0(x : c) =

⎧⎪⎪⎨⎪⎪⎩
1 if |x| ≤ c/4,

−4
c

(
x− c

2

)
if c/4 < |x| ≤ c/2,

0 if x > c/2.

The random field e1,mn = {e1,mn(x) = (e11,mn(x), e12,mn(x))
′ : x ∈ R

d} is mn-dependent (with

respect to the �2-norm), i.e., e1,mn(x1) and e1,mn(x2) are independent if ‖x1−x2‖ ≥ mn. Also, if the

tail of the kernel function φ(·) decays sufficiently fast, then the random field e2,mn = {e2,mn(x) =

(e21,mn(x), e22,mn(x))
′ : x ∈ R

d} is asymptotically negligible. In such cases, we can approximate

e by the mn-dependent process e1,mn and verify conditions on mixing coefficients in Assymptions

2.3, 4.1, and 4.2 as shown in the following proposition.

Proposition 6.1. Consider a Lévy-driven MA random field e defined by (6.2). Assume that

φj,k(x) = r0,jke
−r1,jk‖x‖ where |r0,jk| > 0 and r1,jk > 0, j, k = 1, 2. Additionally, assume that

(a) the random measure L(·) is Gaussian with triplet (0,Σ0, 0) or

(b) the random measure L(·) is non-Gaussian with triplet (γ0, 0, ν0), μ(L) = (0, 0)′, and the

marginal Lévy density ν0,j(x) of Lj(·) is given by

ν0,j(x) =
1

|x|1+β0,j

(
C0,je

−c0,j |x|α0,j
+

C1,j

1 + |x|β1,j

)
1R\{0}(x), (6.3)

where α0,j > 0, β0,j ≥ −1, β1,j > 0, β0,j + β1,j > 6, c0,j > 0, C0,j ≥ 0, C1,j ≥ 0, and

C0,j + C1,j > 0, j = 1, 2.

Then e2,mn is asymptotically negligible, that is, we can replace e with e1,mn in the results in Section

4. Further, e1,mn satisfies Assumptions 2.3, 4.1, and 4.2 with An,j ∼ nζ0/d, An1,j = Aζ1
n,j, An2,j =

Aζ2
n1,j, mn = A

1/2
n2 , and hj ∼ n−ζ3/d where ζ0, ζ1, ζ2, and ζ3 are positive constants such that

ζ0 ∈
(
0,

2p+ 2

d

)
, ζ1 ∈

(
ζ0d

d+ 2p+ 2
,

2p+ 2

d+ 2p+ 2

)
,

ζ2 ∈
(
0,min

{
2

2 + dmax{1, ζ0} , 1−
ζ0d

ζ1(d+ 2p+ 2)
,

2p+ 2

ζ1(d+ 2p+ 2)
− 1

})
,

ζ3 ∈
(

dζ0
2p+ d+ 2

,min

{
dζ0

2p+ d
, ζ0 (1− ζ1(1 + ζ2)) , ζ1

(
1−

(
1 +

d

2
ζ0

)
ζ2

)})
.

Remark 6.2. When d = 2 and p ≥ 1, the conditions on {ζj}3j=0 are typically satisfied when

ζ0 = 1, ζ1 = 3
2p+4 , ζ2 ∈ (

0, 16
)
. The Lévy density of the form (6.3) corresponds to a compound

Poisson random measure if β0,j ∈ [−1, 0), a Variance Gamma random measure if α0,j = 1, β0,j = 0,

C1,j = 0, and a tempered stable random measure if β0,j ∈ (0, 1), C1,j = 0 (cf. Section 5 in Kato

and Kurisu (2020)). It is straight forward to extend Proposition 6.1 to the case that φ is a finite

sum of kernel functions with exponential decay. Therefore, our results in Section 4 can be applied

to a wide class of CARMA(p0, q0) random fields and extending the results to anisotropic CARMA

random fields (cf. Brockwell and Matsuda (2017)) is straightforward.

The next result provides examples of Lévy-driven MA random fields that satisfies assumptions

in Theorem 5.1.
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Proposition 6.2. Consider a univariate Lévy-driven MA random field e defined by (6.2). Assume

that φ(x) = r0e
−r1‖x‖ where |r0| > 0 and r1 > 0. Additionally, assume Conditions (a) or (b) in

Proposition 6.1. Then e2,mn is asymptotically negligible, that is, we can replace e with e1,mn in

the results Theorem 5.1. Further, e1,mn satisfies Assumption 5.2 with An,j ∼ nζ0/d, An1,j = Aζ1
n,j,

An2,j = Aζ2
n1,j, mn = A

1/2
n2 , and hj ∼ n−ζ3/d where ζ0, ζ1, ζ2, and ζ3 are positive constants such that

ζ0 >
2
q2
, ζ1 ∈

(
0, 12 − 1

ζ0q2

)
, ζ2 ∈ (0, 1), and ζ3 ∈

(
0,min{1, ζ0(1− 2ζ1)− 2

q2
}
)
.

7. Conclusion

In this paper, we have advanced statistical theory of nonparametric regression for irregularly

spaced spatial data. For this, we introduced a nonparametric regression model defined on a sampling

region Rn ⊂ R
d and derived asymptotic normality and uniform convergence rates of the local

polynomial estimators of order p ≥ 1 for the mean function of the model under a stochastic

sampling design. As an application of our main results, we discussed a two-sample test for the

mean functions and their derivatives. We also provided examples of random fields that satisfy our

assumptions. In particular, our assumptions hold for a wide class of random fields that includes

Lévy-driven moving average random fields and popular Gaussian random fields as special cases.
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Appendix A. Proofs for Section 4

A.1. Proof of Theorem 4.1.

Proof. Define h := (h1, . . . , hd)
′ and for x,y ∈ R

d, let x ◦ y = (x1y1, . . . , xdyd)
′ be the Hadamard

product. Considering Taylor’s expansion of m(z) around z,

m(Xi/An) = (1, X̌
′
i)M(z) +

1

(p+ 1)!

∑
1≤j1≤···≤jp+1≤d

(p+ 1)!

sj1...jp+1 !
∂j1,...,jp+1m(Ẋi/An)

p+1∏
�=1

Xi,j�

An,j�

,

where Ẋi = z + θiXi for some θi ∈ [0, 1). Then we have

β̂(0)−M(0) = (XWX ′)−1XW (Y −X ′M(0))

=

[
n∑

i=1

KAh (Xi)

(
1

X̌i

)
(1 X̌ ′

i)

]−1 n∑
i=1

KAh (Xi)

(
1

X̌i

)

×
⎛⎝en,i + εn,i +

∑
1≤j1≤···≤jp+1≤d

1

sj1...jp+1 !
∂j1,...,jp+1m(Ẋi/An)

p+1∏
�=1

Xi,j�

An,j�

⎞⎠ .

This yields √
Anh1 . . . hdH(β̂(0)−M(0)) = S−1

n (0)(Vn(0) +Bn(0)),

where

Sn(0) =
1

nh1 . . . hd

n∑
i=1

KAh (Xi)H
−1

(
1

X̌i

)
(1 X̌ ′

i)H
−1,

Vn(0) =

√
Anh1 . . . hd
nh1 . . . hd

n∑
i=1

KAh (Xi)H
−1

(
1

X̌i

)
(en,i + εn,i)

=: (Vn,j1...jL(0))
′
1≤j1≤···≤jL≤d,0≤L≤p,

Bn(0) =

√
Anh1 . . . hd
nh1 . . . hd

n∑
i=1

KAh (Xi)H
−1

(
1

X̌i

)

×
∑

1≤j1≤···≤jp+1≤d

1

sj1...jp+1 !
∂j1,...,jp+1m(Ẋi/An)

p+1∏
�=1

Xi,j�

An,j�

=: (Bn,j1...jL(Ẋ))′1≤j1≤···≤jL≤d,0≤L≤p.

(Step 1) Now we evaluate Sn(0). By a change of variables and the dominated convergence theorem,

we have

E[Sn(0)] =
A−1

n

h1 . . . hd

∫
KAh(x)H

−1

(
1
ˇ(x/An)

)
(1 ˇ(x/An)

′
)H−1g(x/An)dx

=
A−1

n

h1 . . . hd
Anh1 . . . hd

∫
K(w)

(
1

w̌

)
(1 w̌′)g(w ◦ h)dw

=

(
g(0)

∫
K(w)

(
1

w̌

)
(1 w̌′)dw

)
(1 + o(1)).
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For 1 ≤ j1,1 ≤ · · · ≤ j1,L1 ≤ d, 1 ≤ j2,1 ≤ · · · ≤ j2,L2 ≤ d, 0 ≤ L1, L2 ≤ p, we define

In,j1,1...j1,L1
,j2,1...j2,L2

:=
1

nh1 . . . hd

n∑
i=1

KAh (Xi)

L1∏
�1=1

(
Xi,j1,�1

An,j1,�1
hj1,�1

)
L2∏

�2=1

(
Xi,j2,�2

An,j2,�2
hj2,�2

)
.

Then, by a change of variables and the dominated convergence theorem, we have

Var(In,j1,1...j1,L1
,j2,1...j2,L2

)

=
1

n(h1 . . . hd)2
Var

⎛⎝KAh (X1)

L1∏
�1=1

(
Xi,j1,�1

An,j1,�1
hj1,�1

)
L2∏

�2=1

(
Xi,j2,�2

An,j2,�2
hj2,�2

)⎞⎠
=

1

nh1 . . . hd

⎧⎨⎩
∫ L1∏

�1=1

z2j1,�1

L2∏
�2=1

z2j2,�2
K2(z)g(z ◦ h)dz

−h1 . . . hd

⎛⎝∫ L1∏
�1=1

zj1,�1

L2∏
�2=1

zj2,�2K(z)g(z ◦ h)dz
⎞⎠2⎫⎬⎭

=
1

nh1 . . . hd

(
g(0)κ

(2)
j1,1...j1,L1

j2,1...j2,L2
j1,1...j1,L1

j2,1...j2,L2
+ o(1)

)
− 1

n
(g(0)κ

(1)
j1,1...j1,L1

j2,1...j2,L2
+ o(1))2

=
g(0)κ

(2)
j1,1...j1,L1

j2,1...j2,L2
j1,1...j1,L1

j2,1...j2,L2

nh1 . . . hd
+ o

(
1

nh1 . . . hd

)
.

Then for any ρ > 0,

P
(
|In,j1,1...j1,L1

,j2,1...j2,L2
− g(0)κ

(1)
j1,1...j1,L1

j2,1...j2,L2
| > ρ

)
≤ ρ−1

{
Var(In,j1,1...j1,L1

,j2,1...j2,L2
) +

(
E[In,j1,1...j1,L1

,j2,1...j2,L2
]− g(0)κ

(1)
j1,1...j1,L1

j2,1...j2,L2

)2}
= O

(
1

nh1 . . . hd

)
+ o(1) = o(1).

This yields In,j1,1...j1,L1
,j2,1...j2,L2

p→ g(0)κ
(1)
j1,1...j1,L1

j2,1...j2,L2
. Hence we have

Sn(0)
p→ g(0)S.

(Step 2) Now we evaluate Vn(0). For any t = (t0, t1, . . . , td, t11, . . . , tdd, . . . , t1...1, . . . , td...d)
′ ∈ R

D,

we define

Ṽn(0) :=
nh1 . . . hd√
Anh1 . . . hd

t′Vn(0) =

n∑
i=1

KAh (Xi)

[
t′H−1

(
1

X̌i

)]
(en,i + εn,i).

In this step, we will show that

t′Vn(0)

d→ N

(
0, g(0)

{
κ(η2(0) + σ2

ε(0)) + η2(0)g(0)

∫
σe(v)dv

}∫
K2(z)

[
t′
(

1

ž

)]2
dz

)
. (A.1)
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Before we show (A.1), we introduce some notations. For z0 = (z0,1, . . . z0,d)
′ ∈ R

d and � =

(�1, . . . , �d)
′ ∈ Z

d, let

Γn,z0(�;0) =
d∏

j=1

(An,jz0,j + (�j − 1/2)An3,j , An,jz0,j + (�j + 1/2)An3,j ]

with An3,j = An1,j +An2,j , and define the following hypercubes,

Γn,z0(�;Δ) =

d∏
j=1

Ij,z0(Δj), Δ = (Δ1, . . . ,Δd)
′ ∈ {1, 2}d,

where

Ij,z0(Δj) =

{
(An,jz0,j + (�j − 1/2)An3,j , An,jz0,j + (�j − 1/2)An3,j +An1,j ] if Δj = 1,

(An,jz0,j + (�j − 1/2)An3,j +An1,j , An,jz0,j + (�j + 1/2)An3,j ] if Δj = 2.

Let Δ0 = (1, . . . , 1)′. The partitions Γn,z0(�;Δ0) correspond to “large blocks” and the partitions

Γn,z0(�;Δ) for Δ �= Δ0 correspond to “small blocks”. Let Ln1(z0) = {� ∈ Z
d : Γn,z0(�;0) ⊂

Rn ∩ (hRn +Anz0)} denote the index set of all hypercubes Γn,z0(�;0) that are contained in Rn ∩
(hRn + Anz0), and let Ln2(z0) = {� ∈ Z

d : Γn,z0(�;0) ∩ Rn ∩ (hRn + Anz0) �= 0,Γn(�;0) ∩ (Rn ∩
(hRn + Anz0))

c �= ∅} be the index set of boundary hypercubes. Define Γn(�;Δ) = Γn,0(�;Δ),

Ln1 = Ln1(0), Ln2 = Ln2(0), and

Ṽn(�;Δ) =
∑

i:Xi∈Γn(�;Δ)∩hRn

KAh (Xi)

[
t′H−1

(
1

X̌i

)]
(en,i + εn,i).

Note that by our summation convention, Vn(�;Δ) = 0 if the set {i : Xi ∈ Γn(�;Δ) ∩ hRn} is

empty for some �. Then we have

Ṽn(0) =
∑

�∈Ln1

Ṽn(�;Δ0) +
∑

Δ �=Δ0

∑
�∈Ln1

Ṽn(�;Δ) +
∑

Δ∈{1,2}d

∑
�∈Ln2

Ṽn(�;Δ)

=: Ṽn1 + Ṽn2 + Ṽn3.

Note that for �1, �2 ∈ Ln1,

d (Γn(�1;Δ0),Γn(�2;Δ0)) ≥ min{|�1 − �2|, 0}An3 +An2, (A.2)

where An3 = min1≤j≤dAn3,j and An2 = min1≤j≤dAn2,j .

Hence, by the Volkonskii-Rozanov inequality (cf. Proposition 2.6 in Fan and Yao (2003)), we

have ∣∣∣∣∣∣E[exp(iuṼn1)]−
∏

�∈Ln1

E[exp(iuṼn(�;Δ0))]

∣∣∣∣∣∣ �
(
Anh1 . . . hd

A
(1)
n

)
α(An2;Anh1 . . . hd). (A.3)

From Lyapounov’s CLT, it is sufficient to verify the following conditions to show (A.1): As

n → ∞,

E[Ṽ 2
n (0)] → g(0)

{
κ(η2(0) + σ2

ε(0)) + η2(0)g(0)

∫
σe(v)dv

}
×
∫

K2(z)

[
t′
(

1

ž

)]2
dz, (A.4)
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∑
�∈Ln1

E[Ṽ 2
n (�;Δ0)]− E[Ṽ 2

n (0)] = o
(
n2A−1

n h1 . . . hd
)
, (A.5)

∑
�∈Ln1

E[Ṽ 4
n (�;Δ0)] = o

((
n2A−1

n h1 . . . hd
)2)

, (A.6)

Var(Ṽn2) = o
(
n2A−1

n h1 . . . hd
)
, (A.7)

Var(Ṽn3) = o
(
n2A−1

n h1 . . . hd
)
. (A.8)

In the following steps, we show (A.4) (Step 2-1), (A.6) (Step 2-2), (A.7) and (A.8) (Step 2-3),

and (A.5) (Step 2-4).

(Step 2-1) Now we show (A.4). Let δij be a function such that δij = 1 if i = j and δij = 0 if

i �= j. Observe that

σ2
n(0) := E·|X

(
Ṽ 2
n (0)

)
=

n∑
i,j=1

t′H−1

(
1

X̌i

)
t′H−1

(
1

X̌j

)
KAh (Xi)KAh (Xj)

× {η(Xi/An)η(Xj/An)σe(Xi −Xj) + σ2
ε(Xi/An)δij

}
.

Thus we have

EX

[
σ2
n(0)

]
= nA−1

n

∫ [
t′H−1

(
1
ˇ(x/An)

)]2
K2

Ah(x)
{
η2(x/An) + σ2

ε(x/An)
}
g(x/An)dx

+ n(n− 1)A−2
n

∫
t′H−1

(
1
ˇ(x1/An)

)
t′H−1

(
1
ˇ(x2/An)

)
KAh(x1)KAh(x2)

× η(x1/An)η(x2/An)σe(x1 − x2)g(x1/An)g(x2/An)dx1dx2

=: σ2
n,1 + σ2

n,2.

For σ2
n,1, we have

σ2
n,1 = nh1 . . . hd

∫ [
t′
(

1

ž

)]2
K2(z)

{
η2(z ◦ h) + σ2

ε(z ◦ h)} g(z ◦ h)dz

= nh1 . . . hd(η
2(0) + σ2

ε(0))g(0)

(∫
K2(z)

[
t′
(

1

ž

)]2
dz

)
(1 + o(1)). (A.9)

For σ2
n,2, we have

σ2
n,2 = n(n− 1)

∫
R2

0

σe(An(y1 − y2))

[
t′H−1

(
1

y̌1

)][
t′H−1

(
1

y̌2

)]
×Kh(y1)Kh(y2)η(y1)η(y2)g(y1)g(y2)dy1dy2

= n(n− 1)(h1 . . . hd)
2

∫
h−1R2

0

σe(An(z1 − z2) ◦ h)
[
t′
(

1

ž1

)][
t′
(

1

ž2

)]
×K(z1)K(z2)η(z1 ◦ h)η(z2 ◦ h)g(z1 ◦ h)g(z2 ◦ h)dz1dz2
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= n(n− 1)(h1 . . . hd)
2

∫
R′

h,0

σe(Anw ◦ h)
(∫

Rh,0(w)

[
t′
(

1
ˇ(z2 +w)

)][
t′
(

1

ž2

)]
×K(z2 +w)K(z2)η((z2 +w) ◦ h)η(z2 ◦ h)g((z2 +w) ◦ h)g(z2 ◦ h)dz2) dw

= n(n− 1)h1 . . . hd

∫
hR′

h,0

σe(Anu)

(∫
Rh,0(u/h)

[
t′
(

1
ˇ(z2 + u ◦ h−1)

)][
t′
(

1

ž2

)]
×K(z2 + u ◦ h−1)K(z2)η(z2 ◦ h+ u)η(z2 ◦ h)g((z2 ◦ h+ u)g(z2 ◦ h)dz2

)
du

= n(n− 1)A−1
n h1 . . . hd

∫
AnhR′

h,0

σe(v)

(∫
Rh,0((v◦h−1)/An)

[
t′
(

1
ˇ(

z2 +
v◦h−1

An

) )][t′( 1

ž2

)]

×K

(
z2 +

v ◦ h−1

An

)
K(z2)η

(
z2 ◦ h+

v

An

)
η(z2 ◦ h)g

(
z2 ◦ h+

v

An

)
g(z2 ◦ h)dz2

)
dv

where

R′
h,0 = {w = z1 − z2 : z1, z2 ∈ h−1R0}, Rh,0(w) = {z2 : z2 ∈ h−1R0 ∩ (h−1R0 +w)},

AnhR
′
h,0 = {(An,1x1, . . . , An,dxd) : x = (x1, . . . , xd)

′ ∈ hR′
h,0}.

We divide the integral
∫
AnhR′

h,0
into two parts

∫
AnhR′

h,0∩{|v|≤M} and
∫
AnhR′

h,0∩{|v|>M} for some

M > 0 and define these as σ2
n,21 and σ2

n,22, respectively. Observe that as n → ∞

|σ2
n,22| �

∫
{|v|>M}

|σe(v)|dv

which can be made arbitrary small by choosing a large M . Further, observe that as n → ∞

1{AnhR
′
h,0 ∩ {|v| ≤ M}}

∫
Rh,0(v/(Anh))

[
t′
(

1
ˇ(

z2 +
v◦h−1

An

) )][t′( 1

ž2

)]

×K

(
z2 +

v ◦ h−1

An

)
K(z2)η

(
z2 ◦ h+

v

An

)
η(z2 ◦ h)g

(
z2 ◦ h+

v

An

)
g(z2 ◦ h)dz2

= 1{|v| ≤ M}η2(0)g2(0)
(∫

K2(z2)

[
t′
(

1

ž2

)]2
dz2

)
(1 + o(1)).

Then as n → ∞, we have

σ2
n,21 = η2(0)g2(0)

(∫
{|v|≤M}

σe(v)dv

)(∫
K2(z2)

[
t′
(

1

ž2

)]2
dz2

)
(1 + o(1)).

Therefore, we have

σ2
n,2 = n2A−1

n h1 . . . hdη
2(0)g2(0)

(∫
σe(v)dv

)(∫
K2(z)

[
t′
(

1

ž

)]2
dz

)
(1 + o(1)). (A.10)

By (A.9) and (A.10), we have

Var(t′Vn(0))

= g(0)

{
κ(η2(0) + σ2

ε(0)) + η2(0)g(0)

∫
σe(v)dv

}(∫
K2(z)

[
t′
(

1

ž

)]2
dz

)
(1 + o(1)).
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(Step 2-2) Now we show (A.6). Define In(�) = {i ∈ Z
d : i + (−1/2, 1/2]d ⊂ Γn(�;Δ0)} for

� ∈ Ln1 and

Ṽn(i) =
n∑

i=1

KAh (Xi)

[
t′H−1

(
1

X̌i

)]
(en,i + εn,i)1{Xi ∈ [i+ (−1/2, 1/2]d] ∩Rn}.

Observe that

E[Ṽ 4
n (�;Δ0)]

= E

⎡⎣⎛⎝ ∑
i∈In(�)

Ṽn(i)

⎞⎠4⎤⎦
=

∑
i∈In(�)

E
[
Ṽ 4
n (i)

]
+

∑
i,j∈In(�),i �=j

E
[
Ṽ 3
n (i)Ṽn(j)

]
+

∑
i,j∈In(�),i�=j

E
[
Ṽ 2
n (i)Ṽ

2
n (j)

]
+

∑
i,j,k∈In(�),i �=j �=k

E
[
Ṽ 2
n (i)Ṽn(j)Ṽn(k)

]
+

∑
i,j,k,p∈In(�),i �=j �=k �=p

E
[
Ṽn(i)Ṽn(j)Ṽn(k)Ṽn(p)

]
=: Qn1 +Qn2 +Qn3 +Qn4 +Qn5.

For Qn1, we have

E[Ṽ 4
n (i)]

= EX [E·|X [Ṽ 4
n (i)]]

=
n∑

j1,j2,j3,j4=1

E

[
4∏

k=1

KAh (Xjk)

[
t′H−1

(
1

X̌jk

)]
1{Xjk ∈ [i+ (−1/2, 1/2]d] ∩Rn}

×E·|X [en,jk + εn,jk ]
]

�
n∑

j1,j2,j3,j4=1

E

[
4∏

k=1

∣∣∣∣KAh (Xjk)

[
t′H−1

(
1

X̌jk

)]∣∣∣∣ 1{Xjk ∈ [i+ (−1/2, 1/2]d] ∩Rn}η(Xjk/An)

]

+
n∑

j1,j2,j3,j4=1

E

[
4∏

k=1

∣∣∣∣KAh (Xjk)

[
t′H−1

(
1

X̌jk

)]∣∣∣∣ 1{Xjk ∈ [i+ (−1/2, 1/2]d] ∩Rn}σε(Xjk/An)

]
=: Qn11 +Qn12.

For Qn11, we have

Qn11

� nE

[∣∣∣∣KAh (X1)

[
t′H−1

(
1

X̌1

)]∣∣∣∣4 1{X1 ∈ [i+ (−1/2, 1/2]d] ∩Rn}η4(X1/An)

]

+ n2E

[∣∣∣∣KAh (X1)

[
t′H−1

(
1

X̌1

)]∣∣∣∣3 1{X1 ∈ [i+ (−1/2, 1/2]d] ∩Rn}

×
∣∣∣∣KAh (X2)

[
t′H−1

(
1

X̌2

)]∣∣∣∣ 1{X2 ∈ [i+ (−1/2, 1/2]d] ∩Rn}η3(X1/An)η(X2/An)

]
+ n2E

[∣∣∣∣KAh (X1)

[
t′H−1

(
1

X̌1

)]∣∣∣∣2 1{X1 ∈ [i+ (−1/2, 1/2]d] ∩Rn}
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×
∣∣∣∣KAh (X2)

[
t′H−1

(
1

X̌2

)]∣∣∣∣2 1{X2 ∈ [i+ (−1/2, 1/2]d] ∩Rn}

×η2(X1/An)η
2(X2/An)

]
+ n3E

[∣∣∣∣KAh (X1)

[
t′H−1

(
1

X̌1

)]∣∣∣∣2 1{X1 ∈ [i+ (−1/2, 1/2]d] ∩Rn}

×
∣∣∣∣KAh (X2)

[
t′H−1

(
1

X̌2

)]∣∣∣∣ 1{X2 ∈ [i+ (−1/2, 1/2]d] ∩Rn}

×
∣∣∣∣KAh (X3)

[
t′H−1

(
1

X̌3

)]∣∣∣∣ 1{X3 ∈ [i+ (−1/2, 1/2]d] ∩Rn}

×η2(X1/An)η(X2/An)η(X3/An)
]

+ n4E

[∣∣∣∣KAh (X1)

[
t′H−1

(
1

X̌1

)]∣∣∣∣ 1{X1 ∈ [i+ (−1/2, 1/2]d] ∩Rn}

×
∣∣∣∣KAh (X2)

[
t′H−1

(
1

X̌2

)]∣∣∣∣ 1{X2 ∈ [i+ (−1/2, 1/2]d] ∩Rn}

×
∣∣∣∣KAh (X3)

[
t′H−1

(
1

X̌3

)]∣∣∣∣ 1{X3 ∈ [i+ (−1/2, 1/2]d] ∩Rn}

×
∣∣∣∣KAh (X4)

[
t′H−1

(
1

X̌4

)]∣∣∣∣ 1{X4 ∈ [i+ (−1/2, 1/2]d] ∩Rn}

×η2(X1/An)η(X2/An)η(X3/An)η(X4/An)
]

=: Qn111 +Qn112 +Qn113 +Qn114.

For Qn111, we have

Qn111 = nA−1
n

∫ ∣∣∣∣KAh(x)

[
t′H−1

(
1
ˇ(x/An)

)]∣∣∣∣4 1{x ∈ [i+ (−1/2, 1/2]d] ∩Rn}

× η4(x/An)g(x/An)dx

= nA−1
n Anh1 . . . hd

∫ ∣∣∣∣K(z)

[
t′
(

1

ž

)]∣∣∣∣4 1{z ◦ h ∈ [i+ (−1/2, 1/2]d]/An ∩ [−1/2, 1/2]d}

× η4(z ◦ h)g(z ◦ h)dz
= O

(
nA−1

n

)
.

Likewise, Qn112 = O(n2A−2
n ), Qn113 = O(n3A−3

n ), and Qn114 = O(n4A−4
n ). Then we have Qn11 =

O(n4A−4
n ). We can also show that Qn12 = O(n4A−4

n ). Therefore, we have

Qn1 � [[In(�)]]n
4A−4

n � A(1)
n (nA−1

n )4. (A.11)

For Qn2, by the α-mixing property of e and Proposition 2.5 in Fan and Yao (2003), we have

Qn2 �
An1∑
k=1

∑
i,j∈In(�),|i−j|=k

α1−4/q(min{k − d, 0}; 1)E[|Ṽn(i)|q]3/qE[|Ṽn(j)|q]1/q
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� A(1)
n (nA−1

n )4

⎛⎝1 +

An1∑
k=1

kd−1α
1−4/q
1 (k)

⎞⎠ . (A.12)

where An1 = max1≤j≤dAn1,j . Likewise,

Qn3 � A(1)
n (nA−1

n )4

⎛⎝1 +

An1∑
k=1

kd−1α
1−4/q
1 (k)

⎞⎠ . (A.13)

Now we evaluate Qn4 and Qn5. For distinct indices i, j,k,p ∈ In(�), let

d1(i, j,k) = max{d({i}, {j,k}), d({k}, {i, j})},
d2(i, j,k,p) = max{d(J, {i, j,k,p}) : J ⊂ {i, j,k,p}, [[J ]] = 1},
d3(i, j,k,p) = max{d(J, {i, j,k,p}) : J ⊂ {i, j,k,p}, [[J ]] = 2}.

Here, d1 denotes the maximal gap in the set of integer-indices {i, j,k} from either j or k which

corresponds to E
[
Ṽ 2
n (i)Ṽn(j)Ṽn(k)

]
. Similarly, d2 and d3 are the maximal gap in the index set

{i, j,k,p} from any of its single index-subsets or two-index subsets, respectively. Applying the

argument in the proof of Lemma 4.1 of Lahiri (1999), for any given values 1 ≤ d01, d02, d03 < [[In(�)]],

we have

[[{(i, j,k) ∈ I3n(�) : i �= j �= k and d1(i, j,k) = d01}]] � d2d−1
01 [[In(�)]], (A.14)

[[{(i, j,k,p) ∈ I4n(�) : i �= j �= k �= p, d2(i, j,k,p) = d02, and d3(i, j,k,p) = d03}]]
� (d02 + d03)

3d−1[[In(�)]]. (A.15)

For Qn4, by (A.14) and applying the same argument to show (A.12), we have

Qn4 � A(1)
n

An1∑
k=1

k2d−1α1−4/q(min{k − d, 0}; 2)E[|Ṽn(i)|q]2/qE[|Ṽn(j)|q]1/qE[|Ṽn(k)|q]1/q

� A(1)
n (nA−1

n )4

⎛⎝1 +

An1∑
k=1

k2d−1α
1−4/q
1 (k)

⎞⎠ . (A.16)

Define

In1(�) = {(i, j,k,p) ∈ I4n(�) : i �= j �= k �= p, d2(i, j,k,p) ≥ d3(i, j,k,p)},
In2(�) = {(i, j,k,p) ∈ I4n(�) : i �= j �= k �= p, d2(i, j,k,p) < d3(i, j,k,p)}.

For Qn5, by (A.15) and applying the same argument to show (A.12), we have

Qn5 =
∑

(i,j,k,p)∈In1(�)

E
[
Ṽn(i)Ṽn(j)Ṽn(k)Ṽn(p)

]
+

∑
(i,j,k,p)∈In2(�)

E
[
Ṽn(i)Ṽn(j)Ṽn(k)Ṽn(p)

]

� A(1)
n

An1∑
k=1

k3d−1α1−4/q(min{k − d, 0}; 3)

× E[|Ṽn(i)|q]1/qE[|Ṽn(j)|q]1/qE[|Ṽn(k)|q]1/qE[|Ṽn(p)|q]1/q

+

⎛⎝ ∑
i,j∈In(�),i �=j

∣∣∣E[Ṽn(i)Ṽn(j)]
∣∣∣
⎞⎠2
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+A(1)
n

An1∑
k=1

k3d−1α1−4/q(min{k − d, 0}; 2)

× E[|Ṽn(i)|q]1/qE[|Ṽn(j)|q]1/qE[|Ṽn(k)|q]1/qE[|Ṽn(p)|q]1/q

� (A(1)
n )2(nA−1

n )4

⎛⎝1 +

An1∑
k=1

k2d−1α
1−4/q
1 (k)

⎞⎠ . (A.17)

Combining (A.11)-(A.17), we have

∑
�∈Ln1

E[Ṽ 4
n (�;Δ0)] =

∑
�∈Ln1

E

⎡⎣⎛⎝ ∑
i∈In(�)

Ṽn(i)

⎞⎠4⎤⎦
� [[Ln1]](A

(1)
n )2(nA−1

n )4

⎛⎝1 +

An1∑
k=1

k2d−1α
1−4/q
1 (k)

⎞⎠
�
(
Anh1 . . . hd

A
(1)
n

)
(A(1)

n )2(nA−1
n )4

⎛⎝1 +

An1∑
k=1

k2d−1α
1−4/q
1 (k)

⎞⎠
= o

(
(n2A−1

n h1 . . . hd)
2
)
.

(Step 2-3) Now we show (A.7) and (A.8). Define

Jn = {i ∈ Z
d : (i+ (−1/2, 1/2]d) ∩ hRn �= ∅},

Jn1 = ∪�∈Ln1In(�),

Jn2 = {i ∈ Jn : i+ (−1/2, 1/2]d ⊂ Γn(�;Δ) for some � ∈ Ln1,Δ �= Δ0},
Jn3 = Jn\(Jn1 ∪ Jn2).

Note that [[Jn2]] � (An1)
d−1An2

(
Anh1...hd

A
(1)
n

)
and [[Jn3]] � A

(1)
n

(
Anh
An1

)d−1
. Then, applying the same

argument to show (A.12), we have

Var(Ṽn2) � [[Jn2]](nA
−1
n )2

⎛⎝1 +

An1∑
k=1

kd−1α
1−2/q
1 (k)

⎞⎠
�
(
An1

An1

)d(
An2

An1

)
Anh1 . . . hd(nA

−1
n )2

⎛⎝1 +

An1∑
k=1

kd−1α
1−2/q
1 (k)

⎞⎠
= o

(
n2A−1

n h1 . . . hd
)
.

Var(Ṽn3) � [[Jn3]](nA
−1
n )2

⎛⎝1 +

An1∑
k=1

kd−1α
1−2/q
1 (k)

⎞⎠
�
(
A

(1)
n

Ad
n1

)( (
Anh

)d
Anh1 . . . hd

)(
An1

Anh

)
Anh1 . . . hd(nA

−1
n )2

⎛⎝1 +

An1∑
k=1

kd−1α
1−2/q
1 (k)

⎞⎠
= o

(
n2A−1

n h1 . . . hd
)
.
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(Step 2-4) Now we show (A.5). By (A.7) and (A.8), we have for sufficiently large n,

E[Ṽ 2
n1] = E[(Ṽn(0)− (Ṽn2 + Ṽn3))

2] ≤ 2
(
E[(Ṽn(0))

2] + E[(Ṽn2 + Ṽn3)
2]
)
≤ 4E[Ṽ 2

n (0)].

Thus, by (A.2), (A.7), and (A.8), we have∣∣∣∣∣∣
∑

�∈Ln1

E[Ṽ 2
n (�;Δ0)]− E[Ṽ 2

n (0)]

∣∣∣∣∣∣
≤
∣∣∣∣∣∣
∑

�∈Ln1

E[Ṽ 2
n (�;Δ0)]− E[Ṽ 2

n1]

∣∣∣∣∣∣+ 2E[(Ṽn2 + Ṽn3)
2]1/2E[Ṽ 2

n1]
1/2 + E[(Ṽn2 + Ṽn3)

2]

�
(
A(1)

n nA−1
n

)2 ∑
�1 �=�2

α1−2/q(min{|�1 − �2| − d, 0}An3 +An2;A
(1)
n )

+ o
(
n2A−1

n h1 . . . hd
)

�
(
A(1)

n nA−1
n

)2(Anh1 . . . hd

A
(1)
n

)

×
⎛⎝α1−2/q(An2;A

(1)
n ) +

An/An1∑
k=1

kd−1α1−2/q(min{|�1 − �2| − d, 0}An3 +An2;A
(1)
n )

⎞⎠
+ o

(
n2A−1

n h1 . . . hd
)

= o
(
n2A−1

n h1 . . . hd
)
,

where An = max1≤j≤dAn,j .

(Step 3) Now we evaluate Bn(0). Decompose

Bn,j1...jL(Ẋ) =
{
Bn,j1...jL(Ẋ)−Bn,j1...jL(0)− E

[
Bn,j1...jL(Ẋ)−Bn,j1...jL(0)

]}
+ E

[
Bn,j1...jL(Ẋ)−Bn,j1...jL(0)

]
+ {Bn,j1...jL(0)− E [Bn,j1...jL(0)]}
+ E [Bn,j1...jL(0)]

=:

4∑
�=1

Bn,j1...jL�.

Define Nx(h) :=
∏d

j=1[xj − hj , xj + hj ] and x = (x1, . . . , xd) ∈ (−1/2, 1/2)d. For Bn,j1...jL1, by a

change of variables and the dominated convergence theorem, we have

Var(Bn,j1...jL1)

≤ An

{(p+ 1)!}2nh1 . . . hdE
[
K2

Ah (Xi)

L∏
�=1

(
Xi,j�

An,j�hj�

)2

×
∑

1≤j1,1≤···≤j1,p+1≤d,1≤j2,1≤···≤j2,p+1≤d

1

sj1,1...j1,p+1 !

1

sj2,1...j2,p+1 !

×(∂j1,1...j1,p+1m(Ẋi/An)− ∂j1,1...j1,p+1m(0))(∂j2,1...j2,p+1m(Ẋi/An)− ∂j2,1...j2,p+1m(0))
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×
p+1∏
�1=1

Xi,j1,�1

An,j�1

p+1∏
�2=1

Xi,j2,�2

An,j�2

⎤⎦
≤ An

{(p+ 1)!}2n max
1≤j1≤···≤jp+1≤d

sup
y∈N0(h)

|∂j1...jp+1m(y)− ∂j1...jp+1m(0)|2

×
∑

1≤j1,1≤···≤j1,p+1≤d,1≤j2,1≤···≤j2,p+1≤d

p+1∏
�1=1

hj1,�1

p+1∏
�2=1

hj2,�2

×
∫ ⎛⎝ L∏

�=1

z2j�

p+1∏
�1=1

|zj1,�1 |
p+1∏
�2=1

|zj2,�2 |
⎞⎠K2(z)g(z ◦ h)dz

= o

⎛⎝An

n

∑
1≤j1,1≤···≤j1,p+1≤d,1≤j2,1≤···≤j2,p+1≤d

p+1∏
�1=1

hj1,�1

p+1∏
�2=1

hj2,�2

⎞⎠
= o(1). (A.18)

Then we have Bn,j1...jL1 = op(1).

For Bn,j1...jL2,

|Bn,j1...jL2|

≤ 1

(p+ 1)!
max

1≤j1,...,jp+1≤d
sup

y∈N0(h)
|∂j1...jp+1m(y)− ∂j1...jp+1m(0)|

×
√
Anh1 . . . hd

∑
1≤j1,1≤···≤j1,p+1≤d

p+1∏
�1=1

hj1,�1

∫ ⎛⎝ L∏
�=1

|zj� |
p+1∏
�1=1

|zj1,�1 |
⎞⎠ |K(z)|g(z ◦ h)dz

= o(1). (A.19)

For Bn,j1...jL3,

Var(Bn,j1...jL3)

≤ Anh1 . . . hd
{(p+ 1)!}2nh1 . . . hd

∑
1≤j1,1≤···≤j1,p+1≤d,1≤j2,1≤···≤j2,p+1≤d

∂j1,1...j1,p+1m(0)∂j2,1...j2,p+1m(0)

×
p+1∏
�1=1

hj1,�1

p+1∏
�2=1

hj2,�2

∫ ⎛⎝ L∏
�=1

z2j�

p+1∏
�1

|zj1,�1 |
p+1∏
�2=1

|zj2,�2 |
⎞⎠K2(z)g(z ◦ h)dz

= O

⎛⎝An

n

∑
1≤j1,1≤···≤j1,p+1≤d,1≤j2,1≤···≤j2,p+1≤d

p+1∏
�1=1

hj1,�1

p+1∏
�2=1

hj2,�2

⎞⎠ . (A.20)

Then we have Bn,j1...jL3 = op(1).

For Bn,j1...jL4,

Bn,j1...jL4 =
√
Anh1 . . . hd

∑
1≤j1,1≤···≤j1,p+1≤d

∂j1,1...j1,p+1m(0)

sj1,1...j1,p+1 !
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×
p+1∏
�1=1

hj1,�1

∫ ⎛⎝ L∏
�=1

zj�

p+1∏
�1=1

zj1,�1

⎞⎠K(z)g(z ◦ h)dz

= g(0)
√

Anh1 . . . hd
∑

1≤j1,1≤···≤j1,p+1≤d

∂j1,1...j1,p+1m(0)

sj1,1...j1,p+1 !

p+1∏
�1=1

hj1,�1κ
(1)
j1...jLj1,1...j1,p+1

+ o(1).

(A.21)

Combining (A.18)-(A.21),

Bn,j1...jL(Ẋ) = g(0)
√

Anh1 . . . hd
∑

1≤j1,1≤···≤j1,p+1≤d

∂j1,1...j1,p+1m(0)

sj1,1...j1,p+1 !

×
p+1∏
�1=1

hj1,�1κ
(1)
j1...jLj1,1...j1,p+1

+ op(1)

= g(0)
√

Anh1 . . . hd(B
(d,p)M (d,p)

n (0))j1...jL + op(1).

(Step 4) Combining the results in Steps 2 and 3, we have

An(0) := Vn(0) +
(
Bn(0)− g(0)

√
Anh1 . . . hdB

(d,p)M (d,p)
n (0)

)
d→ N

⎛⎜⎝
⎛⎜⎝ 0

...

0

⎞⎟⎠ , g(0)

{
κ(η2(0) + σ2

ε(0)) + η2(0)g(0)

∫
σe(v)dv

}
K

⎞⎟⎠ .

This and the result in Step 1 yield the desired result. �

A.2. Proof of Proposition 4.1.

Proof. It is easy to see that ĝ(0)
p→ g(0) as n → ∞. For V̂n,1(0), observe that

E
[(

Y (Xi)− m̂−{i}(Xi/An)
)2∣∣∣Xi

]
= E

[(
m(Xi/An)− m̂−{i}(Xi/An)

)2∣∣∣Xi

]
+ 2E

[(
m(Xi/An)− m̂−{i}(Xi/An)

)
(en,i + εn,i)

∣∣Xi

]
+ E

[
(en,i + εn,i)

2
∣∣Xi

]
=: V̂n1,i + V̂n2,i + E

[
(en,i + εn,i)

2
∣∣Xi

]
.

The representation of the MSE of ∂j1...jLm̂(0) (4.1) implies that for z ∈ (−1/2, 1/2)d,

MSE(m̂(z)) =
{
(S−1e0)

′B(d,p)M (d,p)
n (z)

}2

+

(
κ(η2(z) + σ2

ε(z))

g(z)
+ η2(z)

∫
σe(v)dv

)
e′0S−1KS−1e0
Anh1 . . . hd

= O

⎛⎝⎛⎝ ∑
1≤j1≤···≤jp+1≤d

p+1∏
�=1

hj�

⎞⎠2

+
1

Anh1 . . . hd

⎞⎠ ,

where e0 = (1, 0, . . . , 0) ∈ R
D. Then by Cauchy-Schwarz inequality, we have

max
1≤i≤n

KAh(Xi)
(
V̂n1,i + V̂n2,i

)
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= O

⎛⎝⎛⎝ ∑
1≤j1≤···≤jp+1≤d

p+1∏
�=1

hj�

⎞⎠+

√
1

Anh1 . . . hd

⎞⎠ = o(1) a.s., n → ∞.

Applying a similar argument in the proof of Theorem 4.1, this implies that

V̂n,1(0) =
1

nh1 . . . hd

n∑
i=1

KAh(Xi)(en,i + εn,i)
2 + op(1)

=
1

nh1 . . . hd

n∑
i=1

KAh(Xi)
(
η2(Xi/An)e

2(Xi) + σ2
ε(Xi/An)ε

2
i

)
+ op(1)

=
(
η2(0) + σ2

ε(0)
)
g(0) + op(1), n → ∞.

Likewise,

V̂n,2(0) =
An

nh1 . . . hd

n−1∑
i=1

KAh(Xi)KAh(Xi+1)(en,i + εn,i)(en,i+1 + εn,i+1) + op(1)

=
An

nh1 . . . hd

n−1∑
i=1

KAh(Xi)KAh(Xi+1)η(Xi/An)η(Xi+1/An)e(Xi)e(Xi+1) + op(1)

= κ
(2)
0 η2(0)g2(0)

∫
σe(v)dv + op(1), n → ∞.

Therefore, as n → ∞,

V̂n(0) :=
(An/n)V̂n,1(0) + (V̂n,2(0)/κ

(2)
0 )

ĝ2(0)

p→ κ(η2(0) + σ2
ε(0))

g(0)
+ η2(0)

∫
σe(v)dv.

�

A.3. Proof of Corollary 4.1.

Proof. Corollary 4.1 follows immediately from Theorem 4.1 and Proposition 4.1. �

A.4. Proof of Proposition 4.2.

Proof. For any t = (t0, t1, . . . , td, t11, . . . , tdd, . . . , t1...1, . . . , td...d)
′ ∈ R

D, we define

Wn1(0) :=

n1∑
�1=1

KAh (X1,�1)

[
t′H−1

(
1

X̌1,�1

)](
η1

(
X1,�1

An

)
e1(X1,�1) + σε,1

(
X1,�1

An

)
ε1,�1

)
︸ ︷︷ ︸

=:en1,�1
+εn1,�1

,

Wn2(0) :=

n2∑
�2=1

KAh (X2,�2)

[
t′H−1

(
1

X̌2,�2

)](
η2

(
X2,�2

An

)
e2(X2,�2) + σε,2

(
X2,�2

An

)
ε2,�2

)
︸ ︷︷ ︸

=:en2,�2
+εn2,�2

.

By inspecting the proof of Theorem 4.1, to show Proposition 4.2, it is sufficient to verify

E
[(
Wn1(0)−Wn1(0)

)2]
/(h1 . . . hd)

=

(
n1

{
(η21(0) + σ2

ε,1(0))g1(0) + n1A
−1
n η21(0)g

2
1(0)

∫
σe,11(v)dv

}
+n2

{
(η22(0) + σ2

ε,2(0))g2(0) + n2A
−1
n η22(0)g

2
2(0)

∫
σe,22(v)dv

}
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−2n1n2A
−1
n η1(0)η2(0)g1(0)g2(0)

∫
σe,12(v)dv

)
×
(∫

K2(z)

[
t′
(

1

ž

)]2
dz

)
(1 + o(1)), n → ∞.

Let EX12 denote the expectation with respect to {X1,�1} and {X2,�2} and let E·|X12
denote the

conditional expectation given σ({X1,�1} ∪ {X2,�2}). Observe that

E·|X12

[(
Wn1(0)−Wn2(0)

)2]
=

n1∑
�11,�12=1

E·|X12

[
KAh (X1,�11)KAh (X1,�12)

[
t′H−1

(
1

X̌1,�11

)][
t′H−1

(
1

X̌1,�12

)]
×(en1,�11 + εn1,�11)(en1,�12 + εn1,�12)]

+

n2∑
�21,�22=1

E·|X12

[
KAh (X2,�21)KAh (X2,�22)

[
t′H−1

(
1

X̌2,�21

)][
t′H−1

(
1

X̌2,�22

)]
×(en2,�21 + εn2,�21)(en2,�22 + εn2,�22)]

− 2

n1∑
�1=1

n2∑
�2=1

E·|X12

[
KAh (X1,�1)KAh (X2,�2)

[
t′H−1

(
1

X̌1,�1

)][
t′H−1

(
1

X̌2,�2

)]
×(en1,�1 + εn1,�1)(en2,�2 + εn2,�2)]

=: Wn11 +Wn12 − 2Wn13.

Applying the same argument in Step 2 of the proof of Theorem 4.1, we have

EX12 [Wn1�] = n�h1 . . . hdg�(0)

{
(η2� (0) + σ2

ε,�(0)) + n�A
−1
n η2� (0)g�(0)

∫
σe,��(v)dv

}
×
(∫

K2(z)

[
t′
(

1

ž

)]2
dz

)
(1 + o(1)), � = 1, 2,

EX12 [Wn13] = n1n2A
−1
n h1 . . . hd

(
η1(0)η2(0)g1(0)g2(0)

∫
σe,12(v)dv

)
(1 + o(1))

as n → ∞. Therefore, we obtain the desired result. �

A.5. Proof of Proposition 4.3.

Proof. Applying the same argument in the proof of Proposition 4.1, we have that as n → ∞,

gnk
(0) = gk(0) + op(1), k = 1, 2,

V n,1k(0) = (η2k(0) + σ2
ε,k(0))gk(0) + op(1), k = 1, 2,

V n,2k(0) = κ
(2)
0 η2k(0)g

2
k(0)

∫
σe,kk(v)dv + op(1), k = 1, 2,

V n,3(0) = κ
(2)
0 η1(0)η2(0)g1(0)g2(0)

∫
σe,12(v)dv + op(1).

Therefore, V̌n(0)
p→ V 1(0) + V 2(0)− 2V 3(0) as n → ∞. �
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A.6. Proof of Corollary 4.2.

Proof. Corollary 4.2 follows immediately from Propositions 4.2 and 4.3. �

Appendix B. Proofs for Section 5

B.1. Proof of Proposition 5.1.

Proof. We only provide the proof of (5.6) since the proof of (5.7) is almost the same. Let an =√
logn

n2A−1
n h1...hd

and τn = ρnn
1/q2 with ρn = (log n)ι for some ι > 0. Define

Ψ̂1(z) =
|f−1

2 (h1, . . . , hd)|
n2A−1

n h1 . . . hd

n∑
i=1

KAh(Xi −Anz)

× f1,Ah (Xi −Anz) f2,A (Xi −Anz) f3,A (Xi)ZXi1{|ZXi | ≤ τn},

Ψ̂2(z) =
|f−1

2 (h1, . . . , hd)|
n2A−1

n h1 . . . hd

n∑
i=1

KAh(Xi −Anz)

× f1,Ah (Xi −Anz) f2,A (Xi −Anz) f3,A (Xi)ZXi1{|ZXi | > τn}.
Note that

Ψ̂(z)− E[Ψ̂(z)] = Ψ̂1(z)− E[Ψ̂1(z)] + Ψ̂2(z)− E[Ψ̂2(z)].

(Step 1) First we consider the term Ψ̂2(z)− E[Ψ̂2(z)]. Observe that

P

(
sup
z∈R0

|Ψ̂2(z)| > an

)
≤ P (|ZXi | > τn for some i = 1, . . . , n)

≤ τ−q2
n

n∑
i=1

E
[
E·|X [|ZXi |q2 ]

] ≤ nτ−q2
n = ρ−q2

n → 0.

Further, for z ∈ [−1/2, 1/2]d,

E
[∣∣∣Ψ̂2(z)

∣∣∣]
≤ |f−1

2 (h1, . . . , hd)|
n2A−1

n h1 . . . hd

n∑
i=1

E [|KAh(Xi −Anz)|

× |f1,Ah (Xi −Anz) f2,A (Xi −Anz)| f3,A (Xi)E·|X [|ZXi |1{|ZXi | > τn}]
]

� nA−1
n |f−1

2 (h1, . . . , hd)|
n2A−1

n h1 . . . hdτ
q2−1
n

∫
Rn

|KAh(x−Anz)| |f1,Ah (x−Anz) f2,A (Xi −Anz)|

× f3,A (x) g(x/An)dx

=
|f−1

2 (h1, . . . , hd)|
nA−1

n τ q2−1
n

∫
h−1(R0−z)

|K(v)| |f1 (v) f2 (v ◦ h)| f3 (z + v ◦ h) g(z + v ◦ h)dv

� 1

nA−1
n τ q2−1

n

� 1

τ q2−1
n

� an.

Then we have

sup
z∈R0

∣∣∣Ψ̂(z)− E[Ψ̂(z)]
∣∣∣ = Op(an).

(Step 2) Now we consider the term Ψ̂1(z)− E[Ψ̂1(z)].
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Define

Ψ1,Xi(z) = KAh(Xi −Anz)f1,Ah (Xi −Anz) f2,A (Xi −Anz) f3,A (Xi)ZXi1{|ZXi | ≤ τn}
− E [KAh(Xi −Anz)f1,Ah (Xi −Anz) f2,A (Xi −Anz) f3,A (Xi)ZXi1{|ZXi | ≤ τn}] .

Observe that

n∑
i=1

Ψ1,Xi(z) =
∑

�∈Ln1(z)

Ψ
(�;Δ0)
1 (z) +

∑
Δ �=Δ0

∑
�∈Ln1(z)

Ψ
(�;Δ)
1 (z) +

∑
Δ∈{1,2}d

∑
�∈Ln2(z)

Ψ
(�;Δ)
1 (z),

where

Ψ
(�;Δ)
1 (z) =

n∑
i=1

Ψ1,Xi(z)1{Xi ∈ Γn,z(�;Δ) ∩Rn ∩ (hRn +Anz)}.

ForΔ ∈ {1, 2}d, let {Ψ̃(�;Δ)
1 (z)}�∈Ln1(z)∪Ln2(z) be independent random variables such that Ψ

(�;Δ)
1 (z)

d
=

Ψ̃
(�;Δ)
1 (z). Applying Lemma D.2 below with Mh = 1, m ∼

(
Anh1...hd

A
(1)
n

)
and τ ∼ β(An2;Anh1 . . . hd),

we have that for Δ ∈ {1, 2}d,

sup
t>0

∣∣∣∣∣∣P
⎛⎝∣∣∣∣∣∣

∑
�∈Ln1(z)

Ψ
(�;Δ)
1 (z)

∣∣∣∣∣∣ > t

⎞⎠− P

⎛⎝∣∣∣∣∣∣
∑

�∈Ln1(z)

Ψ̃
(�;Δ)
1 (z)

∣∣∣∣∣∣ > t

⎞⎠∣∣∣∣∣∣
�
(
Anh1 . . . hd

A
(1)
n

)
β(An2;Anh1 . . . hd), (B.1)

sup
t>0

∣∣∣∣∣∣P
⎛⎝∣∣∣∣∣∣

∑
�∈Ln2(z)

Ψ
(�;Δ)
1 (z)

∣∣∣∣∣∣ > t

⎞⎠− P

⎛⎝∣∣∣∣∣∣
∑

�∈Ln2(z)

Ψ̃
(�;Δ)
1 (z)

∣∣∣∣∣∣ > t

⎞⎠∣∣∣∣∣∣
�
(
Anh1 . . . hd

A
(1)
n

)
β(An2;Anh1 . . . hd). (B.2)

Since
(
Anh1...hd

A
(1)
n

)
β(An2;Anh1 . . . hd) → 0 as n → ∞, these results imply that

∑
�∈Ln1(z)

Ψ
(�;Δ)
1 (z) = Op

⎛⎝ ∑
�∈Ln1(z)

Ψ̃
(�;Δ)
1 (z)

⎞⎠ ,

∑
�∈Ln2(z)

Ψ
(�;Δ)
1 (z) = Op

⎛⎝ ∑
�∈Ln2(z)

Ψ̃
(�;Δ)
1 (z)

⎞⎠ .

Now we show supz∈R0

∣∣∣Ψ̂1(z)− E[Ψ̂1(z)]
∣∣∣ = Op (an). Cover the regionR0 withN ≤ (h1 . . . hd)

−1a−d
n

balls Bk = {z ∈ R
d : |zj − zk,j | ≤ anhj} and use zk = (zk,1, . . . , zk,d) to denote the mid point of

Bk, k = 1, . . . , N . In addition, let K∗(v) = C∗∏d
j=1 I(|vj | ≤ 2CK) for v ∈ R

d and sufficiently large

C∗ > 0. Note that for z ∈ Bk and sufficiently large n,

|KAh (Xi −Anz) f1,Ah(Xi −Anz)−KAh (Xi −Anzk) f1,Ah(Xi −Anzk)|
≤ anK

∗
Ah (Xi −Anzk) .
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For � ∈ Ln1(z) ∪ Ln2(z) and Δ ∈ {1, 2}d, define

Ψ
(�;Δ)
2 (z) =

n∑
i=1

Ψ2,Xi(z)1{Xi ∈ Γn,z(�;Δ) ∩Rn ∩ (hRn +Anz)},

where

Ψ2,Xi(z) = K∗
Ah (Xi −Anzn) f2,A (Xi −Anz) f3,A (Xi)ZXi1{|ZXi | ≤ τn}

− E [K∗
Ah (Xi −Anzn) f2,A (Xi −Anz) f3,A (Xi)ZXi1{|ZXi | ≤ τn}] .

Moreover, define

Ψ̄1(z) =
|f−1

2 (h1, . . . , hd)|
n2A−1

n h1 . . . hd

n∑
i=1

K∗
Ah(Xi −Anz)f2,A (Xi −Anz) f3,A (Xi)ZXi1{|ZXi | ≤ τn}.

Observe that for z ∈ R0,

E
[|Ψ̄1(z)|

]
� A−1

n |f−1
2 (h1, . . . , hd)|

nA−1
n h1 . . . hd

∫
Rn

|K∗
Ah(x−Anz)f2,A(x−Anz)f3,A(x)|g(x/An)dx

=
|f−1

2 (h1, . . . , hd)|
nA−1

n

∫
h−1(R0−z)

|K∗(v)||f2(v ◦ h)||f3(z + v ◦ h)g(z + v ◦ h)|dv

� 1

nA−1
n

≤ M.

for sufficiently large M > 0. Then we have

sup
z∈Bk

∣∣∣Ψ̂1(z)− E[Ψ̂1(z)]
∣∣∣

≤
∣∣∣Ψ̂1(zk)− E[Ψ̂1(zk)]

∣∣∣+ an
(∣∣Ψ̄1(zk)

∣∣+ E
[∣∣Ψ̄1(zk)

∣∣])
≤
∣∣∣Ψ̂1(zk)− E[Ψ̂1(zk)]

∣∣∣+ ∣∣Ψ̄1(zk)− E[Ψ̄1(zk)]
∣∣+ 2Man

≤ |f−1
2 (h1, . . . , hd)|
n2A−1

n h1 . . . hd

⎛⎝∣∣∣∣∣∣
∑

�∈Ln1(zk)

Ψ
(�;Δ0)
1 (zk)

∣∣∣∣∣∣+
∑

Δ �=Δ0

∣∣∣∣∣∣
∑

�∈Ln1(zk)

Ψ
(�;Δ)
1 (zk)

∣∣∣∣∣∣+
∑

Δ∈{1,2}d

∣∣∣∣∣∣
∑

�∈Ln2(zk)

Ψ
(�;Δ)
1 (zk)

∣∣∣∣∣∣
⎞⎠

+
|f−1

2 (h1, . . . , hd)|
n2A−1

n h1 . . . hd

⎛⎝∣∣∣∣∣∣
∑

�∈Ln1(zk)

Ψ
(�;Δ0)
2 (zk)

∣∣∣∣∣∣+
∑

Δ �=Δ0

∣∣∣∣∣∣
∑

�∈Ln1(zk)

Ψ
(�;Δ)
2 (zk)

∣∣∣∣∣∣+
∑

Δ∈{1,2}d

∣∣∣∣∣∣
∑

�∈Ln2(zk)

Ψ
(�;Δ)
2 (zk)

∣∣∣∣∣∣
⎞⎠

+ 2Man.

ForΔ ∈ {1, 2}d, let {Ψ̃(�;Δ)
2 (z)}�∈Ln1(z)∪Ln2(z) be independent random variables such that Ψ

(�;Δ)
2 (z)

d
=

Ψ̃
(�;Δ)
2 (z). From (B.1) and (B.2), and applying Lemma D.2 below to {Ψ̃(�;Δ)

2 (z)}�∈Ln1(z)∪Ln2(z),

we have

P

(
sup
z∈R0

∣∣∣Ψ̂1(z)− E[Ψ̂1(z)]
∣∣∣ > 2d+3Man

)

≤ N max
1≤k≤N

P

(
sup
z∈Bk

∣∣∣Ψ̂1(z)− E[Ψ̂1(z)]
∣∣∣ > 2d+3Man

)
≤

∑
Δ∈{1,2}d

Q̂n1(Δ) +
∑

Δ∈{1,2}d
Q̂n2(Δ) +

∑
ε∈{1,2}d

Q̄n1(Δ) +
∑

ε∈{1,2}d
Q̄n2(Δ)

37



+ 2d+2N

(
Anh1 . . . hd

A
(1)
n

)
β(An2;Anh1 . . . hd),

where

Q̂nj(Δ) = N max
1≤k≤N

P

⎛⎝∣∣∣∣∣∣
∑

�∈Lnj(zk)

Ψ̃
(�;Δ)
1 (zk)

∣∣∣∣∣∣ > Man
n2A−1

n h1 . . . hd

|f−1
2 (h1, . . . , hd)|

⎞⎠ , j = 1, 2,

Q̄nj(Δ) = N max
1≤k≤N

P

⎛⎝∣∣∣∣∣∣
∑

�∈Lnj(zk)

Ψ̃
(�;Δ)
2 (zk)

∣∣∣∣∣∣ > Man
n2A−1

n h1 . . . hd

|f−1
2 (h1, . . . , hd)|

⎞⎠ , j = 1, 2.

Now we restrict our attention to Q̂n1(Δ), Δ �= Δ0. The proofs for other cases are similar. Note

that

P

⎛⎝∣∣∣∣∣∣
∑

�∈Ln1(zk)

Ψ̃
(�;Δ)
1 (zk)

∣∣∣∣∣∣ > Man
n2A−1

n h1 . . . hd

|f−1
2 (h1, . . . , hd)|

⎞⎠
≤ 2P

⎛⎝ ∑
�∈Ln1(zk)

Ψ̃
(�;Δ)
1 (zk) > Man

n2A−1
n h1 . . . hd

|f−1
2 (h1, . . . , hd)|

⎞⎠ .

Observe that Ψ̃
(�;Δ)
1 (zk) are zero-mean independent random variables and∣∣∣Ψ̃(�;Δ)
1 (zk)

∣∣∣ ≤ C
˜Ψ1
(An1)

d−1An2nA
−1
n |f2(h1, . . . , hd)|τn, a.s. (from Lemma D.1)

E

[(
Ψ̃

(�;Δ)
1 (zk)

)2] ≤ C
˜Ψ1
(An1)

d−1An2n
2A−2

n f2
2 (h1, . . . , hd), (B.3)

for some C
˜Ψ1

> 0, where (B.3) can be shown by applying the same argument in (Step 2-1) in the

proof of Theorem 4.1. Then Lemma D.3 yields that

P

⎛⎝ ∑
�∈Ln1(zk)

Ψ̃
(�;Δ)
1 (zk) > Man

n2A−1
n h1 . . . hd

|f−1
2 (h1, . . . , hd)|

⎞⎠ ≤ exp

⎛⎝−
M2n2A−1

n h1...hd logn

2|f−1
2 (h1,...,hd)|2
En1 + En2

⎞⎠ ,

where

En1 = C
˜Ψ1

(
Anh1 . . . hd

A
(1)
n

)
(An1)

d−1An2n
2A−2

n f2
2 (h1, . . . , hd),

En2 =
MC

˜Ψ1
n2A

−3/2
n (h1 . . . hd)

1/2(log n)1/2(An1)
d−1An2τn

3|f−1
2 (h1, . . . , hd)|2

.

Since

M2n2A−1
n h1 . . . hd log n

2|f−1
2 (h1, . . . , hd)|2En1

=
M2

2C
˜Ψ1

(
A

(1)
n

(An1)d−1An2

)
log n,

M2n2A−1
n h1 . . . hd log n

2|f−1
2 (h1, . . . , hd)|2En2

=
3M

2C
˜Ψ1

A
1/2
n (h1 . . . hd)

1/2

n1/q2(An1)d−1An2(log n)−1/2+ι
,

by taking M > 0 sufficiently large, we obtain the desired result. �
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B.2. Proof of Theorem 5.1.

Proof. Define

Sn(z) =
1

nh1 . . . hd

n∑
i=1

KAh (Xi −Anz)H
−1

(
1
ˇ(Xi −Anz)

)
(1 ˇ(Xi −Anz)′)H−1,

Vn(z) =
1

nh1 . . . hd

n∑
i=1

KAh (Xi −Anz)H
−1

(
1
ˇ(Xi −Anz)

)
(en,i + εn,i),

Bn(z) =
1

nh1 . . . hd

n∑
i=1

KAh (Xi −Anz)H
−1

(
1
ˇ(Xi −Anz)

)

×
∑

1≤j1≤···≤jp+1≤d

1

sj1...jp+1 !
∂j1,...,jp+1m(Ẋi/An)

p+1∏
�=1

(
Xi,j�

An,j�

− zj�

)
.

Note that

H(β̂(z)−M(z)) = S−1
n (z)(Vn(z) +Bn(z)).

Applying Proposition 5.1 (5.7) to e′j1,1...j1,L1
Sn(z)ej2,1...j2,L2

with

f1(x) = e′j1,1...j1,L1

(
1

x̌

)
(1 x̌′)ej2,1...j2,L2

, f2(x) = 1, f3(x) = 1,

we have that

sup
z∈Tn

|e′j1,1...j1,L1
(Sn(z)− g(z)S)ej2,1...j2,L2

|

≤ sup
z∈R0

|e′j1,1...j1,L1
(Sn(z)− E[Sn(z)])ej2,1...j2,L2

|+ sup
z∈Tn

|e′j1,1...j1,L1
(E[Sn(z)]− g(z)S)ej2,1...j2,L2

|

= Op

(√
log n

nh1 . . . hd

)
+ o(1) = op(1). (B.4)

Applying Proposition 5.1 (5.6) to Ann
−1e′j1...jLVn(z) with

f1(x) = e′j1...jL

(
1

x̌

)
, f2(x) = 1, (f3(x), ZXi) ∈ {(η(x), e(Xi)), (σε(x), εi)} ,

we have that

n

An
sup
z∈Tn

∣∣∣∣An

n
e′j1...jL(Vn(z)− E[Vn(z)])

∣∣∣∣ ≤ n

An
sup
z∈R0

∣∣∣∣An

n
e′j1...jLVn(z)

∣∣∣∣ = Op

(√
log n

Anh1 . . . hd

)
.

(B.5)

Applying Proposition 5.1 (5.7) to e′j1...jLBn(z) with

f1(x) = e′j1...jL

(
1

x̌

)
, f2(x) =

L∏
�=1

xj� , f3(x) =
∑

1≤j1≤···≤jp+1≤d

1

sj1...jp+1 !
∂j1,...,jp+1m(x),

we have that

sup
z∈Tn

∣∣e′j1...jLBn(z)
∣∣ ≤ sup

z∈R0

∣∣e′j1...jL(Bn(z)− E[Bn(z)])
∣∣+ sup

z∈Tn

∣∣e′j1...jLE[Bn(z)]
∣∣
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= Op

(
L∏

�=1

hj�

√
log n

nh1 . . . hd

)
+O

⎛⎝ ∑
1≤j1≤···≤jp+1≤d

p+1∏
�=1

hj�

⎞⎠ (B.6)

Combining (B.4)-(B.6), we have that

sup
z∈Tn

|∂j1...jLm̂(z)− ∂j1...jLm(z)|

≤
(

L∏
�=1

hj�

)−1
1

infz∈R0 g(z)
sup
z∈Tn

∣∣ej1...jLS−1(Vn(z) +Bn(z))
∣∣

+

(
L∏

�=1

hj�

)−1

sup
z∈Tn

∣∣ej1...jL(S−1
n (z)− g−1(z)S−1)(Vn(z) +Bn(z))

∣∣
�
(

L∏
�=1

hj�

)−1(
sup
z∈Tn

|Vn(z)|+ sup
z∈Tn

|Bn(z)|
)

= Op

⎛⎜⎝∑1≤j1≤···≤jp+1≤d

∏p+1
�=1 hj�∏L

�=1 hj�
+

√√√√ log n

Anh1 . . . hd

(∏L
�=1 hj�

)2
⎞⎟⎠ .

�

Appendix C. Proofs for Section 6

C.1. Proof of Proposition 6.1.

Proof. Define r1 = min1≤j,k≤2 r1,jk. We first check the asymptotic negligibility of the random field

e2,mn , that is,

max
1≤i≤n

e2j,mn(Xi) = Op

(
exp

(
−r1n

ζ0ζ1ζ2

2

))
, n → ∞, (C.1)

Note that under Condition (a), we have E[|ej(0)|6] < ∞ since e is Gaussian. Under Condition (b),

we also have E[|Lj([0, 1]
d)|6] < ∞ since

∫
|x|>1 |x|6ν0,j(x)dx < ∞ (cf. Theorem 25.3 in Sato (1999)).

Define σ
(j,k)
e1,mn

(x) = E[e1j,mn(0)e1k,mn(x)], j, k = 1, 2. Then we have that

E[|e1j,mn(0)|6] ≤ E[|ej(0)|6] �
∫

e−6r1‖u‖du < ∞,

|σ(j,k)
e1,mn

(x)| � |E[ej(0)ek(x)]| �
∫

e−r1‖u‖e−r1‖x−u‖du

≤
∫

e−r1‖u‖e−
r1
2
(‖x‖−‖u‖)du � e−

r1
2
‖x‖.

The latter implies that
∫ |σ(j,k)

e1,mn
(v)|dv < ∞, j, k = 1, 2. Likewise,

E[(e2j,mn(0))
4] �

∫
Rd

e−4r1‖u‖ (1− ψ0 (‖u‖ : mn))
4 du

�
∫
‖u‖≥mn/4

e−4r1‖u‖
∣∣∣∣1 + 4

mn

(
‖u‖ − mn

2

)∣∣∣∣4 du
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�
∫
‖u‖≥mn/4

e−4r1‖u‖
∣∣∣∣1 + 4‖u‖

mn

∣∣∣∣4 du
≤ 2q−1

∫
‖u‖≥mn/4

e−4r1‖u‖
(
1 +

44‖u‖4
m4

n

)
du

�
∫ ∞

mn/4
e−4r1t

(
1 +

44t4

m4
n

)
td−1dt

� md−1
n e−r1mn .

By Markov’s inequality and Lemma 2.2.2 in van der Vaart and Wellner (1996), we have

P·|X

(∣∣∣∣max
1≤i≤n

e2j,mn(Xi)

∣∣∣∣ > �

)
≤ �−1E·|X

[
max
1≤i≤n

|e2j,mn(Xi)|
]

≤ �−1n1/4 max
1≤i≤n

(
E·|X

[
|e2j,mn(0)|4

])1/4
� �−1n1/4m(d−1)/4

n e−r1mn/4.

Therefore, under the assumptions of Proposition 6.1, we have (C.1), which implies that e2,mn is

asymptotically negligible. Hence we can replace e with e1,mn in the results in Section 4.

Next we check the mixing conditions on e1,mn . Let αe1(a; b) be the α-mixing coefficients of e1,mn .

Note that αe1(a; b) ≤ α(a; b). Since e1,mn is mn-dependent, under the assumptions of Proposition

6.1, we have α1(An2) = 0, which yields(
Anh1 . . . hd

A
(1)
n

)
α1(An2)�1(Anh1 . . . hd) = 0,

A(1)
n

⎛⎝α
1−2/q
1 (An2) +

∞∑
k=An1

kd−1α
1−2/q
1 (k)

⎞⎠�
1−2/q
1 (A(1)

n ) = 0.

Moreover, (
A

(1)
n

Anh1 . . . hd

)
An1∑
k=1

k2d−1α
1−4/q
1 (k) �

(
A

(1)
n

Anh1 . . . hd

)
mn∑
k=1

k2d−1

≤
(

A
(1)
n

Anh1 . . . hd

)
m2d

n

� n−ζ0{1−ζ1(1+ζ2)}+ζ3 = o(1).

{(
An1

An1

)d(
An2

An1

)
+

(
A

(1)
n

Ad
n1

)( (
Anh

)d
Anh1 . . . hd

)(
An1

Anh

)} An1∑
k=1

kd−1α
1−2/q
1 (k)

�
{(

An2

An1

)
+

(
An1

Anh

)}
md

n �
(
n

ζ0ζ1ζ2
d

− ζ0ζ1
d + n− ζ0ζ1

d
− ζ0

d
+

ζ3
d

)
n

ζ0ζ1ζ2
2

= nζ0ζ1{( d+2
2d )ζ2− 1

d} + n−ζ1{1−(1+ d
2
ζ0)ζ2}+ζ3 = o(1).

We can also check that An,jhj/An1,j → ∞ as n → ∞ and that Assumptions 4.1 (ii), (iii), and (iv)

are satisfied. Therefore, we obtain the desired result. �
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C.2. Proof of Proposition 6.2.

Proof. Define

Ψ1,e2(z) =
1

n2A−1
n h1 . . . hd

n∑
i=1

KAh(Xi −Anz)H
−1

(
1
ˇ(Xi −Anz)

)
η

(
Xi

An

)
e2,mn(Xi).

By the same argument in the proof of Proposition 6.1, we can show that

max
1≤i≤n

|e2,mn(Xi)| = Op

(
exp

(
−r1n

ζ0ζ1ζ2

2

))
, n → ∞. (C.2)

Then we have

|Ψ1,e2(z)| = Op

⎛⎝exp
(
− r1nζ0ζ1ζ2

2

)
n2A−1

n h1 . . . hd

⎞⎠∣∣∣∣∣
n∑

i=1

KAh(Xi −Anz)H
−1

(
1
ˇ(Xi −Anz)

)
η

(
Xi

An

)∣∣∣∣∣ .
Applying Proposition 5.1 (5.7) with

f1(x) = e′j1...jL

(
1

x̌

)
, f2(x) = 1, f3(x) = η(z),

we have that

sup
z∈Tn

|Ψ1,e2(z)| ≤ Op

(
An

n
exp

(
−r1n

ζ0ζ1ζ2

2

))(
sup
z∈Tn

∣∣∣Ψ̂II(z)− E[Ψ̂II(z)]
∣∣∣+ sup

z∈Tn

∣∣∣E[Ψ̂II(z)]
∣∣∣)

= Op

(
An

n
exp

(
−r1n

ζ0ζ1ζ2

2

))(
Op

(√
log n

nh1 . . . hd

)
+O(1)

)

= Op

(
exp

(
−r1n

ζ0ζ1ζ2

2

))
and this implies that e2,mn is asymptotically negligible. Further, under the assumptions in Propo-

sition 6.2 we have that β1(An2) = 0,

An,jhj
An1,j

∼ n
ζ0(1−ζ1)−ζ3

d � 1,

(
A

(1)
n

(An1)d

)
∼ 1,

A
1
2
n (h1 . . . hd)

1
2

n
1
q2 (An1)d

∼ n
ζ0(1−2ζ1)−ζ3

2
− 1

q2 � (log n)
1
2
+ι.

Therefore, we can replace e with e1,mn in Theorem 5.1. �

Appendix D. Technical tools

We refer to the following lemmas without those proofs.

Lemma D.1 ((5.19) in Lahiri (2003b)). Under Assumption 2.2, we have

P

(
n∑

i=1

1{Xi ∈ Γn,z(�;Δ)} > C|Γn,z(�;Δ)|nA−1
n for some � ∈ Ln1(z), i.o.

)
= 0

for any Δ ∈ {1, 2}d, where C > 0 is a sufficiently large constant.

Remark D.1. Lemma D.1 implies that each Γn,z(�;Δ) contains at most C|Γn,z(�;Δ)|nA−1
n sam-

ples almost surely.
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Lemma D.2 (Corollary 2.7 in Yu (1994)). Let m ∈ N and let Q be a probability measure on

a product space (
∏m

i=1Ωi,
∏m

i=1Σi) with marginal measures Qi on (Ωi,Σi). Suppose that h is a

bounded measurable function on the product probability space such that |h| ≤ Mh < ∞. For 1 ≤
a ≤ b ≤ m, let Qb

a be the marginal measure on (
∏b

i=aΩi,
∏b

i=aΣi). For a given τ > 0, suppose

that, for all 1 ≤ k ≤ m− 1,

‖Q−Qk
1 ×Qm

k+1‖TV ≤ 2τ, (D.1)

where Qk
1 ×Qm

k+1 is a product measure and ‖ · ‖TV is the total variation. Then

|Qh− Ph| ≤ 2Mh(m− 1)τ.

where P =
∏m

i=1Qi, Qh =
∫
hdQ, and Ph =

∫
hdP .

Lemma D.3 (Bernstein’s inequality). Let X1, . . . , Xn be independent zero-mean random variables.

Suppose that max1≤i≤n |Xi| ≤ M < ∞ a.s. Then, for all t > 0,

P

(
n∑

i=1

Xi ≥ t

)
≤ exp

(
−

t2

2∑n
i=1E[X2

i ] +
Mt
3

)
.
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