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Abstract

This paper proposes a spatial extension of the mixed models of the analysis of variance(MANOVA)

models, which are called mixed spatial ANOVA (MS-ANOVA) models. MS-ANOVA models have been

used to evaluate spatial correlations between random effects in multilevel data which is a kind of cluster

data in which observations belong to some kinds of nested clusters. Because the proposed model can be

regarded as a Bayesian hierarchical models, we have introduced empirical Bayesian estimation methods

in which hyper parameters are estimated by quasi-maximum likelihood estimation methods in the first

step and posterior distributions for the parameters are evaluated with the estimated hyper-parameters in

the second step. Moreover, we have justified the asymptotic properties of the first step estimators. The

proposed models are applied to happiness survey data in Japan and empirical results show that social

capital which can be interpreted as ”the beliefs and norms by which a community values collective action

and pursues activities worthy for the entire community” significantly increases people’s happiness, even

after controlling for a variety of individual characteristics and spatial correlations.

Keywords: Spatial econometrics, Multilevel data, ANOVA model, Empirical Bayesian estimation, Quasi-

maximum likelihood estimation.

1 Introduction

This paper aims to extend mixed analysis of variance (MANOVA) models for multilevel data (see Demidenko

(2013)) to those for spatial multilevel data, which we call spatial error models for multilevel data (MS-

∗Corresponding author. E-mail address: takaki.sato@cc.musashi.ac.jp
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ANOVA). Multilevel data is a kind of cluster data in which observations belong to some kinds of nested

clusters (e.g. students are members of one of schools in school effectiveness research) and widely used in both

of social and natural science (see De Leeuw et al. (2008) and Hox et al. (2017)). Spatial multilevel data in

which clusters are organized with spatial regions are also used in many fields to capture spatial correlation

between regions. With spatial multilevel data, Fazio & Piacentino (2010) investigates spatial variability of

small and medium enterprises productivity across the Italian territory, and Pierewan & Tampubolon (2014)

examines how spatial clusters explain variations in individual well-begin across regions in Europe.

Mixed models of the analysis of variance (MANOVA) models which are linear regression models incorpo-

rating several kinds of random effect terms corresponding to cluster types have been used to analyze multilevel

data. By including random effect terms, we can evaluate common feature within same clusters as grouping

structures. Asymptotic properties of maximum likelihood estimator for MANOVA models are discussed in

Hartley and Rao (1967) and Miller (1977).

To evaluate spatial correlations between random effects in multilevel data, we provide a spatial extension

of MANOVA models, which are called mixed spatial ANOVA (MS-ANOVA) models in this paper. The

conventional way to estimate spatial correlation is to include spatial lag terms into regression models (see

Anselin (1988) and Arbia (2014)), and thus we combine spatial lag terms with random effect terms in

MANOVA models to propose new spatial econometrics models. Because MS-ANOVA models are defined by

two level equations which are individual level and regional level equations, the models can be regarded as

hierarchical bayesian models whose parameters and hyperparameters can be estimated by empirical bayesian

estimation methods in two steps. In the first step, hyperparameters are estimated with quasi-maximum

likelihood (QML) estimation methods which are common methods in spatial econometrics studies (see Lee

(2004), Liu and Yang (2015), Su and Yang (2015), and Yang (2018)) Posterior distributions for parameters

are derived with hyperparemters estimated in the first step.

The interesting feature of MS-ANOVA models are summarized as follows. Firstly, MS-ANOVA models can

analyze regional specific effects for dependent variables, considering the effect of individual characteristics.

Here, let us note that regional effects are not the same as random effects. The regional effect of one region are

defined by the effect of observed regional characteristics and the sum of random effects for clusters, each of

which corresponds to the group in clusters which the region belongs to. Spatial econometrics models that have

been considered ever can’t take into account of the effect of individual characteristics in estimating regional

effect in multilevel data because we need to summarize the data on regions where more than one individuals

are observed to apply conventional models, and then individual characteristics are lost. Defining MS-ANOVA
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models in two level equations would allow that we can take into account both individual characteristics and

regional effects in analysis. Secondly, spatial correlations between random effects can be estimated. Some

sources of random effects such as cultures or customs specific to a region may tend to be similar to them in

nearby regions. Then, random effects may have spatial correlation, namely, regional effects in nearby areas

may take on similar values. Therefore, taking into account the spatial correlation between random effects

improves the accuracy of the model fitting. Thirdly, we can estimate regional effects in areas where there

are no observed individuals by using the information of the region where observed individuals exist. Because

regional effects are estimated by Bayesian estimation methods, we can evaluate regional effects for all regions,

regardless of whether the individuals belong to them or not by properly estimating the prior information of

regional effects.

Applications of MS-ANOVA models to happiness survey data in Japan demonstrate several interesting

features of the effect of individual characteristics and regional specific characteristics on happiness. Firstly,

individual characteristics are important factor for happiness. People’s happiness is U-shaped with respect to

age, namely, happiness decreases until middle age and then increases. Moreover, female is basically happier

than male. Happiness increases monotonically as household income and personal income increase and getting

married greatly increases people’s happiness. Secondly, random effects for each city have spatial correlation.

The similarity of culture or customs of nearby areas which greatly affects the way people feel about their

happiness may cause the spatial correlation. Finally, spatial cluster exists in the regional effects of Japanese

happiness survey data which can be regarded as average happiness of each regions. The level of happiness

in the southern and middle regions of Japan is higher than that in the eastern region, and the estimated

happiness of eastern coastal regions is the lowest. The reason is thought to be that the effects of the nuclear

accident caused by the East-Japan earthquake which occurred in 2011 are still lingering.

This paper is organized as follow. In Section 2, we define MS-ANOVA models as a spatial extension of

MANOVA models. A two step estimation method to estimate the parameters in MS-ANOVA models and

asymptotic properties of the first step estimator are discussed in Section 3. We apply the MS-ANOVA model

to happiness survey data in Japan to demonstrate empirical properties of the proposed models in Section 4.

Section 5 concludes the paper. All the proofs in Section 3 are discussed in Appendix.

2 Model specification

Let n and L be the number of individual and regions, respectively. We assume that each individuals belong to

one of the regions and admit that there are regions where no individuals are observed. In this paper, we call
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the nested dataset whose grouping is based on spatial units as spatial multilevel data. Moreover, we assume

that the regions can be grouped into larger regional units by p different groupings, and let ml, l = 1, . . . , p, be

the number of larger regions obtained by the l-th grouping. For examples, several cities are grouped together

to form a prefecture in Japan.

Suppose that spatial multilevel data yi,j is the dependent variable for the i-th individual belonging to the

j-th region and Y is the n× 1vector of yi,js. MS-ANOVA models are given by,

Y = X1β1 + Jd+ ε, (1)

d = X2β2 + u, (2)

u = U1(I1 − ρ1W1)
−1f1 + · · ·Up(Ip − ρpWp)

−1fp, (3)

where X1 is an n × k1 matrix for individual level explanatory variables, J is an n × L matrix for regional

dummy variables, X2 is an L × k2 matrix for regional level explanatory variables, Ul is an L ×ml matrix

for a random effect which consists only of zeros and ones and there is exactly one 1 in each row and at

least one 1 in each column, l = 1, . . . , p, Il is an ml × ml identity matrix, and Wl is an ml × ml spatial

weight matrix which describes spatial relationships among the l-th grouped regions. A random variables

εi, i = 1, . . . , n, is independent and identically distributed (i.i.d.) with mean 0 and variance σ2
0 and an n× 1

vector ε = (ε1, . . . , εn)
′, and fl,j , j = 1, . . . ,ml is also i.i.d. with mean 0 and variance σ2

l and an ml×1 vector

fl = (fl1, . . . , flml
)′ is a random effect for the l-the groped regions. The vector β1 and β2 are regression

coefficients for individual and regional level explanatory variables, respectively, and ρl is a spatial correlation

parameter which describe the strength of spatial dependence between regions in the l-th grouping.

MS-ANOVA models are a spatial extension of MANOVA models because MS-ANOVA models reduce

to MANOVA models when spatial correlation parameters, ρls are equal to 0. In the analysis of spatial

multilevel data, consideration of spatial correlation between random effects can improve the accuracy of the

model fitting. Random effects fl,j express the effect of the j-th region in the l-th larger regional units on

regional effect, d, and some sources of random effects may be cultures or customs in the larger region. Because

the cultures and customs of nearby regions tend to be similar, random effects fl,j may have spatial correlation,

namely, regional effects in nearby areas may take on similar values. Therefore, taking into account the spatial

correlation between regional effects allows for more detailed analysis of the spatial multilevel data.

MS-ANOVA models are defined by two level equations, individual level equations (1) and regional level

equations (2) and (3), and this two level modeling has some advantages. One advantage is that we can
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analyze regional effect, d, considering the effect of individual characteristics. Spatial econometrics models

that have been considered can’t take into account of individual characteristics when we estimate regional

effect in multilevel data because they assume that exactly one observation is observed each regions. Thus,

we need to summarize the multilevel data which may have more than one observations in each regions so

that there is one value for one region. A commonly used method to summarize data is to take the average of

the data in the area, but then individual characteristics are lost then. Defining the MS-ANOVA models in

two level equations would allow for both individual and regional effects, which would allow for more accurate

estimation of regional effects.

Another advantage of modeling multilevel models with the hierarchical structure is that we can estimate

regional effects, d, in areas where there are no observed individuals by using the information of the regions

where observed individuals exist. Let us remember that J is a regional dummy matrix which may have

columns whose elements are all zeros because we admit the existence of regions where no individuals are

observed. Thus, usual ordinary least squares does not work because J is rank deficient. The proposed

model can be regarded as a Bayesian hierarchical model and equation (2) and (3) describe prior information

of regional effects. As discussed in the estimation section, by properly estimating the prior information of

regional effects with marginal likelihood which is based on the information of regions where individuals are

observed, we can evaluate regional effects for all regions, regardless of whether the individuals belong to them

or not.

3 Estimation

Let us consider a method to estimate the parameters for MS-ANOVA models and discuss asymptotic prop-

erties of proposed estimators the size of ml, l = 1, . . . , p, tends to be infinity along with the sample size

n. Because the proposed model can be regarded as a Bayesian hierarchical model, we propose empirical

Bayes estimation procedure in two steps. The first step is the estimation of the hyperparameters in prior

distributions with quasi-maximum likelihood (QML) estimation methods, and the second step is calculation

of posterior distributions with the hyperparameters estimated in the first step. Moreover, we introduce the

asymptotic properties of the first step estimators when the sample size of both individuals and regions tends

to be large.
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3.1 Empirical Bayes Estimation

We introduce empirical Bayes estimation procedure in two steps. Let β = (β1, β2), τl =
σ2
l

σ2
0
, l = 1, . . . , p,

θ = (β′
2, τ1, . . . , τp, ρ1, . . . , ρp)

′, ψ = (β′, σ2
0 , . . . , σ

2
p, ρ1, . . . , ρp)

′ and δ = (β1, d). In this paper, we call σ2
0 and

θ as hyperparameters and δ as parameters, respectively.

The first step is the estimation of σ2
0 and θ by a quasi-maximum likelihood (QML) estimation method with

a marginal likelihood of Y . Let us denote that f(Y |β1, d, σ2
0) is a probability density function for the data

Y and g(d|β2, ρ1, . . . , ρp, σ2
1 , . . . , σ

2
p) is a prior distribution of the variable d. In this step, we regard random

variables εi and fl,j which may be not normally distributed random variables follows normal distribution,

and then the marginal distribution of Y ,

m(Y |ψ) =
∫
f(Y |β, σ2

ε , d)g(d|β2, ρ1, . . . , ρp, σ2
1 , . . . , σ

2
p)dd,

follows a multivariate normal distribution. Thus, the marginal log-likelihood function is given by

logL(ψ) = −n
2
log(2πσ2

0)−
1

2
log |Ω(θ)| − (Y −Xβ)′Ω−1(θ)(Y −Xβ)

2σ2
0

, (4)

where X = (X1, JX2), Ω(θ) = In+ τ1JU1(I1 − ρ1W1)
−1(I1 − ρ1W

′)−1U1J
′ + · · ·+ τpJUp(Ip− ρpWp)

−1(Ip−
ρpW

′
p)

−1UpJ
′.

We derive a concentrated marginal log-likelihood function to reduce the number of parameters for numer-

ical optimization. The first-order condition of the marginal log-likelihood function is

β̂(θ) = (X ′Ω−1(θ)X)−1X ′Ω−1(θ)Y,

σ̂2
0(θ) =

1

n
(Y −Xβ̂(θ))′Ω−1(θ)(Y −Xβ̂(θ)).

By substituting β̂(θ) and σ̂2
0(θ) into (4), we obtain the concentrated marginal log-likelihood function,

logL(θ) = −n
2
(log(2π) + 1)− n

2
log(σ̂2

0(θ))−
1

2
log |Ω(θ)|.

Maximizing the concentrated marginal log-likelihood function gives the QML estimator θ̂ of θ, and then the

QML estimators β̂ and σ̂2
0 are obtained by β̂ = β̂∗(θ̂) and σ̂2

0 = σ̂2
0(θ̂), respectively.

The second step is the Bayesian estimation of the parameters δ based on the estimated hyperparameters

β̂2, ρ̂, σ̂
2
0 and σ̂2

l = τ̂lσ̂
2
0 , l = 1, . . . , p. Let δ = (β′, d′)′ and X̃ = (X, J). The estimated posterior distribution
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for δ is given by

P (δ | Y, X̃, β̂2, ρ̂1, . . . , ρ̂p, σ̂2
0 , . . . , p̂

2
f , b) ∝ L(Y |X̃, δ, σ̂2

0)π(δ|β̂2, ρ̂, σ̂2
1 , . . . , σ̂

2
p, b),

where b is a hyperparameter for a prior information for β, L(Y |X̃, θ, σ̂2
0) is the likelihood of the data Y ,

and π(θ|β̂2, ρ̂, σ̂2
1 , . . . , σ̂

2
p, b) is the prior distribution of the model parameters, δ. If the prior and posterior

distribution for δ is conjugate distributions, then prior distribution can be calculated explicit form, and if

not conjugate distributions, samples of δ from posterior distribution are obtained by Markov chain Monte

Carlo (MCMC) methods.

As one example of conjugate distributions which is used in the empirical application session in this papaer,

we will show the explicit form of the posterior distribution when the likelihood and the prior distribution

are multivariate normal distributions and the number of random effect is one. Then, the estimated posterior

distribution follows a multivariate normal distribution. We set prior means and the inverse of prior variance

matrices of the multivariate normal distribution for the prior distribution as ŝ0 = (0′k×1, β̂2
′
)′ and Ŝ−1

0 =⎛
⎜⎝ 0k×k 0k×m

0m×k 1
σ̂2
1
(In − ρ̂W ′)(In − ρ̂W )

⎞
⎟⎠, where 0n1×n2

is the n1 × n2 matrix whose elements are zeros. Then,

the posterior covariance matrix and mean vector is S1 =

(
1
σ̂2
0
X̃ ′X̃+ Ŝ−1

0

)−1

and s1 = S1

(
1
σ̂2
0
X̃ ′Y + Ŝ−1

0 ŝ0

)
,

respectively. Thus, the estimated posterior distribution is given by

P (δ | Y, X̃, β̂2, ρ̂1, σ̂2
0 , σ̂

2
1 , b) ∼ N(s1, S1),

where N(s1, S1) means the multivariate normal distribution with mean s1 and covariance matrix S1.

3.2 Asymptotic properties

We discuss the conditions under which the QML estimators θ̂ = (β̂′
2, τ̂1, . . . , τ̂p, ρ̂1, . . . , ρ̂p)

′ and ψ̂ = (β̂′, σ̂2
0 , . . . , σ̂

2
p, ρ̂1, . . . , ρ̂p)

′

in the first step is consistent and asymptotically normal when the size of ml, l = 1, . . . , p, tends to be infinity

along with the sample size n. All of the proofs and Lemmas for the asymptotic results are given in the

Appendix.

Let θ0 = (δ′0, τ10, . . . , τp0, ρ10, . . . , ρp0)
′ and ψ0 = (β′

0, σ
2
00, θ

′
0)

′be the true values for θ and ψ. Assume the

following conditions.

Assumption 1 The true parameter θ0 lies in the interior of a compact parameter space Θ.

7



Asuumption 2 εi, i = 1, . . . , n and fl,j , l = 1, . . . , p, j = 1, . . . ,ml are i.i.d with mean 0 and variances σ2
0

and σ2
j , respectively. And, E|εi|4+δ <∞ and E|fl,j |4+δ <∞ for some δ > 0.

Assumption 3 The number of regions in l-th grouping, ml, tends to infinity along with the sample size n.

Assumption 4 The matrices J , Ui, Wi, (Ij−ρj,0Wj)
−1 and Ω−1(θ) is uniformly bounded in both row and

column sums. Moreover, 0 < cω ≤ infθ∈Θ γmin(Ω
−1(θ)) ≤ supθ∈Θ γmax(Ω

−1(θ)) ≤ cω <∞.

Assumption 5 X has full column rank and its elements are uniformly bounded constants, limn→∞ 1
nX

′Ω−1(θ)X

exists and is non-singular.

Assumption 6 Let A−1
i (ρi) = (Ii − ρi,0Wj)

−1(Ii − ρi,0Wi)
−1 and Bi(ρi) = (Ii − ρiWi)

−1W ′
i +Wi(Ii −

ρiW
′
i )

−1. We assume that supθ∈Θ |γmax(JUiA
−1
i (ρi)U

′
iJ

′)| <∞ and supθ∈Θ |γmax(JUiA
−1
i (ρi)Bi(ρi)A

−1
i (ρi)U

′
iJ

′)| <
∞, i = 1, . . . , p.

Assumption 7

lim
n→∞

1

n

[
log |σ2

00Ω(θ0)| − log |σ̃2(θ)Ω(θ)|
]
�= 0, for any θ �= θ0.

First, we introduce the consistency of θ̂. The expected log-likelihood function for the proposed model is

given by

E logL(ψ) = −n
2
log(2πσ2

0)−
1

2
log |Ω(θ)| − E

(
(Y −Xβ)′Ω−1(θ)(Y −Xβ)

2σ2
0

)
.

The expected log-likelihood is maximized at

β̃(θ) = β0,

σ̃2
0(θ) =

σ2
00

n
tr(Ω(θ)−1Ω(θ0)),

=
1

n
E[u′0Ω

− 1
2 (θ)M(θ)Ω− 1

2 (θ)u′0] +
1

n
E[u′0Ω

− 1
2 (θ)P (θ)Ω− 1

2 (θ)u′0],

where P (θ) = I − M(θ) and M(θ) = I − Ω− 1
2 (θ)X(X ′Ω−1(θ)X)−1X ′Ω− 1

2 (θ). Thus, the concentrated
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expected log-likelihood function is given by,

E logL(θ) = −n
2
(log(2π) + 1)− n

2
log(σ̃2

0(θ))−
1

2
log |Ω(θ)|.

Consistency of θ̂ is obtained by the following two facts. The first one is the identification uniqueness

condition: lim supn→∞

[
maxθ∈Bc(θ0,ε)∩ΘE logL(θ) − E logL(θ0)

]
< 0 for any ε > 0, where Bc(θ0, ε) is

the compliment of an ε-neighborhood of θ0. The second one is the uniform convergence in probability:

supθ∈Θ

∣∣∣∣ 1n logL(θ)− 1
nE logL(θ)

∣∣∣∣ = op(1).

Theorem 1. Under Assumptions 1-7, θ̂ is a consistent estimator of θ0.

Next, let us consider the the asymptotic distribution of the QML estimator ψ̂. To derive the asymptotic

normality, we need to consider the the Taylor expansion of ∂
∂ψ logLn(ψ̂) at ψ0. The first-order derivatives of

the log-likelihood function at ψ has the elements

∂ logL(ψ)

∂β
= X ′Σ−1(η)(Y −Xβ),

∂ logL(ψ)

∂σ2
i

= −1

2
tr(Σ−1(η)Gi(ρi)) +

1

2
(Y −Xβ)′Σ−1(η)Gi(ρi)Σ

−1(η)(Y −Xβ),

∂ logL(θ)

∂ρi
=
σ2
i

2
tr(Σ−1(η)Hi(ρi))− σ2

i

2
(Y −Xβ)′Σ−1(η)Hi(ρi)Σ

−1(η)(Y −Xβ),

where η = (σ2
0 , σ

2
1 , . . . , σ

2
p, ρ1, . . . , ρp), A

−1
i (ρi) = (Ii − ρiWi)

−1(Ii − ρiW
′
i )

−1, Bi(ρi) = W ′
i (Ii − ρiWi) +

(Ii − ρiW
′
i )Wi, Gi(ρi) = JUiA

−1
i (ρi)U

′
iJ

′, and Hi(ρi) = JUiA
−1
i (ρi)Bi(ρi)A

−1
i (ρi)U

′
iJ

′. By the mean value

theorem,

√
n(ψ̂ − ψ0) = −

(
1

n

∂2 logL(ψ̄)

∂ψ∂ψ′

)−1
1√
n

∂ logL(ψ0)

∂ψ
,

where ψ̄ lies between ψ̂ and ψ0.

The score function which is the first-order derivatives of the log-likelihood function at ψ0,
∂ logL(ψ0)

∂ψ , are

linear and quadratic functions of u0 = (Y −Xβ0). By applying the central limit theorem for linear-quadratic

forms by Kelejian and Prucha (2001) to the score functions, we have the asymptotic normality for the QMLE

ψ̂ under proper asymptotic behavior of the Hessian matrix and the variance of the score function whose

explicit forms are given in Appendix.

Theorem 2. Under Assumptions 1-7, if there exist Σ = − limn→∞E

(
1
n
∂2 logL(ψ0)
∂ψ∂ψ′

)
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and Γ = limn→∞ 1
nE

(
∂ logL(ψ)

∂ψ
∂ logL(ψ)

∂ψ′

)
, and −Σ is positive definite, then

√
n(ψ̂ − ψ0)

D−→ N(0,Σ−1ΓΣ−1).

4 Empirical Application

We conduct empirical analysis for MS-ANOVAmodels by real data analysis for happiness survey data in Japan

to analyze the effect of individual characteristics on happiness and spatial correlation between regional effects.

Moreover, we investigate the relationship between happiness and social capital which can be interpreted as

”the beliefs and norms by which a community values collective action and pursues activities worthy for the

entire community”.

In recent years, happiness has been extensively investigated in the social sciences. Various studies have

revealed relationships between several individual characteristics and happiness. Oswald (1997) reported a

U-shaped relationship between age and happiness, that is, the happienss of people in middle age is the

smallest among all age groups. In addition, women tend to have higher average happiness at all ages than

men. Helliwell (2003) reports that, after controlling for many individual factors, people who are single are

less happy than those who are married. However, there has been little discussion on geographical feature of

happiness. Regional factors such as culture and customs are believed to have a significant impact on people’s

happiness. If spatial correlations exist for such unobservable regional factors, an analysis that ignores spatial

correlations is likely to lead to erroneous conclusions. By using the proposed model, this analysis will

take into account the spatial correlation of such unobservable regional factors and clarify the geographical

characteristics of happiness.

Social capital can be interpreted as ”the beliefs and norms by which a community values collective action

and pursues activities worthy for the entire community” and is an indicator related to spatial correlates of

hapiness (Bartscher et al. 2021; Durante et al., 2021). Activities that are privately costly and have no direct

reward, but are socially useful, such as voting (Bauernschuster et al., 2014; Guiso et al., 2004), and blood

and organ donation (Buonanno et al., 2009), are often used as a proxy for social capital. Communities with

high social capital provide more public goods and services because people are more mutually beneficial and

trusting, and are more cooperative in achieving the common purposes of the community. Therefore, hapiness

could be increased in areas with high social capital through deeper friendships with neighbors, increased

local communal activities and informal helps, abundant and diverse provision of public amenities, improved
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security and public health, and reduced unlawful activities such as fraud and corruption.

Let us introduce the happiness survey data. In December 2019, we commissioned Macromill Co, LTD,

which is a market research company in Japan, to conduct a survey of 26, 974 people living in 1534 cities.

Here, respondents were selected so that the distribution of age, population, and area of residence would be

the same as that of the Japanese census. The demographic information of the respondents contains gender,

age, personal and family incomes, marital status, jobs and presence of children.

Happiness for dependent variables, Y , was obtained by asking individuals to answer the following question:

Currently, how happy do you feel? Score the degree of your happiness between 1 (very unhappy) and 10 (very

happy). Thus, the happiness is measured discrete values between 1 and 10.

We use dummy variables created from the demographic information as explanatory variables, X. Age

and gender are divided into 12 categories, namely, all the respondents were separated into the two groups

of female and male, each of which is categorized as the 6 mutually disjoint subgroups corresponding with

10s, 20s, 30s, 40s, 50s, and over 60. The group of female in their 20s as the base group. Personal income is

categorized as the 9 mutually disjoint groups of income, i.e. (1) < 2 million yen, (2) < 4 million, (3) < 6

million, (4) < 8 million, (5) < 10 million, (6) < 12 million (7) < 15 million, (8) < 20 million, and (9) ≥ 20

million yen, with the group less than 2 million yen as the base. Moreover, the grouping of household income

is based on the grouping of personal income plus the group of no-response. The base group for household

income is the group less than 2 million yen Presence of child is summarized as the dummy variable of taking

1 if a respondent has more than one child and 0 otherwise. Martial status is recorded as the category variable

with the three groups of (1) single, (2) married and (3) divorced or widowed, with the single group taken as

the base.

In addition, regional level explanatory variables, X2, are voting rates, percentage of population over 65

years old. We use voting rates which is a social capital proxy variables to clear the relationship between

people’s happiness and local social capital. Other variables are used to control for local economic conditions.

Regional dummy variables, J , is the 26, 974× 1838 matrix. Here, we note that the number of all munic-

ipalities in Japan is 1845 and the rank of J is less than 1838, at 1534 which is the number of cities which

at least one respondent belong to. Let us remember that our proposed models can also estimate regional

effects, d, in areas where there are no observed individuals by using the information of the surrounding regions

where observed individuals exist. Thus, the matrix, J , contains the columns whose elements are zeros which

correspond to the areas where there are no respondents.

We use a 1838 × 1838 spatial weight matrix, W , created in two-steps. Firstly, If the distance between
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Figure 1: a plot of estimated regional effects for individual happiness for each cities with MS-ANOVA models
which contains city level and prefecture level random effects by applying it them to happiness dataset in
Japan.

city i and j is 30 km, the i, j and j, i elements of W is 1, and otherwise 0. Next, if there are no more than

three cities within 30 km of a city, then the element of W corresponding to the three closest cities is set to

1. After that each row sum is standardized to be 1.

Table 1 reports the estimates of the parameters for MS-ANOVA models with standard errors and Akaike

information criterion (AIC) for both models. As a benchmark for comparison, those of MANOVA models

which is a special case of MS-ANOVA models where spatial parameters for random effects are equal to zeros,

i.e. ρ = 0. In comparison between fittings of MS-ANOVA models and MANOVA models, the former model

accounts for happiness better than the later model in terms of AIC. This indicated that taking into account of

spatial correlation improve the accuracy of the model fitting. The results regarding the relationship between

individual characteristics and happiness are similar to those of existing studies. For example, people in

middle age have the lowest level of happiness, and in each age group, women’s happiness is higher than men’s

happiness. Moreover, happiness increases monotonically as household income and personal income increase

and getting married greatly increases people’s happiness.

Next, let us consider the spatial correlates of happiness. We find from table 1 that spatial correlation

between random effects are positively significant at 5 % level, which indicates that random effect on a city

takes similar value with random effects on surrounding cities of the city. One reason which derives spatial

correlation between city level random coefficient is the similarity of culture or customs which greatly affects

the way people feel about their happiness. Figure 1 is a plot of estimated regional effects for each cities, d,
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which mean average happiness of people living in that city. We can find that spatial cluster in the regional

effects exists and the level of happiness in the southern and middle regions of Japan is higher than that in

the eastern region. Especially, eastern coastal regions show the lowest level of happiness compared to other

regions. The reason for this is thought to be that the effects of the nuclear accident caused by the East-Japan

earthquake which occurred in 2011 are still lingering.

We examine the relationship between the level of social capital in an area and the level of happiness of

the people living in the area. Table1 shows that the estimate of voting rates, a proxy measure of social

capital in the area, is statistically significant at 0.631. We find results consistent with previous studies (e.g.

Hommerich & Tiefenbach, 2018) that social capital of residence significantly increases people’s happiness,

even after controlling for a variety of individual characteristics and spatial correlations. Since social capital

is a composite indicator, a more detailed analysis is needed to determine which aspects of it drive the results,

and this is a fruitful subject for the future.

5 Conclusion

We have proposed MS-ANOVA models which is a spatial extension of the mixed models of the analysis of

variance in this paper. Because the proposed model can be regarded as a Bayesian hierarchal model, we have

introduced empirical bayesian estimation methods in two steps as estimation strategy for the parameters

in the proposed models. The first step estimator specifies the hyper parameters and has been justified in

asymptotic situations, and the second step estimator for parameters are derived by the Bayes’ formula with

the hyperparameters estimated in the first step. Fitting the proposed model to happiness survey data in

Japan, we can evaluate the effect of individual and regional level explanatory variables on happiness and

spatial correlation of regional effects which are random effects in each regions. Empirical results suggest that

happiness is U-shaped with age, female’s happiness is higher than male’s happiness at all ages, and regional

effects on happiness are spatially correlated. The existence of spatial correlations between random effects

indicates that unobserved features which affect on individual happiness such as culture and custom tend to

be similar in nearby regions.

For future study, several extensions are possible. In this analysis, we regard individual happiness as con-

tinuous variables. However, the treatment creates a gap between the data and the model because individual

happiness takes only discrete values between 1 and 10. Thus, the extension of the proposed model to discrete

choice models fills the gap and allows for rigorous analysis of happiness. One more possibility is a panel ex-

tension of the proposed model. Our proposed model can capture only spatial correlation. However, it is said
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that happiness on individual has a time series correlation. A panel extension would reveal more interesting

sptio-temporal correlation in happiness.
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Table 1: Estimation values and their standard errors for β1, β2, log likelihood (logL) and Akaike Information Criterion (AIC)

in both MS-ANOVa models and mixed analysis of variance models (MANOVA) which contains city level and prefecture level

random effects, and estimates and standard errors of spatial parameters ρ1 and ρ2 in MS-ANOVA models which are obtained

by applying them to happiness dataset in Japan.

MS-ANOVA MANOVA

coef s.e coef s.e

20< Female < 25 -0.007 0.076 -0.005 0.076

Female < 30 -0.234 0.071 -0.232 0.071

Female < 35 -0.522 0.069 -0.521 0.069

Female < 40 -0.694 0.068 -0.691 0.068

Female < 45 -0.718 0.064 -0.717 0.064

Female < 50 -0.857 0.064 -0.856 0.064

Female < 55 -0.811 0.067 -0.813 0.066

Female < 60 -0.789 0.068 -0.790 0.068

Female < 65 -0.504 0.067 -0.506 0.067

Female > 65 -0.172 0.063 -0.172 0.062

Male < 20 0.185 0.078 0.184 0.078

Male < 25 -0.186 0.072 -0.183 0.072

Male < 30 -0.836 0.070 -0.835 0.070

Male < 35 -1.117 0.068 -1.118 0.068

Male < 40 -1.409 0.069 -1.411 0.068

Male < 45 -1.557 0.065 -1.558 0.065

Male < 50 -1.628 0.065 -1.629 0.065

Male < 55 -1.692 0.068 -1.694 0.068

Male < 60 -1.799 0.069 -1.802 0.069

Male < 65 -1.308 0.068 -1.311 0.068

Male < 65 -0.915 0.065 -0.917 0.064

200 < Personal Income (PI) < 400 0.076 0.032 0.075 0.032

PI < 600 0.263 0.041 0.264 0.041

PI < 800 0.335 0.057 0.338 0.057

PI < 1000 0.401 0.081 0.403 0.081

PI < 1200 0.572 0.120 0.577 0.120

PI > 1200 0.458 0.146 0.459 0.146

200 < Family Income (FI) < 400 0.055 0.048 0.055 0.048

FI < 600 0.337 0.048 0.339 0.048

FI < 800 0.494 0.052 0.495 0.052

FI < 1000 0.619 0.058 0.621 0.058

FI < 1200 0.769 0.069 0.770 0.069

FI < 1500 0.881 0.087 0.882 0.087

FI < 2000 1.181 0.117 1.183 0.117

FI > 2000 1.111 0.162 1.109 0.163

FI Unknown 0.137 0.045 0.138 0.045

Married 0.961 0.041 0.961 0.041

Divorced 0.390 0.057 0.391 0.057

Children 0.109 0.035 0.110 0.035

voting rates 0.631 0.266 0.600 1.303

population over 65 years -0.002 0.003 -0.006 0.013

rho1(city) 0.440 0.013

rho2(Pref) 0.252 1.217

logL -1.2050 -1.2055

AIC 60164 60193
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Appendix A. Hessian and Covariance matrix

Here, we show the detailed expression of the Hessian matrix and covariance matrix which is discussed in The-

orem 2. Firstly, we show the Hessian matrix. For simplicity, we denote A−1
i (ρi) = (Ii−ρiWi)

−1(Ii−ρiW ′
i )

−1,

Bi(ρi) =W ′
i (Ii−ρiWi)+(Ii−ρiW ′

i )Wi, Gi(ρi) = JUiA
−1
i (ρi)U

′
iJ

′, Hi(ρi) = JUiA
−1
i (ρi)Bi(ρi)A

−1
i (ρi)U

′
iJ

′,

H1,i(ρi) = JUiA
−1
i (ρi)Bi(ρi)A

−1
i (ρi)Bi(ρi)A

−1
i (ρi)U

′
iJ

′, and H2,i(ρi) = JUiA
−1
i (ρi)W

′
iWiA

−1
i (ρi)U

′
iJ

′, i =

1, . . . , p. Moreover, we define A0(ρ0)
−1 = IL and Ui = IL. Then, the variance matrix of the proposed

model is given by, Σ(η) =
∑p
i=0 σ

2
iGi(ρi), where η = (σ2

0 , σ
2
1 , . . . , σ

2
p, ρ1, . . . , ρp). Moreover, the derivatives of

Gi(ρi),Hi(ρi),Σ(η) are given by, ∂Gi(ρi)
∂ρ2i

= −Hi(ρi),
∂Hi(ρi)
∂σ2

i
= −2(H1,i(ρi) + H2,i(ρi)),

∂Σ(η)
∂σ2

i
= Gi(ρi) and

∂Σ(η)
∂ρi

= −σ2
iHi(ρi), respectively.

By using above notations, the gradients of the log-likelihood function, ∂ logL(ψ)
∂ψ , is given by

∂ logL(ψ)

∂β
= X ′Σ−1(η)(Y −Xβ),

∂ logL(ψ)

∂σ2
i

= −1

2
tr(Σ−1(η)Gi(ρi)) +

1

2
(Y −Xβ)′Σ−1(η)Gi(ρi)Σ

−1(η)(Y −Xβ),

∂ logL(θ)

∂ρi
=
σ2
i

2
tr(Σ−1(η)Hi(ρi))− σ2

i

2
(Y −Xβ)′Σ−1(η)Hi(ρi)Σ

−1(η)(Y −Xβ).

Moreover, the hessian matrix of the log-likelihood function, ∂
2 logL(ψ)
∂ψ∂ψ′ has the elements:

∂2 logL(ψ)

∂β∂β′ = −XΣ−1(η)X,

∂2 logL(ψ)

∂β∂σ2
i

= −X ′Σ−1(η)Gi(ρi)Σ
−1(η)(Y −Xβ),

∂2 logL(ψ)

∂β∂ρi
= σ2

iX
′Σ−1(η)Hi(ρi)Σ

−1(η)(Y −Xβ),

∂2 logL(ψ)

∂σ2
i ∂σ

2
i

=
1

2
tr(Σ−1(η)Gi(ρi)Σ

−1(η)Gi(ρi))

− (Y −Xβ)′Σ−1(η)Gi(ρi)Σ
−1(η)Gi(ρi)Σ

−1(η)(Y −Xβ),
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∂2 logL(ψ)

∂σ2
i ∂σ

2
j

=
1

2
tr(Σ−1(η)Gj(ρj)Σ

−1(η)Gi(ρi))

− (Y −Xβ)′Σ−1(η)Gj(ρj)Σ
−1(η)Gi(ρi)Σ

−1(η)(Y −Xβ),

∂2 logL(ψ)

∂σ2
i ∂ρi

=
σ2
i

2
tr(Σ−1(η)Hi(ρi)Σ

−1(η)Gi(ρi))− 1

2
tr(Σ−1(η)Hi(ρi))

+ σ2
i (Y −Xβ)′Σ−1(η)Hi(ρi)Σ

−1(η)Gi(ρi)Σ
−1(η)(Y −Xβ)

− 1

2
(Y −Xβ)′Σ−1(η)Hi(ρi)Σ

−1(η)(Y −Xβ)

∂2 logL(ψ)

∂σ2
i ∂ρj

= −σ
2
j

2
tr(Σ−1(η)Hj(ρj)Σ

−1(η)Gi(ρi))

+ σ2
j (Y −Xβ)′Σ−1(η)Hj(ρj)Σ

−1(η)Gi(ρi)Σ
−1(η)(Y −Xβ),

∂2 logL(ψ)

∂ρi∂ρi
=
σ4
i

2
tr(Σ−1(η)Hi(ρi)Σ

−1(η)Hi(ρi))− σ2
i tr(Σ

−1(η)(H1,i(ρi) +H2,i(ρi))

− σ4
i

2
(Y −Xβ)′Σ−1(η)Hi(ρi)Σ

−1(η)Hi(ρi)Σ
−1(η)(Y −Xβ)

+ σ2
i (Y −Xβ)′Σ−1(η)(H1,i(ρi) +H2,i(ρi))Σ

−1(η)(Y −Xβ),

∂2 logL(ψ)

∂ρi∂ρj
=
σ2
i σ

2
j

2
tr(Σ−1(η)Hj(ρj)Σ

−1(η)Hi(ρi))

− σ2
i σ

2
j

2
(Y −Xβ)′Σ−1(η)Hj(ρj)Σ

−1(η)Hi(ρi)Σ
−1(η)(Y −Xβ).

Next, let us consider the variance matrix of the log likelihood function, E(∂ logL(ψ0)
∂ψ

∂ logL(ψ0)
∂ψ′ ). The

explicit form of each elements can be obtained form Lemma 4 in Appendix B:

E

(
∂ logL(ψ0)

∂β

∂ logL(ψ0)

∂β′

)
= X ′Σ−1(η0)X,

E

(
∂ logL(ψ0)

∂β

∂ logL(ψ0)

∂σ2
i

)
=

1

2
X ′Σ−1(η0)E(u0u

′
0Σ

−1(η0)Gi(ρ0i)Σ
−1(η0)u0),

E

(
∂ logL(ψ0)

∂β

∂ logL(ψ0)

∂ρi

)
= −σ

2
0i

2
X ′Σ−1(η0)E(u0u

′
0Σ

−1(η0)Hi(ρ0i)Σ
−1(η0)u0),
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E

(
∂ logL(ψ0)

∂σ2
i

∂ logL(ψ0)

∂σ2
i

)
= −1

4
[E(u′0Σ

−1(η0)Gi(ρ0i)Σ
−1(η0)u0)]

2 +
1

4
E[(u′0Σ

−1(η0)Gi(ρ0i)Σ
−1(η0)u0)

2],

E

(
∂ logL(ψ0)

∂σ2
i

∂ logL(ψ0)

∂σ2
j

)
= −1

4
E(u′0Σ

−1(η0)Gi(ρ0i)Σ
−1(η0)u0)E(u′0Σ

−1(η0)Gj(ρ0j)Σ
−1(η0)u0)

+
1

4
E[u′0Σ

−1(η0)Gi(ρ0i)Σ
−1(η0)u0u

′
0Σ

−1(η0)Gj(ρ0j)Σ
−1(η0)u0],

E

(
∂ logL(ψ0)

∂σ2
i

∂ logL(ψ0)

∂ρj

)
=
σ2
j

4
E(u′0Σ

−1(η0)Gi(ρ0i)Σ
−1(η0)u0)E(u′0Σ

−1(η0)Hj(ρ0j)Σ
−1(η0)u0),

− 1

4
E[u′0Σ

−1(η0)Gi(ρ0i)Σ
−1(η0)u0u

′
0Σ

−1(η0)Hj(ρ0j)Σ
−1(η0)u0],

E

(
∂ logL(ψ0)

∂ρ2i

∂ logL(ψ0)

∂ρj

)
= −σ

2
j

4
E(u′0Σ

−1(η0)Hi(ρ0i)Σ
−1(η0)u0)E(u′0Σ

−1(η0)Hj(ρ0j)Σ
−1(η0)u0),

+
1

4
E[u′0Σ

−1(η0)Hi(ρ0i)Σ
−1(η0)u0u

′
0Σ

−1(η0)Hj(ρ0j)Σ
−1(η0)u0],

where η0 = (σ2
00, σ

2
01, . . . , σ

2
0p, ρ01, . . . , ρ0p).

6 Appendix B. Some useful lemmas

We introduce some lemmas which are used in the proofs of the following main results. The lemmas are a

little modifications of lemmas in Lee(2004) for non-square matrices.

Lemma 1 Let A be an n×m non-square matrix whose column sums are uniformly bounded, C be a n× k

matrix whose elements are uniformly bounded, and fi be i.i.d noise with mean 0 and variance σ2. Then,

1√
m
C ′Af = Op(1).

Proof. Let B = C ′A, bi,j be the (i, j)-th element of B and bi be the i-th coumn of B. Because the elements

of C are uniformly bounded and the column sums of A are uniformly bounded, the element of B is uniformly

bounded by Lemmas in Lee (2004). Let b be a constant such as |bi,j | ≤ b. Because Bf =
∑m
i=1 bifi,

V ar(Bf) = E(
∑m
i=1

∑m
i=1 bififjb

′
j) = σ2

∑m
i=1 bib

′
i ≤

∑m
i=1 b1k1

′
k = O(m), where 1k is a k × 1 vector whose

elements are 1. Thus, 1√
m
C ′Af = Op(1) by Chebyshev’s inequality.

Lemma 2 Let A be an m1 ×m2 non-square matrix whose column sums are uniformly bounded, f1,i and

f2,i are i.i.d noise with mean 0 and variance σ1 and σ2, respectively. Then,

• E(f1Af2) = 0.

• V (f1Af2) = O(m1).
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• f1Af2 = Op(
√
m1).

Proof. E(f1Af2) =
∑m1

i=1

∑m2

j=1 ai,jE(f1,if2,j) = 0. V (f1Af2) =∑m1

i1=1

∑m1

i2=1

∑m2

j1=1

∑m2

j2=1 ai1,j1ai2,j2E(f1,i1f1,j2f2,j1f2,j2) = σ2
1σ

2
2

∑m1

i=1

∑m2

j=1 a
2
i,j ≤ σ2

1σ
2
2

∑m1

i=1(
∑n
j=1 |ai,j |)2 ≤

σ2
1σ

2
2

∑m1

i=1 c
2 = O(m1). Thus, f1Af2 = Op(

√
m1) by Chebyshev’s inequality.

Lemma 3 Let Ai be anmi×mi matrix for i = 1, . . . , p, B be an n×nmatrix, C be an n×k matrix, and ε and

fi, i = 1, . . . , p be an n×1 andmi×1 random noise with means 0 and variances σ2
0 and σ2

i . Moreover, we define

Ui be an n×mi matrix which consists only of zeros and ones and there exist one 1 in each row and at least

one 1 in each column, i = 1, . . . , p We denote u = ε +
∑p
i=1 UiAifi and m = min{m1, . . . ,mp}. We assume

Ui is uniformly bounded in column sums, the elements of C is uniformly bounded, B is uniformly bounded in

both row and column sums, and mi is a function of n and tends to infinity and limn→∞ mi

n = ci ≤ 1. Then,

• 1
nC

′Bu = op(1).

• 1
nu

′Bu = Op(1).

• 1
n (u

′Bu− E(u′Bu)) = op(1).

Proof. By the Lemma,

1

n
C ′Bu =

1

n
C ′Bε+

p∑
i=1

1

n
C ′BUiAifi,

=
1√
n

1√
n
C ′Bε+

p∑
i=1

mi

n

1√
mi

1√
mi

C ′BUiAifi,

= o(1)Op(1) +

p∑
i=1

O(1)o(1)Op(1),

= op(1).

We denote f0 = ε0, A0 = In and U0 = In. Because u0 = U0A0f0 + U1A1f1 + · · ·+ UpApfp,

1

m
u′Bu =

p∑
i=0

p∑
j=0

1

m
f ′iA

′
iU

′
iBUjAjfj .

Firstly, we will consider the case When i = j. Because A′
iU

′
iBUiAi is uniformly bounded in both row and
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column sums, by Lee(2004),

1

n
f ′iA

′
iU

′
iBUiAifi =

mi

n

1

mi
f ′iA

′
iU

′
iBUiAifi,

= O(1)Op(1),

= Op(1).

Moreover, mi

n
1
mi

(f ′iA
′
iU

′
iBUiAifi − E(f ′iA

′
iU

′
iBUiAifi) = O(1)op(1) = op(1).

Secondly, we will consider the case of i �= j. By the Lemma,

1

n
f ′iA

′
iU

′
iBUjAjfj =

mi

n

1√
mi

1√
mi

f ′iA
′
iU

′
iBUjAjfj ,

= O(1)o(1)Op(1),

= op(1).

It is clear that mi

n
1
mi

(f ′iA
′
i
mi

n U
′
i
n
mBUjAjfj − E(f ′iA

′
i
mi

n U
′
i
n
mBUjAjfj) = op(1)

Therefore, 1
nu

′Bu = Op(1) and
1
n (u

′Bu− E(u′Bu)) = op(1).

Lemma 4 Let A be an m1 ×m2 non-square matrix, Ti = JUi(Ii − ρiWi)
−1, and fi i = 0, . . . , p are mi × 1

i.i.d. random noise with mean 0 and variances σ2
i , respectively. Moreover, the elements of each fi has more

than fourth moment, i.e. E|f1,i|4+δ <∞ for some δ > 0. Let us define u =
∑p
i=1 Tifi. Then,

1. E(uu′) = Σ(η).

2. E(u′Au) =
∑p
i=0 σ

2
i tr(T

′
iATi).

3. E(uu′Au) =
∑p
i=0 μi,3Tidiag(TiATi).

4. E(u′Auu′Bu) =
∑p
i=1

[
(μi,4−3σ4

i )
∑n
j=1(T

′
iATi)j,j(T

′
iBTi)j,j+σ

4
i (tr(T

′
iATi)tr(T

′
iBTi)+tr(T

′
iATi(T

′
i (B+

B′)Ti))
]
+

∑p
i1

∑p
i2
σ2
i1
σ2
i2
tr(T ′

i1
ATi1)tr(T

′
i2
BTi2) + 2

∑p
i1

∑p
i2
σ2
i1
σ2
i2
tr(T ′

i1
ATi1T

′
i2
B′Ti2)
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Proof.

E(uu′) = E

( p∑
i=0

Tifi

)( p∑
i=0

f ′iT
′
i

)
,

=

p∑
i=0

TiE(fif
′
i)T

′
i ,

=

p∑
i=0

σ2
i TiT

′
i ,

= Σ(η).

E(u′Au) = E

( p∑
i1=0

p∑
i2=0

f ′i1T
′
i1ATi2fi2

)
,

=

p∑
i=0

E(f ′iT
′
iATifi),

=

p∑
i=0

σ2
i tr(T

′
iATi),

E(uu′Au) = E

( p∑
i1=0

p∑
i2=0

p∑
i3=0

Ti1fi1f
′
i2T

′
i2ATi3fi3

)
,

=

p∑
i=0

E(Tifif
′
iTiATifi),

=

p∑
i=0

E

(
Tifi

mi∑
j1=1

mi∑
j2=1

(TiATi)j1,j2fi,j1fi,j2

)
,

=

p∑
i=0

μi,3Tidiag(TiATi).

E(u′Auu′Bu) = E

( p∑
i1

p∑
i2

p∑
i3

p∑
i4

f ′i1T
′
i1ATi2fi2f

′
i3T

′
i3BTi4fi4

)
,

=

p∑
i

E(f ′iT
′
iAT

′
ifif

′
iT

′
iBT

′
ifi) +

p∑
i1

p∑
i2 	=i1

E(f ′i1T
′
i1ATi1fi1f

′
i2T

′
i2BTi2fi2)

+

p∑
i1

p∑
i2 	=i1

E(f ′i1T
′
i1ATi2fi2f

′
i1T

′
i1BTi2fi2) +

p∑
i1

p∑
i2 	=i1

E(f ′i1T
′
i1ATi2fi2f

′
i2T

′
i2BTi1fi1),

=

p∑
i=1

[
(μi,4 − 3σ4

i )

n∑
j=1

(T ′
iATi)j,j(T

′
iBTi)j,j + σ4

i (tr(T
′
iATi)tr(T

′
iBTi) + tr(T ′

iATi(T
′
i (B +B′)Ti))

]

+

p∑
i1

p∑
i2

σ2
i1σ

2
i2tr(T

′
i1ATi1)tr(T

′
i2BTi2) + 2

p∑
i1

p∑
i2

σ2
i1σ

2
i2tr(T

′
i1ATi1T

′
i2B

′Ti2)
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Appendix C. Proofs of the theorems

Proof of theorem 1

To prove the consistency of QMLE θ̂, it is sufficient to show that the following two facts hold (See white

(1994)). The first one is the identification uniqueness condition: lim supn→∞

[
maxθ∈Bc(θ0,ε)∩ΘE logL(θ) −

E logL(θ0)

]
< 0 for any ε > 0, where Bc(θ0, ε) is the compliment of an ε-neighborhood of θ0. The second

one is the uniform convergence in probability: supθ∈Θ

∣∣∣∣ 1n logL(θ)− 1
nE logL(θ)

∣∣∣∣ = op(1).

The identification uniqueness

Firstly, we will show that the identification uniqueness condition hold. From the definition of the concentrated

expected log-likelihood function, we have

1

n
(E logL(θ)− E logL(θ0)) = −1

2
log(σ̃2

0(θ))−
1

2n
log |Ω(θ)|+ 1

2
log(σ2

00(θ)) +
1

2n
log |Ω(θ0)|,

= − 1

2n
log |σ̃2

0(θ)In| −
1

2n
log |Ω(θ)|+ 1

2n
log |σ2

00(θ)In|+
1

2n
log |Ω(θ0)|,

=
1

2n
log |σ2

00Ω(θ0)| −
1

2n
log |σ̂2

0(θ)Ω(θ)|.

By Assumption 7, for any θ �= θ0,

lim
n→∞

1

n

[
log |σ2

00Ω(θ0)| − log |σ̃2
0(θ)Ω(θ)|

]
�= 0.

Thus,

lim
n→∞

1

n
(E logL(θ)− E logL(θ0)) �= 0.

Let pn(β, σ
2
0 , θ) = exp(logL(β, σ2

0 , θ)) be the quasi-joint p.d.f of u0 = (Y −Xβ0) and p
0
n(β, σ

2
0 , θ) be the

true joint p.d.f. We denote Eq as the expectation with respect to pn(β, σ
2
0 , θ) and E as the expectation with

respect to p0n(β, σ
2
0 , θ).

By the Jensen’s inequality,

0 = logEq
(

pn(β, σ
2
0 , θ)

pn(β0, σ2
00, θ0)

)
≥ Eq log

(
pn(β, σ

2
0 , θ)

pn(β0, σ2
00, θ0)

)

Here, we note that u0 appears in a quadratic form or linear-quadratic form in pn(β0, σ
2
00, θ0) and pn(β, σ

2
0 , θ).
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Thus,

Eq log

(
pn(β, σ

2
0 , θ)

pn(β0, σ2
00, θ0)

)
= E log

(
pn(β, σ

2
0 , θ)

pn(β0, σ2
00, θ0)

)
.

This implies

E logL(θ) = max
β,σ2

0

E[logL(β, σ2
0 , θ)] ≤ E[logL(β0, σ

2
00, θ0)] = E logL(θ0).

Collecting the above results, we have

lim
n→∞

[
max

θ∈Bc(θ0,ε)∩Θ
E logL(θ)− E logL(θ0)

]
< 0,

for any ε > 0, where Bc(θ0, ε) is the compliment of an ε-neighborhood of θ0. The identification uniqueness

condition holds.

Uniform convergence

Secondly, we will show that the uniform convergence condition hold. From the definition, we have

1

n
logL(θ)− 1

n
E logL(θ) = −1

2
log σ̂2

0 +
1

2
log σ̃2

0 .

By the mean value theorem,

| log σ̂2
0 − log σ̃2

0 | =
1

σ̄2
0

|σ̂2
0 − σ̃2

0 |,

where σ̄2
0 lies between σ̂2

0 and σ̃2
0 . It is sufficient to show the following two facts. The first one is σ̃2

0 is

uniformly bounded away from zero and the second one is uniform convergence of |σ̂2
0 − σ̃2

0 | in probability.

Firstly, we will show that σ̃2
0 is uniformly bounded away from zero. By Assumption 4,

inf
θ∈Θ

σ̃2
0(θ) = inf

θ∈Θ

(
σ2
00

n
tr(Ω(θ)−1Ω(θ0))

)
,

≥ σ2
00 inf
θ∈Θ

(γmin(Ω
−1(θ)))

1

n
tr(Ω(θ0)),

≥ c0cωc1,

> 0,
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where c0 and c1 are some constants. Therefore, σ̃2
0 must be uniformly bounded away from zero.

Secondly, we will show that supθ∈Θ |σ̂2
0 − σ̃2

0 | = op(1). Because M(θ)Ω− 1
2 (θ)X = 0,

σ̂2
0 − σ̃2

0 =
1

n
Y ′Ω− 1

2 (θ)M(θ)Ω− 1
2 (θ)Y − 1

n
E[u′0Ω

− 1
2 (θ)M(θ)Ω− 1

2 (θ)u′0]−
1

n
E[u′0Ω

− 1
2 (θ)P (θ)Ω− 1

2 (θ)u′0],

=
1

n

(
u′0Ω

− 1
2 (θ)M(θ)Ω− 1

2 (θ)u0 − Eu′0Ω
− 1

2 (θ)M(θ)Ω− 1
2 (θ)u0

)
− 1

n
E

(
u′0Ω

− 1
2 (θ)P (θ)Ω− 1

2 (θ)u0

)
.

We will consider the uniform convergence of the above two terms.

Let us consider the uniform convergence of the second term. We note that 0 < cωcx ≤ infθ∈Θ γmin(Ω
−1(θ))γmin

(
X′X
n

)

≤ γmin

(
X′Ω−1(θ)X

n

)
≤ γmax

(
X′Ω−1(θ)X

n

)
≤ supθ∈Θ γmax(Ω

−1(θ))γmax

(
X′X
n

)
≤ cωcx < ∞. By assumption

4 and 5,

sup
θ∈Θ

∣∣∣∣ 1nE
(
u′0Ω

− 1
2 (θ)P (θ)Ω− 1

2 (θ)u0

)∣∣∣∣ = sup
θ∈Θ

∣∣∣∣ 1nσ2
00tr

(
Ω−1(θ)X(X ′Ω−1(θ)X)−1X ′Ω−1(θ)Ω(θ0)

)∣∣∣∣,

≤ 1

n
sup
θ∈Θ

∣∣∣∣σ2
00γmax

(
X ′Ω−1(θ)X

n

)−1

γmax(Ω
−2(θ))

∣∣∣∣γmax(Ω(θ0))
1

n
tr(XX ′),

≤ 1

n
σ2
00 sup
θ∈Θ

∣∣∣∣γmax

(
X ′Ω−1(θ)X

n

)−1∣∣∣∣
sup
θ∈Θ

∣∣∣∣γmax(Ω
−2(θ))

∣∣∣∣γmax(Ω(θ0))
1

n
tr(XX ′),

=
1

n
O(1)O(1)O(1)O(1)O(1),

= o(1).

This implies that the second term converges uniformly.

To show that the uniform convergence of the first term, we will show that the pointwise convergence and

stochastic equicontinuity of the term (See Andrew (1992)).

Firstly, we will consider the pointwise convergence of the first term. From Assumption 4 and 5, Ω−1(θ) and

X(X ′Ω−1(θ)X)−1X ′ are uniformly bounded in both row and column sums. Therefore, Ω− 1
2 (θ)M(θ)Ω− 1

2 (θ) =

Ω−1(θ)−Ω−1(θ)X(X ′Ω−1(θ)X)−1X ′Ω−1(θ) is uniformly bounded in both row and column sums. By Lemma

3, it follows hat 1
n

(
u′0Ω

− 1
2 (θ)M(θ)Ω− 1

2 (θ)u0 − Eu′0Ω
− 1

2 (θ)M(θ)Ω− 1
2 (θ)u0

)
= op(1). This implies the first

term converges pointwise.

Next, we will consider the stochastic equicontinuity condition of the first term. By the mean value
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theorem,

1

n
u′0Ω

− 1
2 (θ1)M(θ1)Ω

− 1
2 (θ1)u0 − 1

n
u′0Ω

− 1
2 (θ2)M(θ2)Ω

− 1
2 (θ2)u0

=
1

n

p∑
i=1

∂u′0Ω
− 1

2 (θ̄)M(θ̄)Ω− 1
2 (θ̄)u0

∂ρi
(ρi,1 − ρi,2) +

1

n

p∑
i=1

∂u′0Ω
− 1

2 (θ̄)M(θ̄)Ω− 1
2 (θ̄)u0

∂τ2i
(τ2i,1 − τ2i,2),

where θ̄ lies between θ1 and θ2. Thus, it is suffice to show that supθ∈Θ

∣∣∣∣ 1n ∂u′
0Ω

− 1
2 (θ)M(θ)Ω− 1

2 (θ)u0

∂ρi

∣∣∣∣ = Op(1)

and supθ∈Θ

∣∣∣∣ 1n ∂u′
0Ω

− 1
2 (θ)M(θ)Ω− 1

2 (θ)u0

∂τi

∣∣∣∣ = Op(1) (See, Davidoson (1994)).

Here, we note that the partial derivatives of Ω−1(θ) are given by,

∂Ω−1(θ)

∂ρi
= −τ2i Ω−1(θ)JUiA

−1
i (ρi)Bi(ρi)A

−1
i (ρi)U

′
iJ

′Ω−1(θ),

∂Ω−1(θ)

∂τi
= −Ω−1(θ)JUiA

−1
i (ρi)U

′
iJ

′Ω−1(θ),

where Bi(ρi) =W ′
i (Ii − ρiWi) + (Ii − ρiW

′
i )Wi.

Let us consider the uniform boundedness of 1
n
∂u′

0Ω
− 1

2 (θ)M(θ)Ω− 1
2 (θ)u0

∂ρi
. The matrix Ω− 1

2 (θ)M(θ)Ω− 1
2 (θ)

consists of the two termes Ω−1(θ) and Ω−1(θ)X(X ′Ω−1(θ)X)−1X ′Ω−1(θ). The uniform boundedness of

1
n
∂u′

0Ω
−1(θ)u0

∂ρi
is given by,

sup
θ∈Θ

∣∣∣∣ 1n
∂u′0Ω

−1(θ)u0
∂ρi

∣∣∣∣ = sup
θ∈Θ

∣∣∣∣ 1nτ2i u′0Ω−1(θ)JUiA
−1
i (ρi)Bi(ρi)A

−1
i (ρi)U

′
iJ

′Ω−1(θ)u0

∣∣∣∣,
= sup
θ∈Θ

∣∣∣∣τ2i γmax(JUiA
−1
i (ρi)B

−1
i (ρi)A

−1
i (ρi)U

′
iJ

′)γ2max(Ω
−1(θ))

∣∣∣∣ 1nu′0u0,
= O(1)O(1)O(1)Op(1),

= Op(1).

Next, we will show that the uniform boundness of 1
n
∂u′

0Ω
−1(θ)X(X′Ω−1(θ)X)−1X′Ω−1(θ)u0

∂ρi
. The partial

derivative of the matrix is

1

n

∂u′0Ω
−1(θ)X(X ′Ω−1(θ)X)−1X ′Ω−1(θ)u0

∂ρi
=

1

n
u′0
∂Ω−1(θ)

∂ρi
X(X ′Ω−1(θ)X)−1X ′Ω−1(θ)u0

+
1

n
u′0Ω

−1(θ)X
∂(X ′Ω−1(θ)X)−1

∂ρi
X ′Ω−1(θ)u0

+
1

n
u′0Ω

−1(θ)X(X ′Ω−1(θ)X)−1X ′ ∂Ω
−1(θ)

∂ρi
u0,

= φ1 + φ2 + φ3,
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where φ1 = 1
nu

′
0
∂Ω−1(θ)
∂ρi

X(X ′Ω−1(θ)X)−1X ′Ω−1(θ)u0, φ2 = 1
nu

′
0Ω

−1(θ)X(X ′Ω−1(θ)X)−1X ′ ∂Ω−1(θ)
∂ρi

u0

and φ3 = 1
nu

′
0Ω

−1(θ)X(X ′Ω−1(θ)X)−1X ′ ∂Ω−1(θ)
∂ρi

u0.

By Lemma 3, the uniform boundness of φ2 is given by

sup
θ∈Θ

∣∣∣∣ 1nu′0Ω−1(θ)X
∂(X ′Ω−1(θ)X)−1

∂ρi
X ′Ω−1(θ)u0

∣∣∣∣,
= sup
θ∈Θ

∣∣∣∣ 1nτ2i u′0Ω−1(θ)X(X ′Ω−1(θ)X)−1X ′Ω−1(θ)JUiA
−1
i (ρi)Bi(ρi)A

−1
i (ρi)U

′
iJ

′Ω−1(θ)X(X ′Ω−1(θ)X)−1X ′Ω−1(θ)u0

∣∣∣∣,
≤ sup
θ∈Θ

∣∣∣∣τ2i γmax(JUiA
−1
i (ρi)Bi(ρi)A

−1
i (ρi)U

′
iJ

′)γmax(Ω
−1(θ))γmax(

(X ′Ω−1(θ)X)−1

n
)γmax(

X ′X
n

)γmax(Ω
−2(θ))

∣∣∣∣ 1nu′0u0,
= O(1)O(1)O(1)O(1)O(1)O(1)Op(1),

= Op(1).

Let us consider the uniform boundness of φ1. The term is

1

n
u′0
∂Ω−1(θ)

∂ρi
X(X ′Ω−1(θ)X)−1X ′Ω−1(θ)u0,

= τ2i
1

n
u′0Ω

−1(θ)JUiA
−1
i (ρi)Bi(ρi)A

−1
i (ρi)U

′
iJ

′Ω−1(θ)X(X ′Ω−1(θ)X)−1X ′Ω−1(θ)u0,

= tr(a′(θ)b(θ)),

where a′(θ) = τ2i
1√
n
u′0Ω

−1(θ)JUiA
−1
i (ρi)Bi(ρi)A

−1
i (ρi)U

′
iJ

′ and b(θ) = 1√
n
Ω−1(θ)X(X ′Ω−1(θ)X)−1X ′Ω−1(θ)u0

It suffices to show that

(
supθ∈Θ

∣∣∣∣tr(a′(θ)b(θ))
∣∣∣∣
)2

= Op(1). Because of (supθ∈Θ f(θ))
2 = supθ∈Θ f(θ)

2, by

Cauchy-Schwarz inequality,

(
sup
θ∈Θ

∣∣∣∣tr(a′(θ)b(θ))
∣∣∣∣
)2

= sup
θ∈Θ

tr2(a′(θ)b(θ)),

≤ sup
θ∈Θ

tr(a′(θ)a(θ)) sup
θ∈Θ

tr(b′(θ)b(θ)).
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The uniform boundenss of tr(a′(θ)a(θ)) is given by,

sup
θ∈Θ

tr(a′(θ)a(θ))

= sup
θ∈Θ

(
τ2i

1

n
tr(u′0Ω

−1(θ)JUiA
−1
i (ρi)Bi(ρi)A

−1
i (ρi)U

′
iJ

′JUiA−1
i (ρi)Bi(ρi)A

−1
i (ρi)U

′
iJ

′Ω−1(θ)u0)

)
,

≤ sup
θ∈Θ

(
τ2i γ

2
max(JUiA

−1
i (ρi)Bi(ρi)A

−1
i (ρi)U

′
iJ

′)γ2max(Ω
−1(θ))

)
1

n
u′0u0,

= O(1)O(1)O(1)Op(1),

= Op(1).

Similarly, the uniform boundness of tr(b′(θ)b(θ)) is given by,

sup
θ∈Θ

tr(b′(θ)b(θ))

= sup
θ∈Θ

(
1

n
tr(u′0Ω

−1(θ)X(X ′Ω−1(θ)X)−1X ′Ω−1(θ)Ω−1(θ)X(X ′Ω−1(θ)X)−1X ′Ω−1(θ)u0)

)
,

≤ sup
θ∈Θ

(
γmax(Ω

−1(θ))γmax(
(X ′Ω−1(θ)X)−1

n
)γmax(

X ′X
n

)γ2max(Ω
−1(θ))

)
1

n
u′0u0,

= O(1)O(1)O(1)O(1)Op(1),

= Op(1).

The uniform boundedness of 1
n
∂u′

0Ω
− 1

2 (θ)M(θ)Ω− 1
2 (θ)u0

∂τi
can be proved by the similar manner. By collecting

above results, we can show that the uniform convergence of 1
n

(
u′0Ω

− 1
2 (θ)M(θ)Ω− 1

2 (θ)u0−Eu′0Ω− 1
2 (θ)M(θ)Ω− 1

2 (θ)u0

)
.

Therefore, supθ∈Θ

∣∣∣∣ 1n logL(θ)− 1
nE logL(θ)

∣∣∣∣ = op(1), and the QMLE θ̂ is a consistent estimator of θ0 by White

(1994).

Proof of Theorem 2

To derive the asymptotic normality of the proposed estimator, we will show that the following three results:

1. 1
n
∂2 logL(ψ0)
∂ψ∂ψ′

p−→ E

[
1
n
∂2 logL(ψ0)
∂ψ∂ψ′

]
.

2. 1
n
∂2 logL(ψ̄)
∂ψ∂ψ′

p−→ 1
n
∂2 logL(ψ0)
∂ψ∂ψ′ .

3. 1√
n
∂ logL(ψ0)

∂ψ

D−→ N(0,Γ).
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If we can hold above results, then the asymptotic distribution of ψ̂ the following distribution. By the mean

value theorem,

√
n(ψ̂ − ψ0) = −

(
1

n

∂2 logL(ψ̄)

∂ψ∂ψ′

)−1
1√
n

∂ logL(ψ0)

∂ψ
,

where ψ̄ lies between ψ̂ and ψ0. Let Σ = − limn→∞E

(
1
n
∂2 logL(ψ0)
∂ψ∂ψ′

)
and Γ∗ = limn→∞ 1

nΓ. Thus, we

obtain,

√
n(ψ̂ − ψ0)

D−→ N(0,Σ−1Γ∗Σ−1).

Proof of result1: 1
n
∂2 logL(ψ0)
∂ψ∂ψ′

p−→ E

[
1
n
∂2 logL(ψ0)
∂ψ∂ψ′

]

Let us consider 1
n
∂2 logL(ψ0)
∂ψ∂ψ′

p−→ E

[
1
n
∂2 logL(ψ0)
∂ψ∂ψ′

]
. The terms of the hessian matrix is decomposed into the

forms:

1. 1
nX

′AX,

2. 1
n tr(A),

3. 1
nX

′Au0,

4. 1
nu

′
0Au0,

where A is an n× n matrix whose row and column sums are uniformly bounded.

The convergences in probability of the first two terms are clear. The third term is given by,

1

n
X ′Au0 =

1

n
X ′Aε+

p∑
k=1

1

n
X ′AJUk(Ik − ρkWk)

−1fk.

The row and column sums of AJUk(Ik − ρkWk)
−1 is uniformly bounded. From Lemma 1,

1

n
X ′Aε =

1√
n
Op(1) = op(1),

1

n
X ′AJUk(Ik − ρkWk)

−1fk =
mk

n

1√
mk

Op(1) = op(1).

Thus, 1
nX

′Au0 −E( 1nX
′Au0) = op(1). It follows that

1
nu

′
0Au0 −E

[
1
nu

′
0Au0

]
by Lemma 3. Collecting above

results, we obtain 1
n
∂2 logL(ψ0)
∂ψ∂ψ′

p−→ E

[
1
n
∂2 logL(ψ0)
∂ψ∂ψ′

]
.
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Proof of result 2: 1
n
∂2 logL(ψ̄)
∂ψ∂ψ′

p−→ 1
n
∂2 logL(ψ0)
∂ψ∂ψ′

We will show that 1
n
∂2 logL(ψ̄)
∂ψ∂ψ′

p−→ 1
n
∂2 logL(ψ0)
∂ψ∂ψ′ . Firstly, let us consider the case of ∂2 logL(ψ)

∂β∂β′ . By the mean

value theorem,

X ′Σ−1(η̄)X = X ′Σ−1(η0)X +

p∑
k=0

X ′ ∂Σ
−1(η̃)

∂σ2
k

X(σ2
0k − σ̄2

k)

+

p∑
k=1

X ′ ∂Σ
−1(η̃)

∂ρk
X(ρ0k − ρ̄k),

where η̃ lies between η0 and η̄. Because the element of 1
nX

′ ∂Σ−1(η̃)
∂σ2

k
X is uniformly bounded,

1

n

∂2 logL(ψ̄)

∂β∂β′ − 1

n

∂2 logL(ψ0)

∂β∂β′ =

p∑
k=0

1

n
X ′ ∂Σ

−1(η̃)

∂σ2
k

X(σ2
0k − σ̄2

k) +

p∑
k=1

1

n
X ′ ∂Σ

−1(η̃)

∂ρk
X(ρ0k − ρ̄k),

=

p∑
k=0

O(1)op(1) +

p∑
k=1

O(1)op(1),

= op(1).

Secondly, we will consider the case of ∂
2 logL(ψ)
∂β∂σ2

i
. By Lemma 3,

1

n

∂2 logL(ψ̄)

∂β∂σ2
i

− 1

n

∂2 logL(ψ0)

∂β∂σ2
i

=
1

n
X ′Σ−1(η̄)Gi(ρ̄i)Σ

−1(η̄)(Y −Xβ̄)− 1

n
X ′Σ−1(η0)Gi(ρ0i)Σ

−1(η0)(Y −Xβ0),

=
1

n
X ′Σ−1(η̄)Gi(ρ̄i)Σ

−1(η̄)X(β0 − β̄)

+
1

n
X ′Σ−1(η̄)Gi(ρ̄i)Σ

−1(η̄)u0 − 1

n
X ′Σ−1(η0)Gi(ρ0i)Σ

−1(η0)u0,

= Op(1)op(1) + op(1) + op(1),

= op(1).

Next, let us consider the case of ∂
2 logL(ψ)
∂σ2

i ∂σ
2
j

. By the mean value theorem,

tr(Σ−1(η̄)Gj(ρ̄j)Σ
−1(η̄)Gi(ρ̄)) = tr(Σ−1(η0)Gj(ρ0j)Σ

−1(η0)Gi(ρ0i))

+

p∑
k=0

∂tr(Σ−1(η̃)Gj(ρ̃j)Σ
−1(η̃)Gi(ρ̃i))

∂σ2
k

(σ2
0k − σ̄2

k)

+

p∑
k=1

∂tr(Σ−1(η̃)Gj(ρ̃j)Σ
−1(η̃)Gi(ρ̃i))

∂ρk
(ρ0k − ρ̄k),
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where η̃ lies between η0 and η̄. Because
∂Σ−1(η̃)Gj(ρ̃j)Σ

−1(η̃)Gi(ρ̃i))

∂σ2
k

and
∂Σ−1(η̃)Gj(ρ̃j)Σ

−1(η̃)Gi(ρ̃i))
∂ρk

is uniformly

bounded in both row and column sums,
∂tr(Σ−1(η̃)Gj(ρ̃j)Σ

−1(η̃)Gi(ρ̃i))

∂σ2
k

and
∂tr(Σ−1(η̃)Gj(ρ̃j)Σ

−1(η̃)Gi(ρ̃i))
∂ρk

are O(n)

by Lee (2004). Thus,

1

2n
tr(Σ−1(η̄)Gj(ρ̄j)Σ

−1(η̄)Gi(ρ̄i))− 1

2n
tr(Σ−1(η0)Gj(ρ0j)Σ

−1(η0)Gi(ρ0i))

=
1

2n

p∑
k=0

∂tr(Σ−1(η̃)Gj(ρ̃j)Σ
−1(η̃)Gi(ρ̃i))

∂σ2
k

(σ2
0k − σ̄2

k) +
1

2n

p∑
k=1

∂tr(Σ−1(η̃)Gj(ρ̃j)Σ
−1(η̃)Gi(ρ̃i))

∂ρk
(ρ0k − ρ̄k),

=
1

2

p∑
k=0

O(1)op(1) +
1

2

p∑
k=1

O(1)op(1),

= op(1).

Similarly, by the mean value theorem,

Σ−1(η̄)Gj(ρ̄j)Σ
−1(η̄)Gi(ρ̄i)Σ

−1(η̄) = Σ−1(η0)Gj(ρ0j)Σ
−1(η0)Gi(ρ0i)Σ

−1(η0)

+

p∑
k=0

∂Σ−1(η̃)Gj(ρ̃j)Σ
−1(η̃)Gi(ρ̃i)Σ

−1(η̃)

∂σ2
k

(σ2
0k − σ̄2

k)

+

p∑
k=1

∂Σ−1(η̃)Gj(ρ̃j)Σ
−1(η̃)Gi(ρ̃i)Σ

−1(η̃)

∂ρk
(ρ0k − ρ̄k)

Because
∂Σ−1(η̃)Gj(ρ̃j)Σ

−1(η̃)Gi(ρ̃i)Σ
−1(η̃)

∂σ2
k

and
∂Σ−1(η̃)Gj(ρ̃j)Σ

−1(η̃)Gi(ρ̃i)Σ
−1(η̃)

∂ρk
are uniformly bounded in both

row and column sums, by Lemma 3,

1

n
(Y −Xβ̄)′Σ−1(η̄)Gj(ρ̄j)Σ

−1(η̄)Gi(ρ̄i)Σ
−1(η̄)(Y −Xβ̄)

− 1

n
(Y −Xβ0)

′Σ−1(η0)Gj(ρ0j)Σ
−1(η0)Gi(ρ0i)Σ

−1(η0)(Y −Xβ0)

=
1

n
(β0 − β̄)′X ′Σ−1(η̄)Gj(ρ̄j)Σ

−1(η̄)Gi(ρ̄i)Σ
−1(η̄)X(β0 − β̄) +

1

n
(β0 − β̄)′X ′Σ−1(η̄)Gj(ρ̄j)Σ

−1(η̄)Gi(ρ̄i)Σ
−1(η̄)u0

+
1

n
u′0Σ

−1(η̄)Gj(ρ̄j)Σ
−1(η̄)Gi(ρ̄i)Σ

−1(η̄)X(β0 − β̄) +
1

n

p∑
k=0

u′0
∂Σ−1(η̃)Gj(ρ̃j)Σ

−1(η̃)Gi(ρ̃i)Σ
−1(η̃)

∂σ2
k

u0(σ
2
0k − σ̄2

k)

+
1

n

p∑
k=1

u′0
∂Σ−1(η̃)Gj(ρ̃j)Σ

−1(η̃)Gi(ρ̃i)Σ
−1(η̃)

∂ρk
u0(ρ0k − ρ̄k),

= op(1)O(1)op(1) + op(1)op(1) + op(1)op(1) +

p∑
k=0

Op(1)op(1) +

p∑
k=1

Op(1)op(1),

= op(1).
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The convergences in probability of the other elements of the hessian matrix can be shown in similar

manner. Thus, 1
n
∂2 logL(ψ̄)
∂ψ∂ψ′

p−→ 1
n
∂2 logL(ψ0)
∂ψ∂ψ′ .

Result 3: 1√
n
∂ logL(ψ0)

∂ψ

D−→ N(0,Γ)

Finally, we will show that 1√
n
∂ logL(ψ0)

∂ψ

D−→ N(0, limn→∞ 1
nΓ), where Γ is the variance of the score function.

We will apply the Cramer-Wold devise to derive the joint asymptotic normality. Let c = (c′β , c
′
σ2
i
, c′ρj )

′ be a

nonzero (k + (p + 1) + p) vector of constants. Here, c′ ∂ logL(ψ0)
∂ψ can be written as

c′
∂ logL(ψ0)

∂ψ
= c′β

∂ logL(ψ0)

∂β
+

p∑
i=0

cσ2
i

∂ logL(ψ0)

∂σ2
i

+

p∑
j=1

cρj
∂ logL(ψ0)

∂ρj

= c′βX
′Σ−1(η0)u0 + u′0Σ

−1(η0)

( p∑
i=0

cσ2
i

2
Gi(ρ0i)−

p∑
j=1

cρjσ
2
j

2
Hi(ρ0j)

)
Σ−1(η0)u0

− E

[
u′0Σ

−1(η0)

( p∑
i=0

cσ2
i

2
Gi(ρ0i)−

p∑
j=1

cρjσ
2
j

2
Hi(ρ0j)

)
Σ−1(η0)u0

]
.

We denote v = (f ′0, . . . , f
′
p), U0 = In,W0 = In, ρ00 = 0, bi = (Ii−ρiWi)

−1UiΣ
−1(η0)Xcβ , b = (b′0, . . . , b

′
p)

′,

Ai,j = (Ii − ρ0iW
′
i )

−1U ′
iΣ

−1(η0)

(∑p
i=0

c
σ2
i

2 Gi(ρ0i)−
∑p
j=1

cρjσ
2
j

2 Hi(ρ0j)

)
Σ−1(η0)Uj(Ij − ρ0jWj)

−1 and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A00 A01 . . . A0p

A10 A11 . . . A1p

...
...

. . .
...

Ap0 Ap1 . . . App

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Then, the linear combination of the elements of the score vector is given by the following linear-quadratic

equation:

c′
∂ logL(ψ0)

∂ψ
= b′v + v′Av − E(v′Av).

We denote bi is the i-th element of b. Because the element of b is uniformly bounded, there exists a

constantcb such that |bi| ≤ cb for all i. It follow that 1
n

∑n
i=1 |bi|2+δ ≤ c2+δ1b for some δ1 > 0, and thus

supn
1
n

∑n
i=1 |bi|2+δ < ∞. Because the linear-quadratic form, c′ ∂ logL(ψ0)

∂ψ , holds the assumption of Theorem

1 in Kelejian and Prucha (2001), c′ ∂ logL(ψ0)
∂ψ

D−→ N(0, c′Γc). By Cramer-Wold theorem, it follows that

1√
n
∂ logL(ψ0)

∂ψ

D−→ N(0, limn→∞ 1
nΓ).
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