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Abstract

This study considers the generalized method of moment (GMM) estimation of spatial autoregressive (SAR)

models with unknown cluster correlations among error terms. In the presence of cluster correlations within

errors, nonlinear moment conditions suitable for independent errors lose their validity and GMM estimators

obtained from the moment condition are inconsistent. In this paper, we propose the GMM estimator obtained

from another nonlinear moment condition suitable for cluster dependent error terms and show its asymptotic

properties. Because the asymptotic variance of the GMM estimator depends on the choice of the weight matrix

for GMM estimation, we also discuss the optimal weight which minimizes the asymptotic variance, and introduce

the feasible optimal GMM estimator based on the consistent estimator of the weight. Monte Carlo experiments

indicate that the proposed GMM estimator has a small bias and root mean squared errors when error terms in

SAR models have cluster correlation compared to two stage least squares estimators and GMM estimators for

independent errors.
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1 Introduction

Recently, spatial econometrics has been applied in many fields of economics such as urban, environmental, interna-

tional, and others because it allows us to analyze the spatial spillover effects of policies implemented in one region

on neighboring regions. The most widely used spatial econometrics models are spatial autoregressive (SAR) models
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proposed in Cliff and Ord (1973, 1981), which are linear regression models with spatial lag terms representing the

spatial correlation of cross-sectional units. For accurate statistical inferences about the effects of policies in an

empirical analysis, the variance and covariance structure of the error terms in SAR models needs to be modeled

appropriately according to the dataset. In order to make the SAR model applicable to a wider range of data, various

assumptions about error terms have been considered.

The simplest assumption is that the error terms are independent and identically distributed (i.i.d.), i.e., variances

are homoskedastic. Anselin (1988) and Lee (2004) propose quasi-maximum likelihood (QML) estimation method

for the SAR model in the error case. The likelihood function for the SAR model contains Jacobian terms and the

computational cost of the Jacobian terms increase when sample size is large. As a less computationally expensive

method, Kelejian and Prucha (1998, 1999) propose two stage least squares (2SLS) estimation and Lee (2007)

proposes generalized method of moment (GMM) estimation for the homoskedastic case. Lee (2007) shows that the

GMM estimator obtained from nonlinear moment conditions for i.i.d. errors in addition to linear moment conditions

based on the orthogonality of exogenous regressors is asymptotically more efficient than the 2SLS estimator.

Because homoskedastic errors may be restrictive in empirical application, extensions to the case where the error

terms are independently and not identically distributed, i.e., variances are heteroskedastic, is considered. Since

QML estimator becomes inconsistency in the presence of heteroskedastic variance, Lin and Lee (2010) propose

the robust GMM estimator against an unknown heteroskedasticity obtained form nonlinear moment conditions

suitable for heteroskedstity with linear moment conditions. The consistency and asymptotic normality of the GMM

estimator and the optimal choice of the weight matrix are discussed in the paper.

Modeling of cross sectional dependence between error terms i.e. ,non-diagonal elements of variance-covariance

matrix, are also considered in spatial econometrics literature. The first one is SAR errors modeling where the

variance-covariance matrix is defined using a spatial weight matrix which is predetermined before analysis based

on the geographical information of the data. Kelejian and Prucha (2010) propose gneralize moment estimator

and Lee and Liu (2010) and Wang et al. (2018) proposes GMM estimators. The second one is nonparametric

heteroskedasticity-autocorrelation consistent estimator introduced in Conley (1999) and Kelejian and Prucha (2007).

The variance-covariance matrix is modeled using kernel functions based on distance measures. However, both

approaches cannot remove the correlation in the error terms if the choices of spatial weight matrix or distance

measures are wrong. Therefore, modeling with as few assumptions as possible regarding the covariance matrices of

the errors is desirable for more precise empirical analysis.

The current paper aims to propose GMM estimators for SAR models with unknown cluster dependence. In

this analysis, we assume n observations are grouped into G known clusters and the cluster size of each cluster
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may vary across clusters, but is finite. On the other hand, we do not impose any assumptions about correlations

within clusters. Following White (1984), Hansen (2007), and Hansen and Lee (2019), our asymptotic framework is

asymptotic as n and G simultaneously diverge to infinity. Moulton (1986, 1990) illustrate an example that when there

is cluster correlation in the error terms in a linear regression model, the standard error robust to heteroskedasticity

without considering cluster correlation can be smaller than the actual standard error. In spatial data, regions

within the same state tend to have similar values due to common cultural backgrounds and other factors, so cluster

correlations are likely to exist. Therefore, considering cluster correlation in addition to heteroskedasticity is also

essential for precise statistical inference in application of spatial econometrics models. Furthermore, the SAR model

with cluster dependent errors is a generalization of the SAR model for independent errors because it is the same as

the SAR model with heterogeneous variance when the cluster size of each cluster is all 1. Therefore, the proposed

model can be used for the same kind of analysis as the SAR model for independent errors, and it allow us to conduct

more accurate statistical inferences by taking into account cluster correlations among errors. To the best of our

knowledge, there are no other papers dealing with cluster correlations regarding SAR models.

In the GMM estimation of SAR models, nonlinear moment conditions are used together with linear moment

conditions to improve the estimation accuracy of spatial parameters which measure the strength of spatial interaction

effect between observations. However, the nonlinear moment condition, which is suitable for independent errors

loses its validity when there is cluster correlation in the error term, and the GMM estimator based on the moment

condition becomes inconsistent. In this study, we propose another nonlinear moment condition that takes into

account the cluster correlation in the error term, and show that the GMM estimator based on the moment condition

is consistent and asymptotically normal even in the presence of cluster correlations. Since the asymptotic variance of

the proposed GMM estimator is affected by the weight matrix for GMM estimation, the optimal weight matrix that

minimizes the asymptotic variance and feasible optimal GMM estimator with the weight matrix are also discussed.

We conduct some Monte Carlo studies to investigate the finite sample performances of the proposed GMM

estimator. We find that when errors have cluster correlations the GMM estimator for independent errors have large

biases and root mean squared errors, but the proposed GMM estimator has a small bias and root mean squared

errors. Using the nonlinear moment condition together with the linear moment condition will greatly reduce the

RMSE of the spatial parameters and improve the estimation accuracy when the value of the regression coefficient

is small.

The rest of paper is organized as follows. Sections 2 introduces the SAR model which have cluster dependent

errors. We propose the GMM estimator for the model and derive its asymptotic properties in Section 3. Moreover,

we introduce feasible optimal GMM estimator which obtains minimum asymptotic variances. The results of some
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Monte Carlo simulations are reported in Section 4. Section 5 concludes the paper. The proofs of all theorems are

given in the Appendix.

2 The Model

We consider the following spatial autoregressive (SAR) model:

Yn = λWnYn +Xnβ + εn, (1)

where Yn is an n × 1 vector of observed dependent variables, Xn is an n × k matrix of nonstochastic exogenous

variables, Wn is an n × n spatial weight matrix which have zero diagonal elements and are predetermined by the

spatial information of observations, εn is an n × 1 vector of error terms. The parameter λ is a spatial correlation

parameter which measure the strength of spatial interaction between observations, and β is the vector of usual

regression coefficients. The parameter space of spatial parameter λ is discussed in (Elhorst (2014)) and it is usually

taken to be (−1, 1).

In this analysis, we assume observations Yn = (y1, . . . , yn)
� are grouped into G known clusters, indexed g =

1, . . . , G. The cluster size for each cluster, ng, g = 1, . . . , G may vary across clusters, but is finite. Total number of

observations is n =
�G

g=1 ng. For convenience, we introduce a cluster level representation. We denote observations

as yg,j for g = 1, . . . , G and j = 1, . . . , ng. Thus, observations are also written by Yn = (Y �
1 , . . . ,Y

�
G)

� and

Yg = (Yg,1, . . . , Yg,ng
)�. The same cluster-level representation is used for other vectors and matrices, such as Xn

and εn.

The error terms are independent across clusters, while dependent within each cluster. Thus,

E(εg1ε
�
g2) =

⎧⎪⎪⎨⎪⎪⎩
Σg1g1 (g1 = g2)

0g1g2 (g1 	= g2)

,

where Σg1g1 is the ng1 × ng1 covariance matrix of the error εg1 , and 0g1g2 is the ng1 × ng2 matrix whose elements

are all zeros. The covariance matrix of εn, Σn, is a block diagonal matrix and there may be non-zero non-diagonal

elements in Σn. Because we admit that cluster sizes vary from cluster to cluster, the size of Σg1g1 and Σg2g2 are

not necessarily the same when g1 	= g2. Moreover, We do not impose any special constraints on the covariance

structure of Σg1g1 , and thus Σg1g1 is not necessary to be identical to Σg2g2 even if the sizes of both matrices are

the same.
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We note that the SAR model for cluster dependent errors includes SAR models for independent errors as the

special case ng = 1, g = 1, . . . , G. When the cluster sizes in all cluster are 1, the number of observations n

and clusters G is identical, and then the variance matrix Σg1g1 is a scalar variance parameter and Σg1g1 may be

different from Σg2g2 as discussed above. This framework is the same as the SAR model which have independent

heteroscedastic error terms. Thus, the SAR model for cluster dependent errors are an extension of SAR models for

independent errors.

3 Estimation

In this section, we discuss suitable nonlinear and linear moment conditions for the SAR model with cluster depen-

dent errors, and introduce the GMM estimator and feasible optimal GMM estimator obtained from the moment

conditions. Their asymptotic properties are also considered. Nonlinear moment conditions for the SAR model with

independent errors are ineligible to derive consistent GMM estimators when error terms have cluster correlations.

Thus, we propose another nonlinear condition for cluster depended error cases, and show that the GMM estimator

obtained by using the nonlinear moment conditions in addition to linear moment conditions based on exogenous

regressors are consistent and asymptotically normal. Because asymptotic distribution of the GMM estimator are

depend on the choice of a weight matrix for GMM estimation, we introduce an optimal weight matrix which min-

imizes asymptotic variances of the GMM estimator and propose the feasible optimal GMM estimator with the

weight matrix.

3.1 Moment Conditions for GMM estimation

For GMM estimation, let us consider nonlinear moment conditions suitable for cluster dependent errors because

using nonlinear moment conditions improves finite sample performance of GMM estimators when the variation

from the exogenous regressors is small compared to error terms (see Lee and Liu (2010)). We define two classes of

constant n× n matrices. The class P1 is a class of matrices whose diagonal elements are zeros, and P2 is a class of

matrices whose block diagonal matrices are 0g1g1 , g1 = 1, . . . , G, from the top left. When ng = 1, g = 1, . . . , G, two

classes P1 and P2 are identical.

As mentioned in Lin and Lee (2010), the nonlinear moment condition, E(ε�nPnεn) = 0, holds when Pn ∈ P1 and

εis are independent because all of non-diagonal element of the variance matrix Σn = E(εnε
�
n) are zeros. However,

there are non-zero non-diagonal elements in Σn when error terms have cluster correlations. Then, the moment

condition with Pn ∈ P1 lose its validity for the SAR model with cluster dependent errors, because E(ε�nPnεn) =
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tr(PnΣn) 	= 0. On the other hands, the moment condition obtained from Pn ∈ P2 retains its validity because the

appropriate diagonal block in Pn are all zeros and thus E(ε�nPnεn) = 0. Thus, we adopt P2 as the class of matrices

for nonlinear moment conditions this paper.

linear moment conditions are obtained from the orthogonality of the exogenous regressors. Let Qn be an

n × k∗ matrix of instruments variables where k∗ ≥ k + 1. In this paper we use the linear independent columns in

Xn,WnXn,W
2
nXn, etc. We set E(Q�

nεn) as the linear moment condition for GMM estimation.

By using Pn,j ∈ P2, j = 1, . . . ,m, and Qn, the set of moment functions for the GMM estimation is given by

gn(θ) = (εn(θ)
�P �

n,1εn(θ), . . . , εn(θ)
�P �

n,mεn(θ), εn(θ)
�Qn)

�, (2)

where θ = (λ,β�)� and εn(θ) = Yn − λWnYn −Xnβ from the model (1). As mentioned above, two classes P1 and

P2 are identical when there is no cluster correlation within error terms. Thus, the GMM estimator proposed below

is the same as the GMM estimator in Lin and Lee (2010) when error terms are independent.

We discuss choices of Pn and Qn for empirical analysis. We denote true parameters as θ0 = (λ0,β
�
0)

�, and

define the n× n identity matrix as In, Sn = (In − λ0Wn) and Gn = WnS
−1
n . For independent and homoskedastic

variances cases, the best choice of Pn ∈ P1 is Gn −Diag(Gn), and Qn is (GnXnβ0,Xn), respectively. However,

as Lin and Lee (2010) indicated, the best selection of Pn and Qn are not available when error terms have unknown

heteroskedastic variances and the same is true for unknown cluster correlations because the covariance matrix and

the first order derivative of (2) defined as (4) and (5) below involve the unknown matrix Σn. They suggest making

the same choices in such cases as in the case of independent homoskedastic variance. Following the manner, it

might be desirable strategy to apply Gn − G∗
n where G∗

n is the block diagonal matrix whose diagonal blocks are

the ng × ng matrix whose elements are correspond to the appropriate elements of Gn as Pn, and (GnXnβ0,Xn)

as Qn.

3.2 GMM estimation

Following Lee (2007), Lin and Lee (2010), we adopt the following regularity assumptions for GMM estimation to

discuss asymptotic properties of the GMM estimators proposed below. Some assumptions are modified to fit into

cluster dependent error case. We define P s
n,j = Pn,j + P �

n,j , j = 1, . . . ,m.

Assumption 1. The error terms εn = Σ
− 1

2
n vn, where vn = (v1, . . . , vn)

� is independent random variables with

mean 0 and variance 1. Furthermore, supi E|vi|4+δ < ∞ for some δ > 0.

Assumption 2. The elements of the n × K regressor matrix Xn are uniformly bounded constants, Xn has the
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full rank k, and limn→∞ 1
nX

�
nXn exists and is nonsingular.

Assumption 3. Both row and column sums of the spatial weight matrices Wn and the matrix S−1
n are uniformly

bounded.

Assumption 4. The matrices Pn,j , j = 1, . . . ,m belongs to the class P2 and uniformly bounded in both row and

column sums. All elements in Qn are uniformly bounded.

Assumption 5. Either (a) limn→∞ 1
nQ

�
n(GnXnβ0,Xn) has the full rank (k + 1) or (b) limn→∞ 1

nQ
�
nXn has the

full rank k, limn→∞ 1
n tr(ΣnP

s
njGn) 	= 0, for some j = 1, . . .m, and limn→∞ 1

n (tr(ΣnP
s
n,1Gn), . . . , tr(ΣnP

s
nmGn))

and limn→∞ 1
n (tr(ΣnG

�
nP

s
n,1Gn), . . . , tr(ΣnG

�
nP

s
nmGn))are linearly independent.

Assumption 6. The set of true parameters θ0 is in the interior of the parameter space Θ, which is a compact set

in Rk+1.

Assumption 7. The numbers of both observations and clusters go to infinity. Thus, n → ∞ and G → ∞.

Moreover, the number of each cluster size are fixed.

In Assumptions 1, we assume error terms have cluster correlations which is represented by the block diagonal

element of Σn. Higher order moment condition of vi is necessary to apply the linear quadratic central limit theorem

in Kelejian and Prucha (2001). Assumptions 2-6 are almost the same as the assumptions in Lee (2007), Lin and Lee

(2010), and detailed discussion on the assumptions is given in the papers. Assumption 7 states that our asymptotic

framework is asymptotic as n and G simultaneously diverge to infinity. Because the cluster sizes are bounded,

G diverges at the same rate as n. Boundedness of cluster sizes allow us to obtain the GMM estimators whose

convergence rate are the same as GMM estimators for independendt errors even if errors have strong correlations

within clusters.

First, we introduce the GMM estimator obtained from the moment condition (2) and their consistency and

asymptotic normality. Let an be a matrix which is a full row rank greater than or equal to the number of

parameters in θ. Then, the GMM criterion function J(θ) obtained from the weight matrix a�
nan, is given by

J(θ) = g�
n(θ)a

�
nangn(θ), (3)

and the GMM estimator θ̂n minimizes (3).

We denote the (g1, g2) block of Pn,j as Pj,g1g2 and define P s
j,g2g1

= Pj,g2g1 +P �
g1g2 . For the GMM estimator, we

have the following theorem which is a generalization of Proposition 1 in Lin and Lee (2010) to the cluster dependent

error case.
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Theorem 1. Suppose that assumptions 1-7 hold, limn→∞ 1
nanDn exists and has the full rank (k+1), and limn→∞ anE(gn(θ)) =

0 has a unique root at θ0. Then, θ̂n is a consistent estimator and
√
n(θ̂n − θ0)

d−→ N(0,Γ), where

Γ = lim
n→∞

1

n
(D�

na
�
nanDn)

−1D�
na

�
nanΩna

�
nanDn(D

�
na

�
nanDn)

−1,

Ωn = V ar(gn(θ0)),

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

E(ε�nPn,1εnε
�
nPn,1εn) E(ε�nPn,1εnε

�
nPn,2εn) · · · 0

E(ε�nPn,2εnε
�
nPn,1εn) E(ε�nPn,2εnε

�
nPn,2εn) · · · 0

...
...

...

0 0 · · · Q�
nΣnQn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�G
g1=1

�G
g2=1 tr(Σg1g1P1,g1g2Σg2g2P

s
1,g2g1) · · · 0�G

g1=1

�G
g2=1 tr(Σg1g1P2,g1g2Σg2g2P

s
1,g2g1) · · · 0

...
...

0 · · · Q�
nΣnQn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (4)

Dn = −∂E(gn(θ0))

∂θ� =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

tr(ΣnP
s
1nGn) 0

...
...

tr(ΣnP
s
mnGn) 0

Q�
nGnXnβ0 Q�

nXn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

The rate of convergence of the proposed GMM estimator θ̂n is the same as when the error terms are independent.

As discussed in Hansen (2007) and Hansen and Lee (2019), clustering can alter the rate of convergence of estimators

between G−1/2 and n−1/2 depending on the size of clusters and the strength of correlation within the cluster. In

this analysis, we make no assumptions about the strength of the cluster correlations within the errors, but we do

assume a finite number of clusters. Because the effect of correlation within clusters is limited, it does not affect the

rate of convergence of the GMM estimator and The rate of convergence of the proposed GMM estimator θ̂n is
√
n.

Next, let us consider the feasible optimal GMM estimator which have asymptotically efficient variance matrix.

Theorem 1 indicates that the asymptotic distribution of the GMM estimator θ̂n depends on the choice of the weight

matrix a�
nan. An optimal weight matrix which minimizes the asymptotic variance of the GMM estimator is Ω−1

n .

Thus, if we obtain the consistent estimator of the optimal weight, then we can conduct feasible optimal GMM
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estimation by using the consistent estimator of the optimal weight as the weight matrix a�
nan.

Compared to independent error cases, The terms E(ε�nPn,iεnε
�
nPn,jεn), i, j = 1, . . . ,m which are the elements in

Ωn related to the nonlinear moment condition have more sums of elements because Σn have non-zero non-diagonal

elements. The number of sums in its expectation is (
�G

g=1 n
2
g)

2 and grater than n2 for independent cases. However,

the convergence of these terms can be obtained from the uniform boundedness properties of Pn,j , j = 1, . . . ,m.

Residuals ε̂n = (ε̂�1, . . . , ε̂
�
G)

� of the model (1) with θ̂n is defined by ε̂n = Yn − λ̂nWYn −Xβ̂n, and then the

estimates of the j-th diagonal block of the estimates of covariance matrix of εn, Σ̂n, is Σ̂jj = ε̂j ε̂
�
j . We define

1
nD̂n and 1

nΩ̂n by replacing θ0 and Σn in 1
nDn and 1

nΩn with θ̂n and Σ̂n, respectively. Then,
1
nD̂n and 1

nΩ̂n are

consistent estimators of 1
nDn and 1

nΩn from the following theorem.

Theorem 2. Under assumptions 1-7, 1
nΩ̂n − 1

nΩn = op(1) and
1
nD̂n − 1

nDn = op(1).

By using the consistent estimator of the optimal weight 1
nΩ̂n as the weight matrix a�

nan, feasible optimal GMM

estimator, θ̂o,n, is obtained from

θ̂o,n = argmin
θ∈Θ

g�
n(θ)Ω̂

−1
n gn(θ).

Asymptotic properties of feasible optimal GMM estimator θ̂o,n are also given in the following theorem.

Theorem 3. Suppose that limn→∞ 1
nΩn exists and nonsingular, and ( 1nΩ̂n)

−1−( 1nΩn)
−1 = op(1). Under assump-

tions 1-7,

√
n(θ̂o,n − θ0)

d−→ N

�
0,

�
lim
n→∞

1

n
D�

nΩ
−1
n Dn

�−1�
.

Moreover, a consistent estimator for
�
limn→∞ 1

nD
�
nΩ

−1
n Dn

�−1
is

�
limn→∞ 1

nD̂
�
nΩ̂

−1
n D̂n

�−1
.

4 Monte Carlo Simulations

Monte Carlo simulations are carried out to investigate small sample properties of the proposed GMM estimator

for the SAR model with cluster dependent errors. In this paper, we report only the case where error terms have

cluster dependence because our proposed GMM estimator is the same as the GMM estimator for independent errors

proposed in Lin and Lee (2010) when error terms are independent and small sample properties of the estimator in

the case are already have reported in their paper.
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Table 1: Biases and RMSEs under Designs V-D1 and V-D2. The set of number of clusters and cluster sizes are
(i)G = 200, ng = 4, or (ii)G = 100, ng = 8. True parameters P-D1:(λ0,β10,β20,β30) = (0.6, 0.8, 0.2, 1.5).

High Cluster Correlation Low Cluster Correlation
G ng Bias RMSE Bias RMSE

2SLS 200 4 λ 0.0078 0.1361 -0.0057 0.1108
β1 -0.0244 0.5110 0.0133 0.4145
β2 -0.0018 0.0509 0.0018 0.0507
β3 -0.0092 0.0834 -0.0016 0.0857

100 8 λ 0.0027 0.2283 -0.0013 0.1162
β1 -0.0005 0.8148 0.0139 0.4362
β2 -0.0033 0.0468 -0.0037 0.0487
β3 -0.0149 0.0829 -0.0085 0.0863

GMM(hetero) 200 4 λ 0.1896 0.1914 0.0567 0.0653
β1 -0.6461 0.6702 -0.2015 0.2773
β2 -0.0066 0.0497 0.0009 0.0504
β3 -0.0444 0.0926 -0.0102 0.0858

100 8 λ 0.2696 0.2705 0.0972 0.1019
β1 -0.9126 0.9257 -0.3251 0.3735
β2 -0.0106 0.0448 -0.0057 0.0482
β3 -0.0683 0.1005 -0.0238 0.0884

GMM(cluster) 200 4 λ -0.0052 0.0474 -0.0052 0.0451
β1 0.0167 0.2434 0.0085 0.2260
β2 -0.0003 0.0517 0.0031 0.0510
β3 0.0014 0.0815 0.0048 0.0857

100 8 λ -0.0078 0.0674 -0.0064 0.0605
β1 0.0313 0.2973 0.0285 0.2678
β2 -0.0014 0.0484 -0.0028 0.0492
β3 -0.0001 0.0734 0.0000 0.0850

The data generating process is as follows. The number of observations is 800 for all experiments. The spatial

weight matrix Wn made from a standard 8 connection settings, namely wi,j = 1/8, j = i−4, . . . , i−1, i+1, . . . , i+4

and wi,j = 0 otherwise. The set of number of clusters and cluster sizes can be (i)G = 200, ng = 4, or (ii)G =

100, ng = 8, where we assume that the cluster size is the same for all clusters, and one cluster is created for every

ng individuals in turn. That is, if ng = 4, then the first cluster consists of first through fourth observations, and the

second cluster consists of fifth through eighth observations. We consider three regressors Xn,1,Xn,2 and Xn,3. The

first regressor Xn,1 is the constant term, and the i-the element of Xn,2 and Xn,3 are generated from x2,i ∼ N(3, 1)

and x3,i ∼ U(−1, 2), respectively.

For the covariance matrix Σgg which is the g-th diagonal block in Σn, we consider two designs V-D1 and V-D2.

The diagonal elements of Σgg are generated from U(1, 3) in the both case. The all non-diagonal elements in the

block diagonal elements are 0.9 in V-D1, and thus the design V-D1 emphasizes a strong cluster correlations. As a

week cluster correlation case, non-diagonal elements in the block diagonal matrix are set to be 0.2 in V-D2.
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Table 2: Biases and RMSEs under Designs V-D1 and V-D2. The set of number of clusters and cluster sizes are
(i)G = 200, ng = 4, or (ii)G = 100, ng = 8. True parameters P-D2:(λ0,β10,β20,β30) = (0.6, 0.2, 0.2, 0.1).

High Cluster Correlation Low Cluster Correlation
G ng Bias RMSE Bias RMSE

2SLS 200 4 λ 0.2121 1.2284 0.2273 1.1479
β1 -0.4099 2.5391 -0.4531 2.2613
β2 -0.0033 0.0514 -0.0020 0.0544
β3 0.0006 0.0810 -0.0054 0.0911

100 8 λ 0.3643 0.6764 0.2360 0.6524
β1 -0.7135 1.3989 -0.4588 1.3514
β2 -0.0048 0.0460 -0.0046 0.0518
β3 0.0035 0.0758 -0.0055 0.0852

GMM(hetero) 200 4 λ 0.2247 0.2585 0.0979 0.1851
β1 -0.4368 0.5211 -0.1958 0.3895
β2 -0.0037 0.0469 -0.0005 0.0498
β3 0.0002 0.0792 -0.0026 0.0852

100 8 λ 0.2888 0.3252 0.1539 0.2108
β1 -0.5483 0.6531 -0.2969 0.4320
β2 -0.0102 0.0451 -0.0032 0.0492
β3 0.0003 0.0738 -0.0050 0.0829

GMM(cluster) 200 4 λ 0.0751 0.2171 0.0528 0.2015
β1 -0.1479 0.4428 -0.1149 0.4191
β2 0.0006 0.0489 0.0027 0.0511
β3 0.0019 0.0830 -0.0013 0.0865

100 8 λ 0.1381 0.2736 0.0914 0.2198
β1 -0.2671 0.5381 -0.1893 0.4347
β2 -0.0040 0.0462 0.0022 0.0518
β3 0.0031 0.0799 -0.0029 0.0860

For each of the variance designs, we consider the 4 parameter designs P-D1, P-D2, P-D3, and P-D4 following

Lin and Lee (2010). The design P-D1 has θ0 = (λ0,β10,β20,β30) = (0.6, 0.8, 0.2, 1.5) and the design P-D2 has

θ0 = (0.6, 0.2, 0.2, 0.1). Because the parameters for βs in P-D2 are smaller than in P-D1, the stochastic part of the

model (1) in P-D2 becomes more dominant compared to the model for P-D1. As stated in Lee (2007) and Lee and

Liu (2010), we expect that the GMM estimator based on both of nonlinear and linear moment condtions improve

small sample performances compared to 2SLS which is based on only linear moment conditions. In addition for

λ0 = 0.6, we conducted simulations in the case λ0 = 0.2 to check the finite sample performance of estimators when

spatial interactions are weak.

Simulated data generating from above settings are estimated by the following three estimation methods. The

first one is 2SLS estimation where we use (WnXn,Xn) as IV matrix. The second method is GMM estimation for

independent errors (GMM(hetero)) proposed in Lin and Lee (2010). We setGn−Diag(Gn) as Pn and (GnXnβ,Xn)

as Qn where the estimate obtained by the 2SLS are used to evaluate Gn and β0. By using the residual ε̂is with

11



Table 3: Biases and RMSEs under Designs V-D1 and V-D2. The set of number of clusters and cluster sizes are
(i)G = 200, ng = 4, or (ii)G = 100, ng = 8. True parameters P-D3:(λ0,β10,β20,β30) = (0.2, 0.8, 0.2, 1.5).

High Cluster Correlation Low Cluster Correlation
G ng Bias RMSE Bias RMSE

2SLS 200 4 λ -0.0120 0.2506 -0.0034 0.1673
β1 0.0301 0.4775 0.0070 0.3404
β2 -0.0025 0.0497 -0.0002 0.0537
β3 -0.0096 0.0882 -0.0059 0.0868

100 8 λ -0.0018 0.3439 0.0001 0.1786
β1 0.0063 0.5913 0.0065 0.3610
β2 -0.0020 0.0465 -0.0031 0.0493
β3 -0.0113 0.1010 -0.0088 0.0872

GMM(hetero) 200 4 λ 0.3223 0.3255 0.0969 0.1119
β1 -0.5519 0.5782 -0.1678 0.2602
β2 -0.0040 0.0484 -0.0006 0.0538
β3 -0.0210 0.0841 -0.0071 0.0863

100 8 λ 0.4621 0.4667 0.1620 0.1703
β1 -0.7982 0.8164 -0.2744 0.3284
β2 -0.0040 0.0429 -0.0037 0.0494
β3 -0.0320 0.0857 -0.0128 0.0858

GMM(cluster) 200 4 λ -0.0073 0.0772 -0.0029 0.0737
β1 0.0183 0.2201 0.0038 0.2181
β2 -0.0014 0.0507 0.0004 0.0544
β3 0.0012 0.0798 0.0002 0.0861

100 8 λ -0.0070 0.1102 -0.0077 0.0976
β1 0.0141 0.2657 0.0171 0.2350
β2 -0.0005 0.0480 -0.0022 0.0500
β3 0.0023 0.0793 -0.0011 0.0841

the estimates of 2SLS, the diagonal matrix Σ̂n,hetero where the diagonal element is σ̂2
i = �̂2i are used as the weight

matrix for GMM(hetero). The last one is the GMM estimator proposed in the current paper (GMM(cluster)). As

discussed in section 3, we set Gn −G∗
n as Pn, and (GnXnβ0,Xn) as Qn where the estimate obtained by the 2SLS

are used to evaluate Gn and β0. The weight matrix for the GMM(cluster) is the block diagonal matrix whose

diagonal blocks are Σ̂jj = ε̂j ε̂
�
j by using the residual ε̂g with the estimates of 2SLS.

For each case, we conducted 1000 times Monte Carlo replications. We report biases and root mean squared

errors to investigate small sample properties of three estimators discussed above.

Table 1 summarizes the results under the designs V-D1 and V-D2 with P-D1. The case where regression

coefficient are small and stochastic part in the model (1) are more dominant are reported in Table 2. Table 3 and

4 reports the results with p-D3 and P-D4 respectively, where λ0 = 0.2 and spatial interactions are weak.

In terms of bias, GMM(hetero) has large biases when errors have cluster correlaiton. The bias is especially large

when there are many individuals in a cluster or when the correlation is strong. This result is consistent with the
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Table 4: Biases and RMSEs under Designs V-D1 and V-D2. The set of number of clusters and cluster sizes are
(i)G = 200, ng = 4, or (ii)G = 100, ng = 8. True parameters P-D4:(λ0,β10,β20,β30) = (0.2, 0.2, 0.2, 0.1).

High Cluster Correlation Low Cluster Correlation
G ng Bias RMSE Bias RMSE

2SLS 200 4 λ 0.3690 1.4287 0.2201 1.1481
β1 -0.3583 1.5427 -0.1957 1.2385
β2 -0.0024 0.0666 -0.0090 0.0622
β3 0.0013 0.0850 -0.0040 0.0907

100 8 λ 0.5919 1.2203 0.2878 1.3058
β1 -0.5917 1.3222 -0.2692 1.4294
β2 0.0022 0.0530 -0.0048 0.0705
β3 0.0038 0.0804 -0.0009 0.0899

GMM(hetero) 200 4 λ 0.3824 0.4526 0.1467 0.2854
β1 -0.3759 0.4717 -0.1334 0.3077
β2 -0.0020 0.0483 -0.0050 0.0518
β3 0.0031 0.0817 -0.0024 0.0864

100 8 λ 0.5389 0.5683 0.2194 0.3208
β1 -0.5285 0.5753 -0.2107 0.3446
β2 -0.0033 0.0426 -0.0023 0.0509
β3 0.0018 0.0757 -0.0001 0.0857

GMM(cluster) 200 4 λ 0.0958 0.3501 0.0586 0.2893
β1 -0.0955 0.3708 -0.0535 0.3063
β2 0.0003 0.0493 -0.0023 0.0524
β3 0.0037 0.0857 -0.0011 0.0885

100 8 λ 0.2678 0.4999 0.0850 0.3460
β1 -0.2716 0.5137 -0.0914 0.3591
β2 0.0004 0.0448 0.0030 0.0540
β3 0.0056 0.0824 0.0020 0.0892

fact that when the error terms are correlated, the moment condition assuming independence is inappropriate, and

the estimator is inconsistency. For 2SLS and GMM(cluster), the bias of 2SLS is not affected by the correlation

within the clusters, and the results do not change when the correlation is strong or low. However, when the values

of the regression coefficients are small in designs P-D2 and P-D4, the bias of the estimator of the spatial coefficients

of 2SLS is much larger than that of GMM. In contrast to the 2SLS, which uses only linear moment conditions, the

GMM(cluster) uses both linear and nonlinear moment conditions and it reduces the bias of the estiamtor.

In terms of RMSE, the RMSE of the spatial parameter λ and the intercept β1 for all estimators are slightly

larger when the correlation within the clusters is strong. Comparing GMM(hetero) and GMM(cluster), we can

find that the RMSEs of GMM(cluster) are smaller in all cases. Because the GMM(cluster) uses the optimal weight

matrix for cluster correlations among errors, this would improve efficiency in finite samples. When the values of

the regression coefficients are small in designs P-D2 and P-D4, the RMSEs of the 2SLS estimator for the spatial

parameter and the intercept is much larger than those of GMM(hetero) and GMM(cluster). As in the discussion of
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bias, the nonlinear moment conditions improve finite sample performances of the GMM estimators. For β2 and β3,

RMSEs for them are almost the same in all three estimators, regardless of the strength of the cluster correlation or

the size of the regression coefficient.

5 Conclusion

We introduce the SAR model which have cluster dependent error terms and propose the GMM estimator obtained

from nonlinear moment conditions suitable for cluster dependent errors in addition to linear moment conditions.

The proposed estimator has consistency and asymptotic normality under general assumptions. Since the asymptotic

variance of the GMM estimator is affected by the weight matrix, we also introduced an asymptotically valid feasible

optimal GMM estimator. Monte Carlo simulations show that the GMM estimator obtained from independence

error assumptions has a bias when there is cluster correlation in the error term, but the proposed GMM estimator

has a small bias and RMSE regardless of the strength of the correlation.

Future research includes the extension to spatial panel models and spatial dynamic panel models. In the

panel model, the error terms may have serial correlation within the same observations in addition to the cluster

correlations, which makes the correlation among error terms more complicated. However, by extending the model

to panel models, it will be possible to analyze the spatio-temporal correlations of the variables and the regression

coefficients considering the individual effects, which will enable more precise empirical analysis.
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Appendix

A Some useful lemmas

Lemma A.1. Suppose that εn satisfy assumption 1, and An and Bn are n× n matrices whose ng1 × ng1 diagonal

blocks are 0ng1ng1
. Then, E(ε�nAnεnε

�
nBnεn) =

�G
g1=1

�G
g2=g1

tr(Σg1g1Ag1g2Σg2g2B
∗
g2,g1) whereB

∗
g2,g1 = (Bg2g1+

B�
g1g2)).

Proof.

E(ε�nAnεnε
�
nBnεn) =

G�
g1=1

G�
g2=1

G�
g3=1

G�
g4=1

E(ε�g1Ag1,g2εg2ε
�
g3Bg3,g4εg4).

Because εn = (ε�1, . . . , ε
�
G)

� are independent among clusters and the diagonal blocks of A and B are zeros,

E(ε�g1Ag1,g2εg2ε
�
g3Ag3,g4εg4) 	= 0 only if g1 = g3 	= g2 = g4 or g1 = g4 	= g2 = g3. It follows that

E(ε�nAnεnε
�
nBnεn) =

G�
g1=1

G�
g2 �=g1

�
E(ε�g1Ag1,g2εg2ε

�
g1Bg1,g2εg2) + E(ε�g1Ag1,g2εg2ε

�
g2Bg2,g1εg2)

	
,

=

G�
g1=1

G�
g2 �=g1

�
E(ε�g1Ag1,g2εg2ε

�
g2B

∗
g2,g1εg2)

	

=

G�
g1=1

G�
g2 �=g1

tr(Σg1g1Ag1g2Σg2g2B
∗
g2,g1),

=

G�
g1=1

G�
g2=g1

tr(Σg1g1Ag1g2Σg2g2B
∗
g2,g1),

where the last equality is the diagonal blocks in An and Bn are all zeros.

Lemma A.2. Suppose that εn satisfy assumption 1,An is an n×nmatrix whose row and column sums are uniformly

bounded. Then, E(ε�nAnεn) = O(n), V (ε�nAnεn) = O(n), ε�nAnεn = Op(n), and
1
nε

�
nAnεn− 1

nE(ε�nAnεn) = op(1).

Proof. From the assumption of εn, εn = Σ
− 1

2
n vn and both row and column sums of Σn are uniformly bounded

because the cluster size fo each cluster is finite. Thus, both row and column sums of A∗
n = Σ

− 1
2

n AnΣ
− 1

2
n are

also uniformly bounded. By applying Lemma A.3 in Lin and Lee (2010) to ε�nAnεn = v�
nA

∗
nvn, the lemma is

proofed.

Lemma A.3. Suppose that εn satisfy assumption 1, An is an n × n matrix whose row and column sums are

uniformly bounded, and Cn is an n × k matrix whose elements are uniformly bounded. Then, 1√
n
C �

nAnεn =
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Op(1) and 1
n = C �

nAnεn = op(1). Moreover, if the limit 1
nC

�
nAnΣnA

�
nCn exists and is positive definite, then

1√
n
C �

nAnεn
d−→ N(0, limn→∞ 1

nC
�
nAnΣnA

�
nCn)

Proof. From the assumption of εn, εn = Σ
− 1

2
n vn and both row and column sums of Σn are uniformly bounded

because the cluster size fo each cluster is finite. Thus, both row and column sums ofA∗
n = AnΣ

− 1
2

n are also uniformly

bounded. By applying Lemma A.4 in Lin and Lee (2010) to CnAnεn = C �
nA

∗
nvn, the lemma is proofed.

Lemma A.4. Suppose that εn satisfy assumption 1, An is an n × n matrix whose row and column sums are

uniformly bounded, and bn = (b1, . . . , bn)
� is an n dimensional vector such that supn

1
n

�n
i=1 |bi|2+η < ∞ for some

η > 0. Moreover, we define Qn = ε�nAnεn + b�nεn, and μQn
= E(Qn) and σ2

Qn
= V (Qn), respectively. Then,

Qn−uQn

σQn

d−→ N(0, 1).

Proof. From the assumption of εn, εn = Σ
− 1

2
n vn and both row and column sums of Σn are uniformly bounded

because the cluster size fo each cluster is finite. Thus, both row and column sums of A∗
n = Σ

− 1
2

n AnΣ
− 1

2
n are also

uniformly bounded, and b∗n = b�nΣ
− 1

2
n satisfies supn

1
n

�n
i=1 |b∗i |2+η < ∞ for some η > 0. From Theorem 1 in

Kelejian and Prucha (2001),

Qn − uQn

σQn

=
v�
nA

∗
nvn + b∗n εn − uQn

σQn

d−→ N(0, 1)

B Proofs of Theorems 1-3

Proof of Theorem 1

Because the SAR model for cluster dependent errors proposed in this paper is the same as the SAR model proposed

in Lin and Lee (2010) except for the assumption of error terms. Therefore, by replacing Lemma A.3, A.4 and A.5

in Lin and Lee (2010) with Lemma A.2, A.3 and A.4 in this paper, Theorem 1 can be proved by the same argument

as Proposition 1 in Lee (2007) and Proposition 1 in Lin and Lee (2010). The following discussion is almost the

same as proof of Proposition 1 in Lee (2007) and Proposition 1 in Lin and Lee (2010).

Let sn(θ) = 1
nangn(θ), and s(θ) = limn→∞ 1

nanE[gn(θ)]. Because the consistency of the proposed GMM

estimator is shown by Theorem 2.1 of Newey and McFadden (1994), we check the following 4 conditions: (i) the

parameter space Θ is compact, (ii) s(θ)�s(θ) is a continuous at θ, (iii) sn(θ)
�sn(θ) converges to s(θ)�s(θ) in

probability uniformly in θ ∈ Θ, (iv) −s(θ)�s(θ) is uniquely maximized at Θ0. By the assumption of the parameter
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space, Θ is compact. As showed in (7) below, sn(θ)
�sn(θ) is a polynomial function of θ. Thus, the condition (ii)

holds.

First, let us consider the identification condition (iv). We note that −s(θ)�s(θ) ≤ 0 and s(θ) = 0 has a unique

root at θ0 from the assumption. Thus, −s(θ)�s(θ) is uniquely maximized at Θ0.

Next, we will show the uniform convergence condition (iii). It suffices to show that sn(θ) converges to s(θ)

in probability uniformly in θ ∈ Θ. Let an = (an1, . . . ,anm,anx) where anj is the j-th column of the matrix

An and anx is the submatrix of An. We denote the i-the element of an as ai,n = (ai,n1, . . . , ai,nm,ai,nx) where

ai,nj , j = 1, . . . ,m are scalar and ai,nx is a sub vector. It suffices to show that the uniform convergence of 1
nai,ngn(θ)

for each i.

From (2), ai,ngn(θ) = ε�n(θ)
��m

j=1 ai,njPn,j

�
εn(θ)+ai,nxQ

�
nεn(θ). By the definition of the model (1), εn(θ) =

dn(θ) + εn + (λ0 − λ)Gnεn where dn(θ) = (λ0 − λ)GnXnβ0 +Xn(β0 − β). Thus, ε�n(θ)
��m

j=1 ai,njPn,j

�
εn(θ) =

d�
n(θ)

��m
j=1 ai,njPn,j

�
dn(θ)+ln(θ)+qn(θ) where ln(θ) = d�

n(θ)
��m

j=1 ai,njP
s
n,j

�
(εn+(λ0−λ)Gnεn) and qn(θ) =

(εn + (λ0 − λ)Gnεn)
���m

j=1 ai,njPn,j

�
(εn + (λ0 − λ)Gnεn). Furthermore, ai,nxQ

�
nεn(θ) = ai,nxQ

�
n(dn(θ) + εn +

(λ0 − λ)Gnεn).

The nonstochastic function 1
nanE[gn(θ)] is given by,

1

n
anE[gn(θ)] =

1

n
d�
n(θ)

� m�
j=1

ai,njPn,j

�
dn(θ) +

1

n

m�
j=1

ai,njtr(ΣnPn,j) + (λ0 − λ)
1

n

m�
j=1

ai,njtr(ΣnG
�
nP

s
n,j) (6)

+ (λ0 − λ)2
1

n

m�
j=1

ai,njtr(ΣnG
�
nPn,jGn) +

1

n
ai,nxQ

�
ndn(θ). (7)

From the definition,

1

n
ln(θ) =(λ0 − λ)

1

n
(Xnβ0)

�
� m�

j=1

ai,njGnP
s
n,j

�
εn + (λ0 − λ)2

1

n
(Xnβ0)

�
� m�

j=1

ai,njGnP
s
n,jGn

�
εn

+ (β0 − β)
1

n
X �

n

� m�
j=1

ai,njP
s
n,j

�
εn + (β0 − β)(λ0 − λ)

1

n
X �

n

� m�
j=1

ai,njP
s
n,jGn

�
εn.

We note that both row and column sums of GnP
s
n,j and GnP

s
n,jGn are uniformly bounded because both row and

column sums of Gn and P s
n,j are uniformly bounded. From the boundedness of the parameter space and Lemma

A.3, 1
n ln(θ) = op(1) uniformly in θ ∈ Θ.
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By Lemma A.2,

1

n
qn(θ) =

1

n
ε�n

� m�
j=1

ai,njPn,j

�
εn + (λ0 − λ)

1

n
ε�n

� m�
j=1

ai,njG
�
nP

s
n,j

�
εn

+ (λ0 − λ)2ε�n

� m�
j=1

ai,njG
�
nPn,jGn

�
εn,

= (λ0 − λ)
1

n

m�
j=1

ai,njtr(ΣnG
�
nP

s
n,j) + (λ0 − λ)2

1

n

m�
j=1

ai,njtr(ΣnG
�
nPn,jGn) + op(1),

uniformly in θ ∈ Θ.

Consequently,

1

n
ε�n(θ)

� m�
j=1

ai,njPn,j

�
εn(θ) =d�

n(θ)

� m�
j=1

ai,njPn,j

�
dn(θ) + (λ0 − λ)

1

n

m�
j=1

ai,njtr(ΣnG
�
nP

s
n,j)

+ (λ0 − λ)2
1

n

m�
j=1

ai,njtr(ΣnG
�
nPn,jGn) + op(1),

uniformly in θ ∈ Θ.

Similarly,

1

n
ai,nxQ

�
nεn(θ) =

1

n
ai,nxQ

�
ndn(θ) +

1

n
ai,nxQ

�
n(εn + (λ0 − λ)Gnεn),

=
1

n
ai,nxQ

�
ndn(θ) + op(1),

uniformly in θ ∈ Θ by Lemma A.3.

To sum up the above arguments, we obtain that sn(θ) converges to s(θ) in probability uniformly in θ ∈ Θ, and

thus the consistency of the GMM estimator is shown.

Next, let us consider the asymptotic normality of the GMM estimator. We note that
∂gn(θ̂n)

∂θ a�
nangn(θ̂n) = 0

by the definition of θ̂n. By applying the Taylor’s expansion to the above equation, we have

√
n(θ̂n − θ0) = −

�
1

n

∂g�
n(θ̂n)

∂θ
a�
nan

1

n

∂gn(θ̄n)

∂θ

�−1
1

n

∂g�
n(θ̂n)

∂θ
a�
n

1√
n
angn(θ0),

where each element in θ̄n is between θ̂n and θ0.

First, we will show that 1
n

∂gn(θ̂n)
∂θ converges in probability to − 1

nDn. By the model (1) and the moment

condition (2), ∂εn(θ)
∂θ = (WnYn,Xn) and

∂gn(θ)
∂θ = (P s

n,1εn(θ), . . . ,P
s
n,mεn(θ),Qn)

�(WnYn,Xn). By the model (1)
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1
nε

�
n(θ)P

s
n,jWnYn = 1

nε
�
n(θ)P

s
n,jGnXnβ0 +

1
nε

�
n(θ)P

s
n,jGnεn, j = 1, . . . ,m. By Lemma A.3,

1

n
ε�n(θ)P

s
n,jGnXnβ0 =

1

n
d�
n(θ)P

s
n,jGnXnβ0 +

1

n
ε�nP

s
n,jGnXnβ0 + (λ0 − λ)

1

n
ε�nG

�
nP

s
n,jGnXnβ0,

=
1

n
d�
n(θ)P

s
n,jGnXnβ0 + op(1).

Similarly,

1

n
ε�n(θ)P

s
n,jGnεn =

1

n
d�
n(θ)

�(θ)P s
n,jGnεn +

1

n
ε�nP

s
n,jGnεn + (λ0 − λ)

1

n
ε�nG

�
nP

s
n,jGnεn,

=
1

n
tr(ΣnP

s
n,jGn) + (λ0 − λ)

1

n
tr(ΣnG

�
nP

s
n,jGn) + op(1),

by Lemma A.2 and A.3.

Consequently,

1

n
ε�n(θ)P

s
n,jWnYn =

1

n
d�
n(θ)P

s
n,jGnXnβ0 +

1

n
tr(ΣnP

s
n,jGn) + (λ0 − λ)

1

n
tr(ΣnG

�
nP

s
n,jGn) + op(1).

We note that θ̂n is consistent estimator from the above discussion, and dn(θ0) = 0. Thus, limn→∞ 1
nε

�
n(θ̂)P

s
n,jWnYn =

1
n tr(ΣnG

�
nP

s
n,jGn).

For 1
nε

�
n(θ)P

s
n,jXn,

1

n
ε�n(θ)P

s
n,jXn =

1

n
d�
n(θ)P

s
n,jXn +

1

n
ε�nP

s
n,jXn + (λ0 − λ)

1

n
ε�nGnP

s
n,jXn,

=
1

n
d�
n(θ)P

s
n,jXn + op(1),

by Lemma A.3, and thus limn→∞ 1
nε

�
n(θ̂)P

s
n,jXn = op(1).

For 1
nQnWnYn,

1

n
QnWnYn =

1

n
QnGnXnβ0 +

1

n
QnGnεn,=

1

n
QnGnXnβ0 + op(1),

by Lemma A.3.

To sum up the above argument, we obtain that 1
n

∂gn(θ̂n)
∂θ converges in probability to − 1

nDn. Because θ̄n is

between θ̂n and θ0,
1
n

∂gn(θ̄n)
∂θ also converges in probability to − 1

nDn.

Next, we will show that 1√
n
angn(θ0)

d−→ N(0, limn→∞ anΩna
�
n). Let na be the number of rows of an. c is an

na × 1 vector of any constants with c�c = 1. By Lemma A.4, 1√
n
c�angn(θ0) =

1√
n
[ε�n(

�na

k=1

�m
j=1 ckak,njPn,j)εn +
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�na

k=1 ckak,nxQnεn]
d−→ N

�
0, limn→∞ 1

nc
�a�

nΩnanc
�
. By the Cramér-Wold Device, 1√

n
angn(θ0)

d−→ N(0, limn→∞ anΩna
�
n).

Gathering the above discussion, asymptotic normality of the GMM estimator is obtained by the Slutsky’s

theorem.

Proof of Theorem 2

A. The consistency of 1
nΩ̂n: Let us consider that each elements in 1

nΩ̂n − 1
nΩn converges to zero in probability.

(a): The consistency of some elements: One generic element in the matrix 1
nΩn is written by

E(ε�nPn,aεnε
�
nPn,bεn) =

1

n

G�
g1=1

G�
g2=1

G�
g3=1

G�
g4=1

E(ε�g1Pa,g1g2εg2ε
�
g3Pb,g3g4εg4), (8)

Because error terms are independent across clusters and block diagonal elements in Pn,a and Pn,b are zeros,

E(ε�g1Pa,g1g2εg2ε
�
g3Pb,g3g4εg4) will not vanish only when g1 = g3 	= g2 = g4 and g1 = g4 	= g2 = g3. The same

argument holds when g1 = g4 	= g2 = g3 as below, thus we show convergence in probability when g1 = g3 	= g2 = g4.

E(ε�nPa,nεnε
�
nPb,nεn) =

1

n

G�
g1=1

G�
g2=1

E(ε�g1Pa,g1,g2εg2ε
�
g1Pb,g1,g2εg2),

=
1

n

G�
g1=1

G�
g2=1

ng1�
i1=1

ng2�
i2=1

ng1�
i3=1

ng2�
i4=1

pag1g2,i1i2p
b
g1g2,i3i4E(εg1,i1εg1,i3)E(εg2,i2εg2,i4),

where pag1g2,i1i2 is the (i1, i2) element of Pa,g1,g2 and pbg1g2,i3i4 is defined similarly.

First, we show that

1

n

G�
g1=1

G�
g2=1

ng1�
i1=1

ng2�
i2=1

ng1�
i3=1

ng2�
i4=1

pag1g2,i1i2p
b
g1g2,i3i4 [εg1,i1εg1,i3εg2,i2εg2,i4 − E(εg1,i1εg1,i3)E(εg2,i2εg2,i4)] = op(1)

and after that we establish that this convergence holds when εg,is are replaced by the residuals ε̂g,i

Note that

εg1,i1εg1,i3εg2,i2εg2,i4 − E(εg1,i1εg1,i3)E(εg2,i2εg2,i4) =[εg1,i1εg1,i3 − E(εg1,i1εg1,i3)][εg2,i2εg2,i4 − E(εg2,i2εg2,i4)]

+ E(εg2,i2εg2,i4)[εg1,i1εg1,i3 − E(εg1,i1εg1,i3)]

+ E(εg1,i1εg1,i3)[εg2,i2εg2,i4 − E(εg2,i2εg2,i4)],
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Thus,

1

n

G�
g1=1

G�
g2=1

ng1�
i1=1

ng2�
i2=1

ng1�
i3=1

ng2�
i4=1

pag1g2,i1i2p
b
g1g2,i3i4 [εg1,i1εg1,i3εg2,i2εg2,i4 − E(εg1,i1εg1,i3)E(εg2,i2εg2,i4)],

= H1 +H2 +H3,

where H1 = 1
n

�G
g1=1

�G
g2=1

�ng1
i1=1

�ng2
i2=1

�ng1
i3=1

�ng2
i4=1 p

a
g1g2,i1i2

pbg1g2,i3i4 [εg1,i1εg1,i3 − E(εg1,i1εg1,i3)][εg2,i2εg2,i4 −
E(εg2,i2εg2,i4)] ,H2 = 1

n

�G
g1=1

�G
g2=1

�ng1
i1=1

�ng2
i2=1

�ng1
i3=1

�ng2
i4=1 p

a
g1g2,i1i2

pbg1g2,i3i4E(εg2,i2εg2,i4)[εg1,i1εg1,i3−E(εg1,i1εg1,i3)]

and H3 = 1
n

�G
g1=1

�G
g2=1

�ng1
i1=1

�ng2
i2=1

�ng1
i3=1

�ng2
i4=1 p

a
g1g2,i1i2

pbg1g2,i3i4E(εg1,i1εg1,i3)[εg2,i2εg2,i4 − E(εg2,i2εg2,i4)].

Because error terms are independent across clusters and block diagonal elements in Pn,a and Pn,b are zeros,

E(H1) = 0.

H2
1 =

1

n

G�
g1=1

G�
g2=1

G�
g3=1

G�
g4=1

ng1�
i1=1

ng2�
i2=1

ng1�
i3=1

ng2�
i4=1

ng3�
i5=1

ng4�
i6=1

ng3�
i7=1

ng4�
i8=1

pag1g2,i1i2p
b
g1g2,i3i4p

a
g1g2,i5i6p

b
g1g2,i7i8

[εg1,i1εg1,i3 − E(εg1,i1εg1,i3)][εg2,i2εg2,i4 − E(εg2,i2εg2,i4)][εg1,i5εg1,i7 − E(εg1,i5εg1,i7)][εg2,i6εg2,i8 − E(εg2,i6εg2,i8)].

As error terms are independent across clusters and block diagonal elements in Pn,a and Pn,b are zeros, E(H2
1 ) will

not vanish only when g1 = g3 	= g2 = g4 and g1 = g4 	= g2 = g3. The same argument holds when g1 = g4 	= g2 = g3

as below, thus we show convergence in probability when g1 = g3 	= g2 = g4.

Because E|εg,1εg,2εg,3εg,4| ≤ E(ε4g,1)
1
4E(ε4g,2)

1
4E(ε4g,3)

1
4E(ε4g,4)

1
4 < c for some constant c and for all elements in

εg,

E(H2
1 ) =

1

n2

G�
g1=1

G�
g2=1

ng1�
i1=1

ng2�
i2=1

ng1�
i3=1

ng2�
i4=1

ng1�
i5=1

ng2�
i6=1

ng1�
i7=1

ng2�
i8=1

pag1g2,i1i2p
b
g1g2,i3i4p

a
g1g2,i5i6p

b
g1g2,i7i8

[εg1,i1εg1,i3 − E(εg1,i1εg1,i3)][εg2,i2εg2,i4 − E(εg2,i2εg2,i4)][εg1,i1εg1,i3 − E(εg1,i1εg1,i3)][εg2,i2εg2,i4 − E(εg2,i2εg2,i4)],

≤ c

n2

G�
g1=1

ng1�
i1=1

ng1�
i3=1

ng1�
i5=1

ng1�
i7=1

� G�
g2=1

ng2�
i2=1

ng2�
i4=1

ng2�
i6=1

ng2�
i8=1

pag1g2,i1i2p
b
g1g2,i3i4p

a
g1g2,i5i6p

b
g1g2,i7i8

�

≤ c

n

G�
g1=1

n4
g1 ,

= o(1),

where the second inequality holds because the column sums of matrix Pn,aP
�
n,bPn,aP

�
n,bPn,aP

�
n,bPn,aP

�
n,b is uni-
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formly bounded, and

��G
g2=1

�ng2
i2=1

�ng2
i4=1

�ng2
i6=1

�ng2
i8=1 p

a
g1g2,i1i2

pbg1g2,i3i4p
a
g1g2,i5i6

pbg1g2,i7i8

�
is a part of a column

sum of Pn,aP
�
n,bPn,aP

�
n,bPn,aP

�
n,bPn,aP

�
n,b . Thus, H1 = op(1) from the Chebyshev’s inequality. The same argument

holds for H2 and H3, and thus H2 = op(1) and H3 = op(1).

Consequently,

1

n

G�
g1=1

G�
g2=1

ng1�
i1=1

ng2�
i2=1

ng1�
i3=1

ng2�
i4=1

pag1g2,i1i2p
b
g1g2,i3i4 [εg1,i1εg1,i3εg2,i2εg2,i4 − E(εg1,i1εg1,i3)E(εg2,i2εg2,i4)] = op(1). (9)

Next, we will show that this convergence holds when εg,is are replaced by the residuals ε̂g,i.

1

n

G�
g1=1

G�
g2=1

ng1�
i1=1

ng2�
i2=1

ng1�
i3=1

ng2�
i4=1

pag1g2,i1i2p
b
g1g2,i3i4 [ε̂g1,i1 ε̂g1,i3 ε̂g2,i2 ε̂g2,i4 − εg1,i1εg1,i3εg2,i2εg2,i4 ],

= H4 +H5 +H6,

whereH4 = 1
n

�G
g1=1

�G
g2=1

�ng1
i1=1

�ng2
i2=1

�ng1
i3=1

�ng2
i4=1 p

a
g1g2,i1i2

pbg1g2,i3i4(ε̂g1,i1ε̂g1,i3−εg1,i1εg1,i3)(ε̂g2,i2ε̂g2,i4−εg2,i2εg2,i4),

H5 = 1
n

�G
g1=1

�G
g2=1

�ng1
i1=1

�ng2
i2=1

�ng1
i3=1

�ng2
i4=1 p

a
g1g2,i1i2

pbg1g2,i3i4εg2,i2εg2,i4(ε̂g1,i1ε̂g1,i3 − εg1,i1εg1,i3), and H6 =

1
n

�G
g1=1

�G
g2=1

�ng1
i1=1

�ng2
i2=1

�ng1
i3=1

�ng2
i4=1 p

a
g1g2,i1i2

pbg1g2,i3i4εg1,i1εg1,i3(ε̂g2,i2ε̂g2,i4 − εg2,i2εg2,i4).

From the model, we have

ε̂n = Sn(λ̂)Yn −Xβ̂,

= εn + (λ0 − λ̂)Gnεn +Xn(β0 − β̂) + (λ0 − λ̂)GnXnβ0.

By using eg1,i which is the (g1, i)-th row in the n × n identity matrix, the i-the element in ε̂g1 is given by ε̂g1,i =

εg1,i + bg1,i + cg1,i, where bg1,i = (λ0 − λ̂)eg1,iGnεn and cg1,i = eg1,iXn(β0 − β̂) + (λ0 − λ̂)eg1,nGnXnβ0.

Let us consider H4.

H4 =
1

n

G�
g1=1

G�
g2=1

ng1�
i1=1

ng2�
i2=1

ng1�
i3=1

ng2�
i4=1

pag1g2,i1i2p
b
g1g2,i3i4

((εg1,i1 + bg1,i1 + cg1,i1)(εg1,i3 + bg1,i3 + cg1,i3)− εg1,i1εg1,i3)

((εg2,i2 + bg2,i2 + cg2,i2)(εg2,i4 + bg2,i4 + cg2,i4)− εg2,i2εg2,i4)

We pay attention to convergence in probability of terms with the higher orders in εg,is. Convergences of the

other terms are shown by the similar manner.
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Let G(g1,i1),k1
be the ((g1, i1), k1) element of Gn. The highest term with εg,is is

1

n

G�
g1=1

G�
g2=1

ng1�
i1=1

ng2�
i2=1

ng1�
i3=1

ng2�
i4=1

pag1g2,i1i2p
b
g1g2,i3i4bg1,i1bg1,i3bg2,i2bg2,i4 ,

= (λ0 − λ̂)4
1

n

G�
g1=1

G�
g2=1

ng1�
i1=1

ng2�
i2=1

ng1�
i3=1

ng2�
i4=1

pag1g2,i1i2p
b
g1g2,i3i4(eg1,i1Gnεn)(eg1,i3Gnεn)(eg2,i2Gnεn)(eg2,i4Gnεn),

= (λ0 − λ̂)4Kn,

where Kn = 1
n

�G
g1=1

�G
g2=1

�ng1
i1=1

�ng2
i2=1

�ng1
i3=1

�ng2
i4=1

�n
k1=1

�n
k2=1

�n
k3=1

�n
k4=1 p

a
g1g2,i1i2

pbg1g2,i3i4

G(g1,i1),k1
G(g2,i2),k2

G(g1,i3),k3
G(g2,i4),k4

εk1
εk2

εk3
εk4

.

We note that E|εk1εk2εk3εk4 | ≤ E(ε4k1
)

1
4E(ε4k2

)
1
4E(ε4k3

)
1
4E(ε4k4

)
1
4 < c for some constant c. By the uniform

boundedness in row and column sums for PaP
�
b and G,

E|Kn| ≤ c

n

1

n

G�
g1=1

ng1�
i1=1

ng1�
i3=1

� G�
g2=1

ng2�
i2=1

ng2�
i4=1

pag1g2,i1i2p
b
g1g2,i3,i4

�� n�
k1=1

G(g1,i1),k1

�

×
� n�

k2=1

G(g2,i2),k2

�� n�
k3=1

G(g1,i3),k3

�� n�
k4=1

G(g2,i4),k4

�
,

≤ c

�G
g=1 n

2
g

n
,

= O(1).

Thus, Kn = Op(1) by the Markov inequality. Convergence in probability of other terms in H4 are shown similarly.

We conclude that H4 = op(1). Moreover, H5 = op(1) and H6 = op(1) can be shown form the same argument.

Consequently,

1

n

G�
g1=1

G�
g2=1

ng1�
i1=1

ng2�
i2=1

ng1�
i3=1

ng2�
i4=1

pag1g2,i1i2p
b
g1g2,i3,i4 [ε̂g1,i1 ε̂g1,i3 ε̂g2,i2 ε̂g2,i4 − εg1,i1εg1,i3εg2,i2εg2,i4 ] = op(1). (10)

Combining (9) and (10), we have

1

n

G�
g1=1

G�
g2=1

ng1�
i1=1

ng2�
i2=1

ng1�
i3=1

ng2�
i4=1

pag1g2,i1i2p
b
g1g2,i3,i4 [εg1,i1εg1,i3εg2,i2εg2,i4 − E(εg1,i1εg1,i3)E(εg2,i2εg2,i4)],

= op(1)

(b) The consistency of the other elements: Letqi,j be the (i, j) element of the matrix Qn. The other elements in
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the matrix 1
nΩn are 1

n

�G
g=1 Q

�
ggΣggQgg and the (i, j) element of the matrix is 1

n

�G
g=1

�n
k1=1

�n
k2=1 qi,k1

qk2,jE(εg,k1
εg,k2

).

This form is simpler than (8) and thus convergence in probability of the form can be shown with the same arguments

in part (a) above.

In conclusion, we have shown that 1
nΩ̂n − 1

nΩn = op(1).

B. The consistency of 1
nD̂n: Let P ∗

n1 = P s
1Gn. Note that the row and column sums of P ∗

n1 are uniformly

bounded because the row and column sums of both P s
1 and Gn are uniformly bounded. One generic form for

the elements of 1
nDn is 1

nE(ε�nP
∗
n1εn) = 1

n

�G
g1=1

�G
g2=1 εg1P

∗
g1g2εg2 . This form is simpler than (8) and thus

convergence in probability of the form can be shown with the same arguments in part (a) above.

Together, Theorem 2 is proved.

Proof of Theorem 3

We have shown that 1
nΩ̂n − 1

nΩn = op(1) and 1
nD̂n − 1

nD = op(1) in Theorem 2. Thus, Theorem 3 is shown by

the same argument as Proposition 2 in Lee (2007) and Proposition 3 in Lin and Lee (2010).

First, we will show that consistency of the feasible optimal GMM estimator θ̂o,n. Let ao,n = ( 1nΩn)
− 1

2 ,ao =

(limn→∞ 1
nΩn)

− 1
2 . Because Ω̂−1

n = Ω−1
n + (Ω̂−1

n −Ω−1
n ),

1

n
g�
n(θ)Ω̂

−1
n gn(θ) =

1

n
g�
n(θ)Ω

−1
n gn(θ) +

1

n
g�
n(θ)(Ω̂

−1
n −Ω−1

n )gn(θ).

Let so(θ) = limn→∞ 1
naoE[gn(θ)]. Because ao is full rank (k+1) from the assumption, so(θ) = 0 has a unique

root at θ0 from Assumption 5. Thus, −so(θ)so(θ) which is the well defined limit of 1
ng

�
n(θ)Ω

−1
n gn(θ) satisfies

the identification uniqueness condition. Let θ̃ = argminθ∈Θ g�
n(θ)Ω

−1
n gn(θ). From Theorem 1, θ̃ is a consistent

estimator. Furthermore, if 1
ng

�
n(θ)(Ω̂

−1
n − Ω−1

n )gn(θ) convereges to zero uniformly in θ ∈ Θ, then θ̂o,n is also

consistent estimator by Lemma A.6 in Lee (2007).

We will show that the uniform convergence of 1
ng

�
n(θ)(Ω̂

−1
n −Ω−1

n )gn(θ). Let 
 · 
 be the Euclidean norm for

vectors and matrices. By the submultiplicativity of the matrix norm,

���� 1ng�
n(θ)(Ω̂

−1
n −Ω−1

n )gn(θ)

���� ≤
�
1

n

gn(θ)


�2����� 1

n
Ω̂n

�−1

−
�
1

n
Ωn

�−1����.
By the assumption,

��� 1
nΩ̂n

�−1 − �
1
nΩn

�−1�� = op(1).
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The nonstochastic function 1
nE[gn(θ)] is given by,

1

n
E[gn(θ)] =

1

n
d�
n(θ)Pn,jdn(θ) +

1

n

m�
j=1

tr(ΣnPn,j) + (λ0 − λ)
1

n

m�
j=1

tr(ΣnG
�
nP

s
n,j)

+ (λ0 − λ)2
1

n

m�
j=1

tr(ΣnG
�
nPn,jGn) +

1

n
Q�

ndn(θ).

As the parameter space is bounded, 1
nE[gn(θ)] = O(1) uniformly in θ ∈ Θ. Thus, 1

ngn(θ) = Op(1) uniformly

in θ ∈ Θ because 1
ngn(θ) − 1

nE[gn(θ)] = op(1) uniformly in θ ∈ Θ form the proof of Theorem 1. Consequently,

1
ng

�
n(θ)(Ω̂

−1
n −Ω−1

n )gn(θ) convereges to zero uniformly in θ ∈ Θ, and the consistency of the feasible optimal GMM

estimator θ̂o,n is shown.

Next, let us consider the asymptotic normality of θ̂o,n. By applying the Taylor’s expansion to
∂gn(θ̂n)

∂θ Ω̂−1
n gn(θ̂n),

we have

√
n(θ̂n − θ0) = −

�
1

n

∂g�
n(θ̂n)

∂θ

�
1

n
Ω̂n

�−1
1

n

∂gn(θ̄n)

∂θ

�−1
1

n

∂g�
n(θ̂n)

∂θ

�
1

n
Ω̂n

�−1
1√
n
gn(θ0),

where each element in θ̄n is between θ̂n and θ0. From the same argument in the proof of Theorem 1, the asymptotic

normality of the feasible optimal GMM estimator θ̂o,n is shown.

Finally,
�
1
nD̂

�
nΩ̂

−1
n D̂n

�−1 − �
1
nD

�
nΩ

−1
n Dn

�−1
= op(1) by by the continuous mapping theorem.
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