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Abstract

We extend the Principal Orthogonal complEment Thresholding (POET) frame-
work introduced by Fan et al. (2013) to estimate large static covariance matrices with
a “mixed” structure of observable and unobservable common factors, and we call this
method the extended POET (ePOET). A stable covariance estimator for large-scale
data is developed by combining observable factors and sparsity-induced weak latent
factors, with an adaptive threshold estimator of idiosyncratic covariance. Under some
mild conditions, we derive the uniform consistency of the proposed estimator for the
cases with or without observable factors. Furthermore, several simulation studies
show that the ePOET achieves good finite-sample performance regardless of data
with strong, weak, or mixed factors structure. Finally, we conduct empirical studies
to present the practical usefulness of the ePOET.

Keywords: Sparsity-induced weak factor model, SOFAR estimator, Factor error structure,
Sparse covariance matrix, Thresholding.
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1 Introduction

Covariance matrix estimation plays an essential role in a wide range of fields, including

finance and economics. With advances in computer technology, many high-dimensional

data, where the cross-sectional dimension N is close to or larger than the sample size T ,

have become increasingly accessible. The simplest estimator of the covariance matrix is

the naive sample covariance, but it is prone to instability or even a singularity problem in

a high-dimensional setting. Alternatively, many covariance estimators have been proposed;

for example, Bickel and Levina (2008a,b), Rothman et al. (2009), Cai and Liu (2011),

Ledoit and Wolf (2004), Ledoit and Wolf (2012), Lam (2016), and so forth.

Since economic and financial data frequently exhibit multicollinearity, a factor-based ap-

proach can be more appealing; see Fan et al. (2008) and Fan et al. (2011). Fan et al. (2013)

extend the ideas and propose the well-known principal orthogonal complement thresholding

(POET) estimator. Roughly speaking, the POET supposes the approximate factor model

for the target and performs a principal component analysis (PCA) on the sample covariance

matrix to extract the top K principal components as the signal part, and then applies a

thresholding technique to the remaining noise part to obtain a sparse idiosyncratic covari-

ance estimator. Related studies include, but not limited to, Fan et al. (2018) and Wang

et al. (2021).

The POET and aforementioned factor-based approaches employ the so-called perva-

siveness (strong factor) assumption, which makes the first K largest eigenvalues of data

covariance matrix diverge proportionally to N while the others bounded. This results in

exhibiting a single large gap between the Kth and (K+1)th largest eigenvalues. Although

the strong factor assumption is simple and widely used in the literature, including Bai and

Ng (2002) and Bai (2003), it is questionable whether the assumption is consistent with real

data. In fact, in the discussion of Fan et al. (2013), Alexei Onatski says that it may be
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misleading in many economic and financial applications. He indicates that the absence of

such a large gap may have a negative effect on the performance of POET. Lam et al. (2011)

also point out the possibility that the PC estimator does not work well in the absence of

such a clear eigen-separation. We reconsider this issue.

Figure 1: The sample eigenvalues of S&P

monthly excess returns.

Figure 2: The sample eigenvalues of residuals

of S&P monthly excess returns regressed by

the five observable factors.

Figure 1 shows the scree plot of the sample covariance matrix of S&P 500 stock returns

from Datastream over the period from May 1998 to April 2018, including 376 companies.

In the figure, we can observe a huge eigen-gap between the first and the second eigenvalues,

implying that there is only a single factor. Perhaps surprisingly, however, the edge distri-

butions (ED) method of Onatski (2010) stably detects six factors. This suggests there are

a single strong and several “weaker factors” in the data.

More interestingly, there still remain some unobserved “weak factors” even after taken

out some observable factors. Figure 2 is the scree plot of the same data after taken out

the five observable factors of Fama and French (2015).1 For this sample covariance matrix,

1The Fama-French five factors refer to the market return, SMB, HML, RMW , CMA. Here, SMB

means the return on a diversified portfolio of small stocks minus the return on a diversified portfolio of big

stocks, HML is the difference between the returns on diversified portfolios of high and low B/M stocks,
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Onatski’s ED method detects five factors left behind with exhibiting no large gaps. This

indicates the existence of “weak factors” that are not explained by the observable factors.

On the basis of the above observations, we propose the new framework that allows both

observable factors and latent “weak factors,” called the extended POET (ePOET ). This

modelling strategy is expected to enhance the interpretability and flexibility, compared

with the original POET. Focusing on the latent “weak factor” part, we adopt the sparsity-

induced weak factor (sWF) models by Uematsu and Yamagata (2022); namely, we suppose

sparsity condition on the factor loadings that directly link to the magnitude of signal

eigenvalues under a specific rotation. Then the kth largest eigenvalues of the covariance

matrix diverges proportionally to Nαk for some αk ∈ (0, 1] for each k ∈ {1, . . . , K}. The

“weakness” is well-estimated as long as the loadings are sparsely estimated, and is indeed

achieved by the sparse orthogonal factor regression (SOFAR) estimator of Uematsu et al.

(2019) and Uematsu and Yamagata (2022).

To our ePOET, we derive the rates of convergence for the estimated covariance and

precision matrices under strong (α-)mixing assumptions. Simulation studies show that

the ePOET can ensure reliable estimation accuracy, whatever data are generated from

observable, weak, strong, or “mixed” factor models. We conduct an empirical study about

minimum variance portfolio (MVP) constructions. It is observed that, in terms of the

out-of-sample risk, the proposed ePOET method with observable factors outperforms the

other candidates. Finally, a heatmap comparison shows that the proposed method can

well capture the potential WF structure in the residuals obtained from a financial dataset

regressed by the Fama-French five factors.

RMW represents the difference between the returns on diversified portfolios of stocks with robust and

weak profitability, and CMA stands for the difference between the returns on diversified portfolios of the

stocks of low and high investment firm. They are obtained from the Kenneth R. French Data Library.
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1.1 Notations and organization

Throughout the paper, we use ‖M‖, ‖M‖F, ‖M‖max, and ‖M‖1 to denote l2 norm, the

Frobenius norm, the maximum norm and the elementwise l1 norm for any matrix M =

(mti) ∈ R
T×N , respectively. Given a N × N positive definite matrix Σ, the weighted

quadratic norm of an N ×N matrix P of Σ is defined as ‖P‖Σ = N−1/2‖Σ−1/2PΣ−1/2‖F.

For any square matrixA, we denote the largest, the smallest and the kth largest eigenvalues

by λmax(A), λmin(A), and λk(A), respectively. IN means a N ×N identity matrix. Let �

and � represent � and � up to a positive constant factor. For two positive values x and

y, we use x∧ y and x∨ y to denote min{x, y} and max{x, y}, respectively. Finally, for two

positive sequences an and bn, we denote an � bn if an � bn and an � bn.

The rest of the paper is organized as follows. Section 2 formally defines the ePOET

model. Section 3 describes the estimation methodologies and the steps to determine the

optimal number of factors. The theoretical results of ePOET are presented in Section 4.

In Section 5, we conduct three sets of simulation studies are conducted. Two empirical

applications are shown in Section 6. Section 7 concludes the paper. All the proofs of the

theoretical results and additional discussions are reported in the appendix. Section B gives

some remarks on the practical issues of choosing the tuning parameters.

2 Model

We consider estimation of the covariance matrix of N -dimensional vector yt, generated by

the linear regression model

yt = Axt + ut, (2.1)
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where xt and A = (a1, . . . , ar) represent the r-dimensional observable factor and its factor

loadings, respectively. Furthermore, the error term ut has the latent factor structure

ut = Bft + et, (2.2)

where ft and B = (b1, . . . ,bK) represent the K-dimensional unobservable factor and its

factor loadings, respectively, and et is the idiosyncratic error term. Stacking the observa-

tions for t = 1, . . . , T , we can rewite the models as Y = XA′ + U and U = FB′ + E.

Similar factor structures can be found in Bai (2009), , Bai et al. (2016), Gagliardini et al.

(2019) and Fan et al. (2021). Following the latter two papers, we impose the orthogonality

conditions between observable factors xt and latent parts ut. This assumption enable us

to separately estimate A and B.

Without loss of generality, we suppose the identification conditions,

E[ftf
′
t] = IK and B′B diagonal, (2.3)

throughout the paper. Denote by Σx, Σu, and Σe the covariance matrices of xt, ut, and

et, respectively. Given the condition that et, xt, and ft are mutually uncorrelated, the

covariance matrix of yt under (2.3) is

Σ = AΣxA
′ +Σu, Σu = BB′ +Σe. (2.4)

2.1 Sparsity-induced weak factor model

As discussed in Introduction, it is natural to allow a “weaker” factor structure in (2.2).

Following Uematsu and Yamagata (2022), we formally introduce the sWF model. Assume

that λmin(B
′B) is bounded away from zero and λmax(Σe) is bounded from above. Then

Weyl’s inequality entails λk(Σu) � λk(BB′) for k = 1, . . . , K. The latent factor model in

(2.2) is called the weak factor (WF) model if

λk(BB′) � Nαk , k = 1, . . . , K (2.5)
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for some αk ∈ (0, 1]. The sWF model achieves (2.5) by imposing a sparsity assumption on

B with the aid of (2.3). Specifically, suppose that bk has Nk := �Nαk	 nonzero elements

for some constant αk ∈ (0, 1] for each k = 1, . . . , K. Then the signal strength is controlled

via the sparsity:

λk(BB′) = λk(B
′B) = ‖bk‖22 � Nk, k = 1, . . . , K.

The sparsity assumption on B is not the only assumption that brings about the WF

structure; e.g., the condition that bk is dense with bik � N (αk−1)/2 for all i = 1, . . . , N

achieves the same rate, but we do not pursue this direction. See Uematsu and Yamagata

(2021) for a statistical evidence of sparse loadings with macroeconomic and financial data.

3 Estimation Methodology

We propose a new estimation framework for Σ in (2.4). The procedure first apply the

ordinary least squares (OLS) to (2.1) to obtain the residuals, and then estimate the residual

covariance matrix applying the POET algorithm to (2.2) with replacing the PC estimate

by the SOFAR estimate. The detailed procedure is shown as follows:

Step 1. Regress Y on X to obtain the OLS estimate Â′ = (X′X)−1X′Y, and make the

residual matrix Û = Y −XÂ′.

Step 2. Obtain the SOFAR estimate of (B,F) by

(B̂, F̂) = argmin
(B̃,F̃) ∈ RN×K̂×RT×K̂

1

2
‖Û− F̃B̃′‖2F + ηNT‖B̃‖1 (3.6)

subject to F̃′F̃/T = IK̂ and B̃′B̃ diagonal,

where K̂ is the estimated number of factors defined in Section 3.1 and ηNT > 0 is a

penalty coefficient, and make the residual matrix Ê = Û− F̂B̂′.
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Step 3. Obtain the POET estimate of Σe by

Σ̂
τ

e = (σ̂τ
ij)N×N with σ̂τ

ij =

⎧⎪⎨
⎪⎩
σ̂e
ii for i = j,

sτij(σ̂
e
ij) for i 
= j.

(3.7)

where σ̂e
ij is the (i, j)-th entry of the sample covariance matrix of êt, s

τ
ij(·) is a soft

thresholding function given by

sτij(σ̂
e
ij) = sign(σ̂e

ij)max(0, |σ̂e
ij| − τij)

with

τij = CτωNT

√
θ̂ij and θ̂ij =

1

T

T∑
t=1

(êtiêtj − σ̂e
ij)

2 (3.8)

for some sequence ωNT > 0 and sufficiently large constant Cτ > 0.

Step 4. The covariance matrix estimate of yt is defined as

Σ̂ = ÂΣ̂xÂ
′ + B̂B̂′ + Σ̂τ

e , (3.9)

where Σ̂x is the sample covariance matrix of the observable factors, xt.

It is reasonable to use the OLS in Step 1 and employ sample covariance matrix in Step 4

since xt is observable and low-dimensional; see Fan et al. (2008) for a similar procedure. In

Step 2, the SOFAR proposed by Uematsu et al. (2019) and Uematsu and Yamagata (2022)

yields a sparse estimate of B with simultaneously satisfying the restrictions, F̂′F̂/T = IK̂

and B̂′B̂ diagonal, which leads to an efficient estimation of the sWF model. The SOFAR

estimation with tuning the regularisation coefficinent ηNT is numerically implemented by

the R package, rrpack2. The SOFAR is regarded as a natural extension of the PC since

they are identical if ηNT = 0. In Step 3, we adopt the soft threshold referring to our

preliminary numerical trials though there are other types of threshold functions, such as

the hard threshold and smoothly clipped absolute deviation (SCAD) method. Choosing

the regularization coefficient Cτ is explained in Section B.

2See https://cran.r-project.org/web/packages/rrpack/index.html.
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3.1 Determining the number of factors

There are several methods to determine the number of factors in approximate factor models,

including Bai and Ng (2002) and Ahn and Horenstein (2013), but they are designed for the

strong factor models with all the K signal eigenvalues diverging proportionally to N . In

this paper, we recommend to use the approach of Onatski (2010). Briefly, it is to determine

the number of (weak) factors by K̂ = K̂(δ) with

K̂(δ) = {k = 1, . . . , kmax − 1 : λk − λk+1 � δ},

where λk represents the kth largest eigenvalue of (N ∨ T )−1ÛÛ′ and δ > 0 is a fixed

constant. Uematsu and Yamagata (2022) prove that K̂ → K with high probability for any

fixed δ > 0 for a wide class of the sWF models. In practice, δ is predetermined by the edge

distribution (ED) method of Onatski (2010) that is based on a calibration; see the article

for full details.

4 Theoretical Properties

This section derives the rates of convergence of the estimated covariance and corresponding

precision matrices as N ∧ T tends to infinity while K and r are fixed.

Assumption 4.1 Each k-th column vector of B has the sparsity Nk = �Nαk	 with 0 <

αK � · · · � α1 � 1, and ‖B‖max � cb < ∞ for some constant cb. There exist constants

d1, . . . , dK such that B′B = diag(d21N1, . . . , d
2
KNK) and 0 < dKN

1/2
K � · · · � d1N

1/2
1 . For

k such that αk = αk−1, we have d2k−1 − d2k � c1/2d2k−1 for some constant c > 0.

Assumption 4.2 The vector process of idiosyncratic errors and latent factors {et, ft}t�1

is strictly stationary with E(et) = 0, E(ft) = 0, E(etiftk) = 0 and θij := Var(etietj) > g for

all k = 1, . . . , K and i, j = 1, . . . , N for some constant g > 0. Moreover, there exist some

constants c1, c2 > 0 such that
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(a) max
1�i�N

E[exp(se2ti)] � c1 for some 0 < s < ∞,

(b) max
1�k�K

E[exp(sf 2
tk)] � c2 for some 0 < s < ∞.

For the idiosyncratic covariance, there exist some constants
¯
c, c̄ > 0 such that

¯
c � λmin(Σe) �

λmax(Σe) � c̄. Moreover, Σe ∈ Υ(mN), where

Υ(mN) =

{
Σe = (σe

ij)N×N  0 : max
i�N

N∑
j=1

|σe
ij|q(σe

iiσ
e
jj)

(1−q)/2 � mN

}

for the sparsity measure mN = maxi�N

∑
j�N |σe

ij|q with some constant q ∈ [0, 1].

Assumption 4.3 There exist some constants r1, b1 > 0 such that the α-mixing coefficient

α(T ) = sup
A∈F0

−∞, B∈F∞
T

|P (A ∩B)− P (A)P (B)|

satisfies α(T ) � b1 exp(−CT r1), where F0
−∞ and F∞

T represent the σ-fields generated by

{(ft, et) : t � 0} and {(ft, et) : t � T}, respectively.

Assumption 4.4

(a) There exists a constant ce > 0 such that ‖E‖2 � ce(N ∨ T )1/2 holds with probability

at least 1−O((N ∨ T )−v) for some v > 0.

(b) There exists a constant c4 such that for all t, k, and x � 0,

P

(∣∣∣∣∣
N∑
i=1

etibik

∣∣∣∣∣ � x

)
� 2 exp

{
−c4

x2

N1

}
.

Assumption 4.1 is the same as Assumption 2 in Uematsu and Yamagata (2022), which

characterizes the sWF models discussed in Section 2.1. Assumption 4.2(a)(b) prescribe

that ftk and eti are subGaussian random variables. In Assumption 4.2, following Bickel

and Levina (2008a) and Cai and Liu (2011), we assume the conditional sparsity condition,

Σe ∈ Υ(mN). A smaller mN indicates a sparser Σe, which leads to faster convergence

rates in the theorems. This assumption is widely used in, for instance, Fan et al. (2013),
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Cao et al. (2019) and Chen et al. (2019). Unlike Uematsu and Yamagata (2022), where

they assume that idiosyncratic terms and factors follow the vector moving average (VMA)

processes, we adopt the α-strong mixing condition in Assumption 4.3. Assumption 4.4 are

relatively high-level but permissible conditions for deriving the consistency of factor and

factor loadings, and such conditions are widely imposed in many existing literature. Bai

and Ng (2006) basically assumes the same bound for E with weak serial and cross-sectional

correlations. Moon and Weidner (2015, 2017) discuss several examples that various error

processes may satisfy ‖E‖2 = Op((N∨T )1/2). Su andWang (2017) also keeps the same order

of the largest eigenvalue E. In the same literature, they further assume that ‖EB‖max =

Op(N
1/2 log1/2(N∨T )) under a strong factor scheme, which is similar to and can be induced

by our Assumption 4.4 (b). Similar high-level assumptions are also imposed in Fan et al.

(2013) and Wang et al. (2021), for example. Moreover, in Uematsu and Yamagata (2022),

they rigorously prove that all the inequalities in Assumption 4.4 hold when idiosyncratic

errors and factors are specified as a VMA.

Set tuning parameters to be

ηNT � T 1/2 log1/2(N ∨ T ), ωNT � N
3/2
1 log1/2(N ∨ T )

NK(NK ∧ T )
.

This choice of the tuning parameters will guarantee that ‖F′E‖max � ηNT , T
−1/2‖F̂−F‖F �

ωNT , and T−1/2‖B̂−B‖F � N
−1/2
1 ωNT occur with high probability (Lemmas A.7, A.9, and

A.10 resp. in the Appendix).

Due to a technical reason, we restrict the parameter space of optimization (3.6) to

{
(B̃, F̃) ∈ R

N×K × R
T×K : max

i
‖b̃i‖ � Cb, max

t
‖̃ft‖ � Cf

√
log T

}
(4.10)

for some (sufficiently large) constants Cb, Cf > 0. This is large enough to include the true

parameter (B,F) that satisfies Assumptions 4.1 and 4.2(b). Actually under Assumption

4.2(b) (sub-Gaussianity), we have P (maxt ‖ft‖ � Cf

√
log T ) → 1 for sufficiently large Cf

by the sub-Gaussian property (Vershynin, 2018, Ch.2).
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We write T � N ζ for some constant ζ > 0 to represent the size of T relative to the

cross-sectional dimension N . We further impose the technical condition that restricts the

class of the sWF models:

N1(N ∨ T )1/2

N
3/2
K T 1/2

= o(1), (4.11)

which is equivalent to α1 + (1 ∨ ζ)/2 < 3αK/2 + ζ/2. The condition excludes the sWF

models with a large gap between α1 and αK and/or too small T relative to N . This is

used to derive the estimation error bounds of the SOFAR estimator. Moreover, with this

condition, we can prove that K̂ in Section 3.1 converges to the true number K with high

probability; see Uematsu and Yamagata (2022). Thus we suppose K is known throughout

the rest of this section.

4.1 Case 1: Observable factors do not exist

We first consider the case without observable factors in the model. This corresponds to the

original POET setting, but allows the weak factors. The ePOET estimator of yt is simply

reduced to

Σ̂ = B̂B̂′ + Σ̂τ
e . (4.12)

Theorem 4.1 Suppose that Assumptions 4.1–4.4 and condition (4.11) hold. Then Σ̂
τ

e in

(4.12) satisfies with probability at least 1−O((N ∨ T )−v),

‖Σ̂τ

e −Σe‖ � ω1−q
NT mN .

Theorem 4.2 Suppose the same assumptions as in Theorem 4.1 hold. If

ω1−q
NT mN = o(1), (4.13)

then the inverse matrix of Σ̂τ
e is well-defined with probability approaching one, and it sat-

isfies with probability at least 1−O((N ∨ T )−v),

‖Σ̂τ

e

−1 −Σ−1
e ‖ � ω1−q

NT mN .
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Theorem 4.3 Suppose the same assumptions as in Theorem 4.1 hold. Then Σ̂ in (4.12)

satisfies that

‖Σ̂−Σ‖Σ � N1/2 log(N ∨ T )

T
+ ω1−q

NT mN ,

‖Σ̂−Σ‖max � ωNT

hold with probability at least 1−O((N ∨ T )−v).

Following Fan et al. (2011) and Fan et al. (2013), we have used the relative error

‖Σ̂−Σ‖Σ = ‖Σ−1/2Σ̂Σ−1/2− IN‖F because the spectral norm is too large to be controlled

for Σ.

Theorem 4.4 Suppose the same assumptions as in Theorem 4.1 hold. If

mNω
1−q
NT

N
1/2
1 (N1 ∨ T )1/2

NK

= o(1), (4.14)

then the inverse matrix of Σ̂ is well-defined with probability approaching one, and it satisfies

with probability at least 1−O((N ∨ T )−v),

‖Σ̂−1 −Σ−1‖ � mNω
1−q
NT

N
3/2
1 (N1 ∨ T )1/2

N2
K

.

To prove Theorem 4.1-4.4, a key step is to derive the consistency of factors and factor

loadings, which will be stated and proved in Lemma A.9 and A.10. In particular, the rates

of estimated factor and factor loadings by SOFAR can recover the original POET ones

if all the factors are strong (i.e., Nk = N for all k � K). On the other hand, the rates

deteriorate with an extra cost if PC is used under the sWF models. See Appendix C for

more details. Therefore, our covariance estimate has an advantage of faster convergence

speed under the sWF, and can work as good as POET estimates even under the SF.
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4.2 Case 2: Observable factors exist

When the model contains the observable factors xt, we need to estimate A first by OLS

as explained in Section 3. To evaluate the estimation error, additional conditions for the

observable factors xt are required.

Assumption 4.5

(a) The vector of the observed and latent factors and the idiosyncratic error {xt, ft, et}t�1

is strictly stationary with E(xtleti) = 0 and E(xtlftk) = 0 for any l = 1, . . . , r,

k = 1, . . . , K, and i = 1, . . . , N .

(b) There exits some positive constant c3 such that max1�l�r E[exp(sx2
tl)] � c3 for some

0 < s < ∞,

(c) There exist some positive constants r2 and b2 such that the α-mixing coefficient

α(T ) = sup
A∈F0

−∞, B∈F∞
T

|P (A ∩ B)− P (A)P (B)|

satisfies α(T ) � b2 exp(−CT r2), where F0
−∞ and F∞

T represent the σ-fields generated

by {(xt, ft, et) : t � 0} and {(xt, ft, et) : t � T}, respectively.

(d) cu � λmax(cov(xt)) � · · · � λmin(cov(xt)) � cl for some constants cu, cl > 0.

(e) The number of observable factors r is fixed and known.

(f) λmin(N
−1A′A) � ca for some positive constant ca.

In Assumption 4.5, conditions (a) – (e) are standard in the literature. Condition (f)

implies that the r observed factors are strongly pervasive.

Lemma 4.1 Suppose that Assumptions 4.1–4.2, 4.4–4.5 hold. Then we have

‖Û−U‖max �
log1/2(N ∨ T )log1/2T

T 1/2

occurs with probability at least 1−O((N ∨ T )−v).
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Thanks to this lemma, we can find that the estimation error in Step 1 is small enough to

treat A as if it were known. Consequently, the convergence results of covariance estimators

in Case 2, which are similar to those in Case 1, are obtained. Define

ω̃NT = ωNT ∨ log1/2(N ∨ T ) log1/2 T

T 1/2
.

Theorem 4.5 Suppose that Assumptions 4.1–4.2, 4.4–4.5 and condition (4.11) hold. Then

all the assertions of Theorems 4.1–4.3 in Case 1 with ωNT replaced by ω̃NT are true.

Theorem 4.6 Suppose that the assumptions as in Theorem 4.5 hold. If

N ∨ (N
1/2
1 T 1/2)

N
mN ω̃

1−q
NT = o(1), (4.15)

then the inverse matrix of Σ̂ is well-defined with probability approaching one, and it satisfies

‖Σ̂−1 −Σ−1‖ � mN ω̃
1−q
NT

hold with probability at least 1−O((N ∨ T )−v).

In Case 1, the convergence rates of covariance estimators are mainly determined by the

estimation error of latent factors and loadings, ωNT . However in Case 2, the estimation

error comes from the first stage OLS and ωNT , implying that the convergence rates of

ePOET depend on the maximum value of them, ω̃NT . Theorem 4.6, which is parallel to

Theorem 4.4, holds under a weaker condition (4.15) than (4.14) and gives the same rate

as Σ̂−1
e , which is faster than that in Theorem 4.4. It implies that the precision estimate

of ePOET can work better when observable factors exist than the case when observable

factors do not exist.

5 Simulation Studies

We carry out Monte Carlo simulations to investigate the finite-sample performances of the

ePOET estimators. We consider a similar data generating process (DGP) in Uematsu and
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Yamagata (2022) with some modifications on the idiosyncratic error term:

yti =
r∑

l=1

ailxtl +
K∑
k=1

bikftk +
√
θeti.

The observed factors xtl and the factor loadings ail are both generated from i.i.d.N(0, 1).

The unobserved factors ftk and the corresponding factor loadings bik satisfy the conditions

T−1
∑T

t=1 ftkfts = 1{s = k} and N−1
∑N

i=1 bikbis = 1{s = k}, which are realized by the

Gram-Schimidt orthogonalization to f ∗
tk and b∗ik. Here, b

∗
ik ∼ i.i.d.N(0, 1) for i = 1, . . . , Nk

and b∗ik = 0 for Nk+1, . . . , N, and f ∗
tk = ρfkf

∗
t−1,k + vtk with |ρfk| < 1, f ∗

t−1,k ∼ i.i.d.N(0, 1),

and vtk ∼ i.i.d.N(0, 1 − ρ2fk). For the idiosyncratic error term, et = (eti)N×1, we simulate

them independently by et ∼ N(0,Σe), where Σe = (σe
ij)N×N with σe

ij = σ|i−j|1{|i−j| � 4}.

The following statistical losses are used to evaluate the estimation accuracy.

(a) Relative error: N1/2‖Σ̂−Σ‖Σ = ‖Σ−1/2Σ̂Σ−1/2 − IN‖F.

(b) Spectral loss of idisosyncratic covariance estimator: ‖Σ̂τ

e −Σe‖.

(c) Kullback-Leibler Divergence: KLD := Trace
(
ΣΣ̂

−1
)
− log

(∣∣∣ΣΣ̂
−1

∣∣∣)−N.

(d) Spectral loss of inverse of covariance estimator: ‖Σ̂−1 −Σ−1‖.

(e) Spectral loss of inverse of idiosyncratic covariance estimator: ‖Σ̂τ−1

e −Σ−1
e ‖.

(f) Frobenius loss of factor loadings: ‖B̂−B‖F.

Criterion (a) is a relative error measure for covariance matrix estimation, which is proposed

by Fan et al. (2011) and Fan et al. (2013). For (c), it has been used in Yuan and Lin

(2007) and Rothman et al. (2008), for example, to evaluate the precision matrix estimation

performance. The others are common criteria.
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5.1 Case 1

For the case with no observable factors, we compare estimates of the ePOET and POET.

The only difference is that the former applies the SOFAR to obtain (B̂, F̂) while the latter

uses the PCA. Two simulation studies are presented; one assumes two strong factors and

the other considers two weak factors. For each, we set ρfk = 0.5, θ = 1 and σ = 0.3, and

fix T = 200.

Table 1 reports the accuracy of the ePOET and POET estimates when the exponents

(α1, α2) = (1, 1), representing the strong factors. In this case, the penalty term for B

is indeed unnecessary, but the ePOET performs as good as the POET in all aspects.

Interestingly, the ePOET even slightly outperforms the POET in some cases. This suggests

the use of ePOET is good even when the latent factors are expected to be strong. Table

2 shows the case with (α1, α2) = (0.6, 0.6), which indicates the weak factors. Overall the

ePOET performs better especially in terms of the KLD, and the tendency becomes strong

as N increases though the POET can work as good as the ePOET only if T > N . This

feature results from the advantage of the SOFAR estimates over the PC estimates for the

sparse factor loadings; see Uematsu and Yamagata (2022) for more information.

5.2 Case 2

For the case when observable factors exist, we also set ρfk = 0.5, θ = 1 and σ = 0.3, and

fix T = 200. The numbers of observable factors and unobservable factors are fixed to be

r = 3 and K = 3, respectively. We compare the three estimates: (i) ePOET proposed in

Section 3; (ii) POET constructed by the PCA instead of the SOFAR; (iii) Diagonalized

Sample Covariance obtained as follows. This construction is inspired by Fan et al. (2008).

Step 1. Regress Y on X to obtain the OLS estimate Â′ = (X′X)−1X′Y, and make the

residual matrix Û = Y −XÂ′.
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Table 1: Performance of the ePOET and POET estimates for the factor model with (α1, α2)

= (1,1) with no observable factors. T = 200.

ePOET POET

Design (α1, α2) (α1, α2) = (1, 1)

N Criteria mean median s.d. mean median s.d.

100

N1/2‖Σ̂−Σ‖Σ 3.80 3.80 0.11 3.81 3.80 0.10

‖Σ̂τ

e −Σe‖ 0.74 0.73 0.04 0.74 0.74 0.04

KLD 4.78 4.80 0.27 4.74 4.75 0.26

‖Σ̂−1 −Σ−1‖ 0.64 0.64 0.03 0.64 0.64 0.03

‖Σ̂τ−1

e −Σ−1
e ‖ 0.65 0.64 0.04 0.65 0.64 0.03

‖B̂−B‖F 18.85 19.64 6.03 18.27 19.59 6.63

200

N1/2‖Σ̂−Σ‖Σ 5.02 5.02 0.11 5.08 5.12 0.15

‖Σ̂τ

e −Σe‖ 0.76 0.75 0.03 0.76 0.76 0.03

KLD 10.36 10.39 0.39 10.28 10.25 0.39

‖Σ̂−1 −Σ−1‖ 0.69 0.69 0.03 0.69 0.69 0.03

‖Σ̂τ−1

e −Σ−1
e ‖ 0.70 0.69 0.03 0.70 0.69 0.03

‖B̂−B‖F 26.61 27.95 9.11 26.07 28.30 10.06

300

N1/2‖Σ̂−Σ‖Σ 5.99 5.99 0.11 6.00 5.98 0.13

‖Σ̂τ

e −Σe‖ 0.78 0.78 0.03 0.78 0.78 0.03

KLD 16.50 16.47 0.60 16.37 16.33 0.56

‖Σ̂−1 −Σ−1‖ 0.72 0.72 0.02 0.72 0.72 0.02

‖Σ̂τ−1

e −Σ−1
e ‖ 0.73 0.72 0.02 0.72 0.72 0.02

‖B̂−B‖F 32.62 34.26 10.67 33.74 34.50 9.56
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Table 2: Performance of the ePOET and POET estimates for the factor model with (α1, α2)

= (0.6,0.6) with no observable factors. T = 200.

ePOET POET

Design (α1, α2) (α1, α2) = (0.6, 0.6)

N Criteria mean median s.d. mean median s.d.

100

N1/2‖Σ̂−Σ‖Σ 3.65 3.66 0.16 3.78 3.78 0.09

‖Σ̂τ
e −Σe‖ 0.94 0.95 0.11 1.01 1.01 0.12

KLD 4.11 4.00 0.29 4.72 4.74 0.27

‖Σ̂−1 −Σ−1‖ 0.66 0.66 0.03 0.66 0.65 0.04

‖Σ̂τ−1

e −Σ−1
e ‖ 1.62 1.43 0.77 1.93 1.79 0.77

‖B̂−B‖F 7.14 7.52 2.39 7.26 7.90 3.71

200

N1/2‖Σ̂−Σ‖Σ 4.93 4.90 0.18 5.10 5.15 0.14

‖Σ̂τ
e −Σe‖ 0.85 0.84 0.07 0.90 0.90 0.08

KLD 9.10 9.07 0.46 10.32 10.31 0.40

‖Σ̂−1 −Σ−1‖ 0.72 0.71 0.03 0.70 0.70 0.03

‖Σ̂τ−1

e −Σ−1
e ‖ 0.92 0.82 0.25 1.06 1.02 0.27

‖B̂−B‖F 8.89 9.12 2.74 9.36 9.80 2.96

300

N1/2‖Σ̂−Σ‖Σ 5.90 5.87 0.20 6.02 6.01 0.12

‖Σ̂τ
e −Σe‖ 0.82 0.80 0.05 0.85 0.84 0.06

KLD 14.48 14.44 0.62 16.41 16.40 0.58

‖Σ̂−1 −Σ−1‖ 0.74 0.74 0.02 0.72 0.72 0.02

‖Σ̂τ−1

e −Σ−1
e ‖ 0.79 0.76 0.09 0.80 0.75 0.12

‖B̂−B‖F 9.83 10.16 3.04 10.63 11.20 3.82
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Step 2. Obtain the sample covariance matrix of Û, and replace all the off-diagonal elements

with zeros, which is denoted by Σ̂diag
u .

Step 3. The covariance matrix estimate of Y is given by

Σ̂ = ÂΣ̂xÂ
′ + Σ̂diag

u ,

where Σ̂x is the sample covariance matrix of the observable factors, xt.

In Table 3, our ePOET (i) works better than the other two methods (ii) and (iii) in

most of the aspects except for the precision matrix estimates. In particular, it is clear that

the superiority of the ePOET becomes larger as N increases. The results also demonstrate

that after taking out observable factors, the ePOET works better than that of Case 1.

6 Empirical Applications

We carry out two empirical studies of proposed ePOET estimators.

6.1 Risk minimization of portfolios

In order to evaluate the performance of our ePOET in practice, we consider to construct

minimum variance portfolios (MVP) using daily access return series of the S&P 500 dataset

and Fama-French five factors data from Kenneth R. French-Data Library. 3

6.1.1 MVP model and empirical designs.

The MVP attempts to allocate N financial assets to make the portfolio risk w′Σ̃w, where

w is a vector of weights and Σ̃ is a covariance matrix estimate of the given assets, as small

as possible. Specifically, the MVP solves the optimization problem:

min
w

w′Σ̃w subject to w′1N = 1, (6.16)

3See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Table 3: Performance of the three methods, where (i), (ii), and (iii) refere to the ePOET,

POET, and Diagonalized Sample Covariance, respectively, for the factor model with three

observable factors and three unobservable factors.

Mean Median s.d

Design (α1, α2, α3) (α1, α2, α3) = (0.7, 0.7, 0.7)

N Criteria (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

100

N1/2‖Σ̂−Σ‖Σ 4.15 4.32 4.42 4.15 4.28 4.42 0.11 0.11 0.13

‖Σ̂τ
e −Σe‖ 0.92 1.00 - 0.92 1.00 - 0.09 0.09 -

KLD 6.06 6.83 30.58 6.03 6.82 30.63 0.36 0.37 2.51

‖Σ̂−1 −Σ−1‖ 0.64 0.69 1.53 0.64 0.68 1.53 0.04 0.07 0.05

‖Σ̂τ−1

e −Σ−1
e ‖ 1.21 1.65 - 1.13 1.56 - 0.39 0.46 -

‖B̂−B‖F 11.22 11.91 - 11.52 11.98 - 2.09 2.34 -

200

N1/2‖Σ̂−Σ‖Σ 5.36 5.60 5.79 5.34 5.62 5.78 0.15 0.10 0.15

‖Σ̂τ
e −Σe‖ 0.83 0.89 - 0.82 0.89 - 0.05 0.06 -

KLD 13.03 14.59 60.20 13.03 14.59 60.30 0.58 0.58 3.27

‖Σ̂−1 −Σ−1‖ 0.71 0.68 1.57 0.70 0.67 1.57 0.03 0.04 0.03

‖Σ̂τ−1

e −Σ−1
e ‖ 0.77 0.88 - 0.74 0.86 - 0.09 0.15 -

‖B̂−B‖F 14.61 15.69 - 14.70 15.85 - 2.62 2.59 -

300

N1/2‖Σ̂−Σ‖Σ 6.29 6.54 6.82 6.26 6.55 6.81 0.16 0.13 0.17

‖Σ̂τ
e −Σe‖ 0.81 0.86 - 0.81 0.86 - 0.04 0.04 -

KLD 20.39 22.82 86.86 20.37 22.88 86.63 0.68 0.75 3.95

‖Σ̂−1 −Σ−1‖ 0.74 0.71 1.59 0.74 0.70 1.59 0.03 0.03 0.03

‖Σ̂τ−1

e −Σ−1
e ‖ 0.76 0.74 - 0.76 0.72 - 0.03 0.07 -

‖B̂−B‖F 16.61 17.55 - 16.82 17.80 - 3.27 3.13 -

21



where 1N = (1, . . . , 1)′. We allow short sales and ignore any transaction cost for simplicity.

It is well-known that the optimal weight w∗ obtained by the quadratic problem (6.16) and

the corresponding risk R∗ are computed as

w∗ =
Σ̃−11N

1N
′Σ̃

−1
1N

, R∗ = w∗′Σ̃w∗. (6.17)

We compare the out-of-sample forecasting performance of candidate methods in terms

of the MVP construction. The following five methods are conducted.

(i) ePOET-2: ePOET proposed in Section 2 when observable factors exist.

(ii) POET: the method proposed in Fan et al. (2013), which does not require observable

factors.

(iii) EFM-POET: POET constructed by the PCA instead of the SOFAR when observable

factors exist.

(iv) ePOET-1: ePOET proposed in Section 2 when no observable factors.

(v) EFM: Exact factor model proposed by Fan et al. (2008), which use observable factors

and the diagonal part of sample idiosyncratic covariance.

We collect the S&P 500 data that consists of 2520 daily excess return for the period from

April 2, 2002 to March 30, 2012 (about 10-year trading days with 21 days per month).

For the methods used observable factors, we also collect the Fama-French five factors data

from the same period as the S&P 500 returns. A portfolio is created at the first trading

day of each month using a candidate method to estimate the covariance matrix of returns

based on the data from the past T days. To reflect the high-dimensionality, we set the

time dimension T = 126 (six months of trading days) and the cross-sectional dimension

N = 395, which is the maximum number of stocks available in the dataset.

Under a rolling window scheme, the vector of optimal portfolio weights (w∗
t ) is updated

monthly (21 days) for constructing next month’s portfolios until March 30, 2012. Once
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Table 4: Performance of different methods in out-of-sample minimum variance portfolio

analysis.

Criteria ePOET-2 EFM-POET ePOET-1 POET EFM

Out-of-sample

standard deviation

0.45 0.50 0.48 0.47 0.51

Total excess return 39.89 33.46 35.01 38.19 38.67

Mean Sharpe ratio 1.36 1.32 1.24 1.29 1.14

obtaining all the out-of-sample portfolios, we calculate out-of-sample standard deviation,

the total out-of-sample excess returns and the mean Sharpe ratio following DeMiguel et al.

(2009). We determine the number of latent factors by the method of Onatski (2010) and

select the optimal threshold tuning parameter by CV for each update.

6.1.2 Results

Because the aim here is risk minimization, the out-of-sample standard deviation should be

our primary basis of comparison, with the total out-of-sample returns and the Sharpe ratios

serving as the secondary bases. In Table 4, we find that the ePOET with observable factors

achieves the best performance in out-of-sample standard deviation among the candidates.

Meanwhile it can maintain certain high level excess returns. When assuming there are

no observable factors, ePOET works similar to POET under the criteria of out-of-sample

standard deviation. Exact factor model works the worst as observable factors are not

sufficient to capture the covariance structure. Overall, ePOET with observable factors

performs the best in both risk minimization and out-of-sample return.
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(a) ePOET (b) POET

Figure 3: Heatmaps of estimated residual correlations (absolute values) from the Fama-

French five-factor model.

6.2 Unobserved weak factors left out in the residuals of Fama-

French five-factor model

As the scree plots in Introduction demonstrate, weak factors may exist in the residuals of

the Fama-French five-factor model. We use the same dataset in Section 1 to explore the

covariance structure of the residuals of the five-factor model based on our sWF framework.

The residuals are obtained by taking out all five observable factors of the five-factor model

from the collected stock returns through the OLS method. From Figure 3, it is clear that

the POET estimates exhibit much noisier patterns than the ePOET estimates. The ePOET

can remove some of the estimation noise through its sparseness mechanism and successfully

retain the clustered non-zeros among specific industries. Such findings are consistent with

the conclusion of Section 6.3 of Uematsu and Yamagata (2022) and inspire us to estimate

covariance matrices by the ePOET method when some factors are already known.
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7 Conclusion

This paper proposes the extended POET (ePOET), which fully extends the original POET

of Fan et al. (2013) to allowing the model to have not only latent strong factors but

also observable and latent weak factors. Regarding estimation of covariance matrices,

ePOET combines the observable factors, sparsity-induced weak factors (sWF), and the

sparse idiosyncratic noise to estimate high-dimensional covariance matrices. Compared to

POET, when observable factor exist, our ePOET method can better detect the potential

WF structure in the residuals. When observable factors do not exist, the ePOET is able to

distinguish which factors are essential to data variations through the sparsity patterns of the

estimated factor loadings, thereby enhancing the explanatory power of the proposed model.

Simulation studies show that if data are generated from relatively weak latent factors only

or a mixed structure of observable factors and weak latent factors, the performance of

our ePOET model is uniformly better than the POET estimators. In addition, ePOET

can work as good as POET even if data contain strong factors only. The MVP studies

conclude that the ePOET with mixed factors brings significantly less risky portfolios than

other candidates, maintaining the highest returns. Moreover, as our model can be seen

as a structure of observable regressors plus factor errors, which is similar to the structure

proposed in Bai (2009) and Fan et al. (2021), there may have potential research interests

for panel regressions such as GLS estimation.
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A Proofs of the Main Results and Lemmas

In this section, we present the lemmas and proofs for the main results for two cases in

Section 4.1 and 4.2 separately.

A.1 Case 1: Observable factors do not exist

Lemma A.1 If all the assumptions in Theorem 4.1 are satisfied, then

T−1

T∑
t=1

‖̂f t − ft‖2 � N3
1 log(N ∨ T )

N2
K(NK ∧ T )2

= ω2
NT

holds with probability at least 1−O((N ∨ T )−v).

Proof: Note that

1

T

T∑
t=1

‖̂f t − ft‖2 = 1

T
‖F̂− F‖2F � ω2

NT ,

where � holds because of Lemma A.9. �

1



Lemma A.2 Under the assumptions in Theorem 4.1, we have

max
i�N

‖b̂i − bi‖ � log1/2(N ∨ T )

T 1/2
� N

3/2
1 log1/2(N ∨ T )

NK(NK ∧ T )

holds with probability at least 1−O((N ∨ T )−v).

Proof: According to Uematsu and Yamagata (2021), we obtain B̂ under the Karush-

Kuhn-Tucker (KKT) conitions by

B̂−B = T−1(BF′(F̂− F) + E′(F̂− F)) + T−1E′F− T−1ηnV(B̂),

where the (i, k)th element of V(B̃) for given B̃ = b̃ik ∈ R
N×K is defined as

vik(B̃)

⎧⎪⎨
⎪⎩

= sgn(b̃ik) for b̃ik 
= 0

∈ [−1, 1] for b̃ik = 0.

Then, using the triangle inequality, we have

max
i�N

‖b̂i − bi‖

� T−1ηn + T−1(‖BF′(F̂− F)‖max + ‖E′(F̂− F)‖max) + T−1‖E′F‖max. (A.1)

Note that we set ηn � T 1/2 log1/2(N ∨T ) in Section 4. The proof of Theorem 1 in Uematsu

and Yamagata (2021) implies the middle term of (A.1) satisfies

T−1(‖BF′(F̂− F)‖max + ‖E′(F̂− F)‖max)

� T−1/2N
3/2
1 log(N ∨ T )

NK(NK ∧ T )
.

Also note that Lemma A.7 gives T−1‖E′F‖max � T−1/2 log1/2(N∨T ). Combining the terms

in (A.1), we have

max
i�N

‖b̂i − bi‖ � log1/2(N ∨ T )

T 1/2
� N

3/2
1 log1/2(N ∨ T )

NK(NK ∧ T )
= ωNT , (A.2)

where � holds because condition (4.11) ensures that

N
3/2
1 T 1/2

NK(NK ∧ T )
� N

1/2
1 T 1/2

(NK ∧ T )
� 1.

�

2



Lemma A.3 If all the assumptions in Theorem 4.1 are satisfied, the following inequalities

hold with probability at least 1−O((N ∨ T )−v) :

(a) maxi�N
1
T

∑T
t=1 |êti − eti|2 � ω2

NT ,

(b) maxi�N,t�T |êti − eti|2 � log(N ∨ T ).

Proof: Let Δb
i = b̂i − bi and Δf

t = f̂ t − ft. We first rewrite |êti − eti| as

|êti − eti| = |Δf
tbi

′ +Δf
tΔ

b
i

′
+ ftΔ

b
i

′|.

For (a), by the inequality (A+B + C)2 � 3(A2 +B2 + C2), Lemma A.1 and Lemma A.2,

we get

max
i�N

1

T

T∑
t=1

|êti − eti|2

� 3max
i

‖bi‖2 1
T

T∑
t=1

‖̂f t − ft‖2 + 3max
i

‖b̂i − bi‖2 1
T

T∑
t=1

‖̂f t − ft‖2

+ 3max
i

‖b̂i − bi‖2 1
T

T∑
t=1

‖ft‖2

Note that with the proof of Lemma 3.1(ii) in Fan et al. (2011), T−1
∑T

t=1 ‖ft‖2 � K.

Therefore,

max
i�N

1

T

T∑
t=1

|êti − eti|2 � ω2
NT

holds with probability at least 1 − O((N ∨ T )−v). Similarly for (b), we upper bound

maxi�N,t�T |êti − eti|2 as

max
i�N,t�T

|êti − eti|2

� 3max
i

‖bi‖2max
t

‖̂f t − ft‖2 + 3max
i

‖b̂i − bi‖2max
t

‖̂f t − ft‖2

� 3max
i

‖bi‖2(max
t

‖̂f t‖2 +max
t

‖ft‖2) + 3max
i

‖b̂i − bi‖2(max
t

‖̂f t‖2 +max
t

‖ft‖2)

+ 3max
i

‖b̂i − bi‖2max
t

‖ft‖2

� log(N ∨ T ),

3



where we have used the fact that f̂t and ft lie in the parameter space in (4.10) with high

probability under Assumption 4.2(b). �

Lemma A.4 Under the assumptions of Theorem 4.1, there exists a large enough constant

C > 0 such that

(a)

P

(
max
i,j�N

∣∣∣∣∣ 1T
T∑
t=1

etietj − σe
ij

∣∣∣∣∣ > C log1/2(N ∨ T )

T 1/2

)
< O

(
(N ∨ T )−v

)
,

(b)

P

(
max
i,j�N

∣∣∣∣∣ 1T
T∑
t=1

(etietj − σe
ij)

2 − θij

∣∣∣∣∣ > C log1/2(N ∨ T )

T 1/2

)
< O

(
(N ∨ T )−v

)
,

(c)

P

(
max
i,j�N

1

T

T∑
t=1

(êtiêtj − etietj)
2 > CωNT log1/2(N ∨ T )

)
< O

(
(N ∨ T )−v

)
.

Proof: We follow the similar proof procedures to Lemma A.3 of Fan et al. (2011) and

borrowing some strategies in Ding et al. (2021). The proofs of (a) and (b) are generally

based on Theorem 1 in Merlevède et al. (2009). First for (a), by Lemma A.2 in Fan et al.

(2011) and Assumption 4.2, we have etietj satisfies the sub-exponential tail condition with

parameter 2/3. Let γ = (3/2 + r−1
1 )−1 so that 0 < γ < 1, then Theorem 1 of Merlevède

et al. (2009) gives that there exist some constants Ci > 0, i = 1, . . . , 5 that do not depend

on N and T such that for any i, j � N and any positive s,

P

(∣∣∣∣∣ 1T
T∑
t=1

etietj − σe
ij

∣∣∣∣∣ > s

)
� T exp

(
−(Ts)γ

C1

)
+ exp

(
− (Ts)2

C2(1 + TC3)

)

+ exp

(
−(Ts)2

C4T
exp

(
(Ts)γ(1−γ)

C5(log Ts)γ

))
.

Notice that by Bonferroni’s inequality,

P

(
max
i,j

∣∣∣∣∣ 1T
T∑
t=1

etietj − σe
ij

∣∣∣∣∣ > s

)
� N2max

i,j
P

(∣∣∣∣∣ 1T
T∑
t=1

etietj − σe
ij

∣∣∣∣∣ > s

)
.

4



Let s = C
√

log(N ∨ T )/T for some large enough constant C. We have

N2 exp

(
− (Ts)2

C2(1 + TC3)

)
= N2 exp

(
−C2T log(N ∨ T )

C2(1 + TC3)

)

� N2 exp

(
−C2T log(N ∨ T )

C2(1 + TC3)

)
= O((N ∨ T )−v). (A.3)

For all N, T � 2, we have Ts = C(log(N ∨ T )T )1/2 � T 1/2 > 1. Then it is easy to see that

(Ts)γ(1−γ)

logγ(N ∨ T )
� exp(γ)(1− γ)γ

for 0 < γ < 1 so that

exp

(
(Ts)γ(1−γ)

C5(log(N ∨ T ))γ

)
� exp

(
exp(γ)(1− γ)γC−1

5

)
= C6.

Hence, we obtain

N2 exp

(
−(Ts)2

C4T
exp

(
(Ts)γ(1−γ)

C5(log Ts)γ

))

< N2 exp

(
−C6(Ts)

2

C4T

)
= O((N ∨ T )−v). (A.4)

Next, following the steps in the proof of Lemma A.1 in Ding et al. (2021), we have when

(log(N ∨ T ))2/γ1−1 = O(T ) for some γ1 < γ,

N2T exp

(
−(Ts)γ

C1

)
� O((N ∨ T )−v). (A.5)

Combining (A.3), (A.4) and (A.5), we complete the proof of (a). Part (b) can be proved

in a same manner as (a). For (c), by the Cauchy-Schwarz inequality, we have

max
i,j

1

T

T∑
t=1

(êtiêtj − etietj)
2

= max
i,j

1

T

T∑
t=1

(eti(êtj − etj) + (êti − eti)etj + (êti − eti)(êtj − etj))
2

� 3

T
max
i,j

T∑
t=1

((êti − eti)(êtj − etj))
2 +

6

T
max
i,j

T∑
t=1

(eti(êtj − etj))
2

� 3

T
max

i

T∑
t=1

(êti − eti)
2max

i,t
|êti − eti|2

+
6

T

(
max

i

T∑
t=1

e4ti

)1/2 ((
max

i

T∑
t=1

(êti − eti)
2

)(
max
i,t

|êti − eti|2
))1/2

=: I + II.
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By Lemma A.3, I � ω2
NT log(N ∨ T ). With simple algebras, the first parentheses in II can

be upper bounded as for some positive constant Ce,

1

T 1/2

(
max

i

T∑
t=1

e4ti

)1/2

=

(
max

i

1

T

T∑
t=1

(e2ti − σe
ii + σe

ii)
2

)1/2

�
(
2max

i

1

T

T∑
t=1

(e2ti − σe
ii)

2 + 2max
i

(σe
ii)

2

)1/2

�
(
2max

i

∣∣∣∣∣ 1T
T∑
t=1

(e2ti − σe
ii)

2 − θii

∣∣∣∣∣+ 2max
i

θii + 2max
i

(σe
ii)

2

)1/2

� Ce,

where the last inequality holds by part (b) and Assumption 4.2. Next, using Lemma A.3

for the second parentheses in II, we have

1

T 1/2

((
max

i

T∑
t=1

(êti − eti)
2

)(
max
i,t

|êti − eti|2
))1/2

=

(
max

i

1

T

T∑
t=1

(êti − eti)
2

)1/2 (
max
i,t

|êti − eti|2
)1/2

� ωNT log1/2(N ∨ T ).

Thus,

II � ωNT log1/2(N ∨ T ).

Combining I and II, we have

max
i,j

1

T

T∑
t=1

(êtiêtj − etietj)
2 � ωNT log1/2(N ∨ T )

holds with probability at least 1−O((N ∨ T )−v). �

Lemma A.5 Under the assumptions of Theorem 4.1,

max
i,j�N

|σ̂e
ij − σe

ij| � ωNT

holds with probability at least 1−O((N ∨ T )−v).
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Proof: Using the triangle inequality, we have

|σ̂e
ij − σe

ij| � 1

T

∣∣∣∣∣
T∑
t=1

(êti − eti)(êtj − etj)

∣∣∣∣∣+ 1

T

∣∣∣∣∣
T∑
t=1

(êti − eti)etj

∣∣∣∣∣
+

1

T

∣∣∣∣∣
T∑
t=1

(êtj − etj)eti

∣∣∣∣∣+ 1

T

∣∣∣∣∣
T∑
t=1

(etietj − σe
ij)

∣∣∣∣∣
=: I + II + III + IV.

Applying the Cauchy-Schwarz inequality to I yields

max
i,j�N

1

T

T∑
t=1

(êti − eti)(êtj − etj)

� max
i,j�N

1

T

T∑
t=1

(êti − eti)
2 � ω2

NT ,

where � holds by Lemma A.3(a). We employ the Cauchy-Schwarz inequality again for

II and III, and achieve

max
i,j

[
1

T

T∑
t=1

(êti − eti)etj,
1

T

T∑
t=1

(êtj − etj)eti

]

�
{
max
i,j

1

T

T∑
t=1

(êti − eti)
2

}1/2 {
max
i,j

1

T

T∑
t=1

e2ti

}1/2

� ωNT .

For IV , maxi,j�NT
−1|∑T

t=1 etietj − σe
ij| � T−1/2 log1/2(N ∨ T ) is directly from Lemma

A.4(a). Combining I − IV completes the proof. �

Lemma A.6 Under the assumptions in Theorem 4.1, for θ̂ij defined in (3.8), there are

some positive constants θ1 and θ2 such that the event Θ = {θ1 > θ̂ij > θ2, ∀i, j > N}

occurs with probability at least 1−O((N ∨ T )−v).

Proof: It is sufficient to show that for θij defined in Assumption 4.2,

max
i,j�N

|θ̂ij − θij| � ωNT log1/2(N ∨ T ),
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holds with probability at least 1− O((N ∨ T )−v). We follow the similar procedures in the

proof of Lemma A.9 in Ding et al. (2021). Using the triangle inequality, we have

max
i,j�N

|θ̂ij − θij|

� max
ij

∣∣∣∣∣ 1T
T∑
t=1

(êtiêtj − σ̂e
ij)

2 − 1

T

T∑
t=1

(etietj − σe
ij)

2

∣∣∣∣∣+max
ij

∣∣∣∣∣ 1T
T∑
t=1

(etietj − σe
ij)

2 − θij

∣∣∣∣∣
� max

ij

1

T

T∑
t=1

(êtiêtj − σ̂e
ij − etietj + σe

ij)
2

+ 2max
ij

∣∣∣∣∣ 1T
T∑
t=1

(êtiêtj − σ̂e
ij − etietj + σe

ij)(etietj − σe
ij)

∣∣∣∣∣
+ max

ij

∣∣∣∣∣ 1T
T∑
t=1

(etietj − σe
ij)

2 − θij

∣∣∣∣∣
= I + II + III

For I, by Lemma A.4 and Lemma A.5,

I � 2max
ij

1

T

T∑
t=1

(êtiêtj − etietj)
2 + 2max

ij
(σ̂e

ij − σe
ij)

2

� ωNT log1/2(N ∨ T ).

For II, by the Cauchy-Schwarz Inequality, term I, Lemma A.4(b), and the boundedness

of θij given in Assumption 4.2, we have

II � 2max
ij

(
1

T

T∑
t=1

(êtiêtj − σ̂e
ij − etietj + σe

ij)
2

)1/2 (
1

T

T∑
t=1

(etietj − σe
ij)

2

)1/2

� ωNT .

Next, by Lemma A.4 (b),

III � log1/2(N ∨ T )

T 1/2
� ωNT .

Combining I, II and III, we have

max
i,j�N

|θ̂ij − θij| � ωNT log1/2(N ∨ T ).

�
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Lemma A.7 Suppose Assumption 4.2-4.3 hold, we have

‖E′F‖max � T 1/2 log1/2(N ∨ T )

occurs with probability at least 1−O((N ∨ T )−v).

Proof: Let x = C∗T 1/2log1/2(N ∨ T ) for some sufficient large constant C∗. we have

P (‖E′F‖max > x)

� P

(
max

i�N, k�K

∣∣∣∑T

t=1
etiftk

∣∣∣ > x

)

� KN max
i�N, k�K

P
(∣∣∣∑T

t=1
etiftk

∣∣∣ > x
)
,

where the second inequality comes from the Boole’s inequality. By Theorem 1 of Merlevède

et al. (2009), it is easy to get

P

(
max

i�N, k�K

∣∣∣∑T

t=1
etifkt

∣∣∣ > C∗T 1/2log1/2(N ∨ T )

)
� O((N ∨ T )−v).

Therefore, we have ‖E′F‖max � T 1/2 log1/2(N ∨ T ) occurs with probability at least 1 −

O((N ∨ T )−v).

�

Lemma A.8 Suppose Assumption 4.1 and 4.4 hold, we have

‖EB‖max � N
1/2
1 log1/2(N ∨ T )

occurs with probability at least 1−O((N ∨ T )−v).

Proof: Let x = C∗N1/2
1 log1/2(N ∨ T ) for some sufficient large constant C∗. we have

P (‖EB‖max > x)

� P

(
max

t�T, k�K

∣∣∣∑N

i=1
etibik

∣∣∣ > x

)

� KT max
t�T, k�K

P
(∣∣∣∑N

i=1
etibik

∣∣∣ > x
)
,

9



where the second inequality comes from the Boole’s inequality. Assumption 4.4 (b) yields

for some sufficient large constant C∗,

P

(
max

t�T, k�K

∣∣∣∑N

i=1
etibik

∣∣∣ > C∗N1/2
1 log1/2(N ∨ T )

)

� 2KT exp {−C� log(N ∨ T )}

� O((N ∨ T )−v),

which can complete the proof.

�

Lemma A.9 If all the assumptions in Theorem 4.1 hold, then

T−1/2‖F̂− F‖F � N
3/2
1 log1/2(N ∨ T )

NK(NK ∧ T )

holds with probability at least 1−O((N ∨ T )−v).

Lemma A.10 If all the assumptions in Theorem 4.1 hold, then

N
−1/2
1 ‖B̂−B‖F � T 1/2N1 log

1/2(N ∨ T )

NK(NK ∧ T )

holds with probability at least 1−O((N ∨ T )−v).

Proof: [Lemma A.9 and Lemma A.10] The proof can be done in the same way of Theorem

2 in Uematsu and Yamagata (2022). Note that the proof will heavily depend on Assumption

4.4, Lemma A.7 and Lemma A.8. �

Proof: [Theorem 4.1]

We follow the proof strategy of Theorem 5 in Fan et al. (2013). Lemma A.6 and Lemma

A.5 imply that for any ε > 0, there are some positive constants M , θ1 and θ2 such that the

events

Ω = {maxi,j�N |σ̂e
ij − σe

ij| � MωNT}, and

Θ = {θ2 � θ̂
1/2
ij � θ1, ∀i, j � N}

10



occur with probability at least 1 − O((N ∨ T )−v). Then, under the event Ω ∩Θ, we can

apply the inequalities of Theorem 5 in Fan et al. (2013) to get with probability at least

1−O((N ∨ T )−v),

‖Σ̂τ

e −Σe‖ � max
i�N

N∑
j=1

|sτij(σ̂e
ij)− σe

ij|

�
{
Cθ1 +M

M q
+ (Cθ1 +M)1−q

}
ω1−q
NT max

i�N

N∑
j=1

|σe
ij|q

� ω1−q
NT mN .

�

Proof: [Theorem 4.2] Given mNω
1−q
NT = o(1) and the assumption that λmin(Σe) �

¯
c >

0, we can achieve that all the eigenvalues of Σ̂
τ

e are bounded from 0 with probability

approaching 1 and

‖Σ̂τ−1

e −Σ−1
e ‖ � ω1−q

NT mN

holds with probability at least 1−O((N ∨ T )−v) by the similar arguments in the proof of

Theorem 2.1 in Fan et al. (2011). �

Proof: [Theorem 4.3]

(a) By the triangle inequality, we have for

‖Σ̂−Σ‖2Σ

� ‖B̂B̂
′ −BB‖2Σ + ‖Σ̂e −Στ

e‖2Σ

� ‖(B̂′ −B′)(B̂−B)‖2Σ + ‖B(B̂
′ −B′)‖2Σ + ‖Σ̂τ

e −Σe‖2Σ

� N−1‖B̂−B‖4F +N−1‖B′Σ−1B‖‖Σ−1‖‖B̂−B‖2F + ‖Σ̂τ

e −Σe‖2Σ

= I + II + III.

11



First,

I = N−1‖B̂−B‖4F

� N−1

(
N max

i�N
‖b̂i − bi‖2

)2

� N log2(N ∨ T )

T 2
(A.6)

where the last inequality holds due to Lemma A.2. Using the same procedures in the

proof of Theorem 2 in Fan et al. (2008), we have ‖B′Σ−1B‖ = O(1) so that

II � N−1
K max

i�N
‖b̂i − bi‖2 � log(N ∨ T )

NKT
.

Next, by Theorem 4.1,

III = N−1‖Σ−1/2(Σ̂
τ

e −Σe)Σ
−1/2‖2F

� ‖Σ−1/2(Σ̂
τ

e −Σe)Σ
−1/2‖2

� ‖Σ̂τ

e −Σe‖2λmax(Σ
−1).

� ‖Σ̂τ

e −Σe‖2

Combining I, II, and III together, we have with probability at least 1−O((N∨T )−v)

‖Σ̂−Σ‖2Σ � N log2(N ∨ T )

T 2
+ ω2−2q

NT m2
N .

(b) Using the triangle inequality, we derive

‖Σ̂−Σ‖max � ‖B̂B̂
′ −BB′‖max + ‖Σ̂τ

e −Σe‖max =: I + II.

For I,

‖B̂B̂
′ −BB′‖max = max

i,j
|b̂′

ib̂j − b′
ibj|

� (max
i

‖b̂i − bi‖)2 + 2max
i,j

‖b̂i − bi‖‖bj‖

� ωNT ,

12



where the last equality holds because of Lemma A.2. For II, by the triangle inequality

and Lemma A.5,

‖Σ̂τ

e −Σe‖max = max
i,j

|sτij(σ̂e
ij)− σe

ij|

� max
i,j

|sτij(σ̂e
ij)− σ̂e

ij|+max
i,j

|σ̂e
ij − σe

ij|

� τij +max
i,j

|σ̂e
ij − σe

ij|

� ωNT (A.7)

Combining I and II, we complete the proof.

�

Lemma A.11 Under the assumptions of Theorem 4.1, we have

‖B̂′
Σ̂

τ−1

e B̂−B′Σ−1
e B‖ � mNω

1−q
NT N1

holds with probability at least 1−O((N ∨ T )−v).

Proof: We follow the similar argument in the proof of Lemma B.5(i) in Fan et al. (2011).

Using the triangle inequality, we have

‖B̂′
Σ̂

τ−1

e B̂−B′Σ−1
e B‖

� ‖(B̂−B)′Σ̂
τ−1

e (B̂−B)‖+ 2‖(B̂−B)′Σ̂
τ−1

e B‖+ ‖B′(Σ̂
τ−1

e −Σe
−1)B‖

� ‖B̂−B‖2F‖Σ̂
τ−1

e ‖+ 2‖B̂−B‖F‖Σ̂τ−1

e ‖‖B‖+ ‖B′B‖‖Σ̂τ−1

e −Σe
−1‖

� Tω2
NT + T 1/2N

1/2
1 ωNT +mNω

1−q
NT N1

� mNω
1−q
NT N

1/2
1 (N1 ∨ T )1/2,

where � holds because of Lemma A.10, Assumption 4.1 and Theorem 4.2. �

Proof: [Theorem 4.4] We use the similar proof strategy in Fan et al. (2013) with some

modifications. By the Sherman-Morrison-Woodbury formula we have ‖Σ̂−1 − Σ−1‖ �

13



∑6
i=1 Ai, where

A1 = ‖Σ̂τ−1

e −Σ−1
e ‖,

A2 = ‖(Σ̂τ−1

e −Σ−1
e )B̂(IK + B̂

′
Σ̂

τ−1

e B̂)−1B̂
′
Σ̂

τ−1

e ‖,

A3 = ‖(Σ̂τ−1

e −Σ−1
e )B̂(IK + B̂

′
Σ̂

τ−1

e B̂)−1B̂
′
Σ−1

e ‖,

A4 = ‖Σ−1
e (B̂−B)(IK + B̂

′
Σ̂

τ−1

e B̂)−1B̂
′
Σ−1

e ‖,

A5 = ‖Σ−1
e (B̂−B)(IK + B̂

′
Σ̂

τ−1

e B̂)−1B′Σ−1
e ‖, and

A6 = ‖Σ−1
e B{(IK + B̂

′
Σ̂

τ−1

e B̂)−1 − (IK +B′Σ−1
e B)−1}B′Σ−1

e ‖.

Let M := (IK + B′Σ−1
e B)−1 and L := (IK + B̂

′
Σ̂

τ−1

e B̂)−1. For M−1, by Assumption 4.1

and Assumption 4.2,

λmin(IK +B′Σ−1
e B) � λmin(B

′Σ−1
e B) � λmin(Σ

−1
e )λmin(B

′B) � cNK , (A.8)

for some constant c > 0. For L−1, we first notice that condition (4.14) and Lemma A.11

imply for some constant c′ > 0,

P
(∥∥∥B̂′

Σ̂
τ−1

e B̂−B′Σ−1
e B

∥∥∥ � c′mNω
1−q
NT N

1/2
1 (N1 ∨ T )1/2

)
� P

(∥∥∥B̂′
Σ̂

τ−1

e B̂−B′Σ−1
e B

∥∥∥ � c′NK

)
.

Then, using line (A.8), Lemma A.1 in Fan et al. (2011), Lemma A.11 and the above result,

we have

P
(
λmin(IK + B̂

′
Σ̂

τ−1

e B̂) � cNK

)
� P

(∥∥∥B̂′
Σ̂

τ−1

e B̂−B′Σ−1
e B

∥∥∥ � c′NK

)
� P

(∥∥∥B̂′
Σ̂

τ−1

e B̂−B′Σ−1
e B

∥∥∥ � c′mNω
1−q
NT N

1/2
1 (N1 ∨ T )1/2

)
� 1−O((N ∨ T )−v). (A.9)

For each term A1 − A6, we first observe from Theorem 4.2 that A1 = Op(mNω
1−q
NT ). Em-

ploying triangle inequality to A2, we achieve

A2 � ‖Σ̂τ−1

e −Σ−1
e ‖‖B̂LB̂

′‖‖Σ̂τ−1

e ‖.
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It then follows from the property of matrix norms, Lemma A.10 and the proofs of Lemma

B.5(iii) and Lemma A.1 in Fan et al. (2011) that for some positive constant c′′ ,

P (‖B̂‖ � c′′N1/2
1 ) � P (‖B̂‖F � c′′N1/2

1 )

� 1−O((N ∨ T )−v). (A.10)

Then with line (A.9) and the proof of Theorem 4.2,

A2 � N1

NK

mNω
1−q
NT .

Similarly, we obtain

A3 �
N1

NK

mNω
1−q
NT .

For A4, using triangle inequality again, we can derive

A4 � ‖Σ−1
e (B̂−B)‖‖L‖‖B̂′

Σe
−1‖

� ‖Σ−1
e ‖2‖B̂−B‖F‖L‖‖B̂‖. (A.11)

Employing the upper bounds of norms in line (A.11),

A4 �
N

1/2
1 T 1/2

NK

ωNT .

In a similar spirit, we have

A5 �
N

1/2
1 T 1/2

NK

ωNT .

For A6, the middle term of it can be derived as

‖(IK + B̂
′
Σ̂

τ−1

e B̂)−1 − (IK +B′Σ−1
e B)−1‖

= ‖L−M‖

= ‖L(L−1 −M−1)M‖ � ‖L‖‖M‖‖L−1 −M−1‖

� N−2
K ‖B′Σ−1

e B− B̂
′
Σ̂

τ−1

e B̂‖

� mNω
1−q
NT

N
1/2
1 (N1 ∨ T )1/2

N2
K

,
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where the last inequality holds by (A.8) and (A.9), and the last equality concludes from

Lemma A.11. Then employing Assumption 4.1 and 4.2, we have

A6 � ‖Σ−1
e B‖2‖L−M‖

� mNω
1−q
NT

N
3/2
1 (N1 ∨ T )1/2

N2
K

.

Combining A1 − A6 together, we have

‖Σ̂−1 −Σ−1‖ � mNω
1−q
NT

N
3/2
1 (N1 ∨ T )1/2

N2
K

(A.12)

occurs with probability at least 1−O((N ∨ T )−v). �

A.2 Case 2: Observable factors exist

Lemma A.12 Suppose Assumption 4.2 and 4.5 hold. Then

∥∥∥∥ 1

T
X′F

∥∥∥∥
max

� log1/2 T

T 1/2
� ωNT

occurs with probability at least 1−O((N ∨ T )−v).

Proof: Let s = C∗T−1/2log1/2T for some sufficient large constant C∗, we have

P

(∥∥∥∥ 1

T
X′F

∥∥∥∥
max

> s

)

� P

(
max

l�r, k�K

∣∣∣∣ 1T
∑T

t=1
xtlftk

∣∣∣∣ > s

)

� Kr max
l�r, k�K

P

(∣∣∣∣ 1T
∑T

t=1
xtlftk

∣∣∣∣ > s

)
,

where the second inequality comes from the Boole’s inequality. By Theorem 1 of Merlevède

et al. (2009), it follows that

P

(
max

l�r, k�K

∣∣∣∣ 1T
∑T

t=1
xtlftk

∣∣∣∣ > C∗ log
1/2T

T 1/2

)
� O((N ∨ T )−v).

Thus, we have ‖T−1X′F‖max � T−1/2 log1/2 T occurs with probability at least 1−O((N ∨

T )−v). Moreover, (A.2) gives that T−1/2 log1/2 T � ωNT . �
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Lemma A.13 Suppose Assumption 4.2, 4.4 and 4.5 hold. Then

∥∥∥∥ 1

T
X′E

∥∥∥∥
max

� log1/2(N ∨ T )

T 1/2
� ωNT

holds with probability at least 1−O((N ∨ T )−v).

Proof: Let s = C�T−1/2log1/2(N ∨ T ) for some sufficient large constant C�, we have

P

(∥∥∥∥ 1

T
X′E

∥∥∥∥
max

> s

)

� P

(
max

l�r, i�N

∣∣∣∣ 1T
∑T

t=1
xtleti

∣∣∣∣ > s

)

� Nr max
l�r, i�N

P

(∣∣∣∣ 1T
∑T

t=1
xtleti

∣∣∣∣ > s

)
,

where the second inequality comes from the Boole’s inequality. By Theorem 1 of Merlevède

et al. (2009), it is easy to obtain

P

(
max

l�r, i�N

∣∣∣∣ 1T
∑T

t=1
xtleti

∣∣∣∣ > C� log
1/2(N ∨ T )

T 1/2

)
� O((N ∨ T )−v),

which completes the proof. �

Lemma A.14 Suppose Assumption 4.5 holds. The following inequality holds with proba-

bility at least 1−O((N ∨ T )−v) :

max
i,j�r

∣∣∣∣∣ 1T
T∑
t=1

xtixtj − E(xtixtj)

∣∣∣∣∣ � log1/2 T

T 1/2
.

Proof: It can be proved in a similar way to Lemma B.1 in Fan et al. (2011). �
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Proof: [Lemma 4.1] Note that ‖Û−U‖max = max1�i�N,1�t�T |Ûti − Uti|. Using Hölder’s

inequality and properties of the norms, we have

|Ûti − Uti| = |(âi − ai)x
′
t|

� ‖âi − ai‖1‖xt‖∞

= ‖(X′X)−1X′yi − ai‖1‖xt‖∞

�
∥∥∥∥∥
(
1

T
X′X

)−1
∥∥∥∥∥
max

∥∥∥∥ 1

T
X′Fbi +

1

T
X′ei

∥∥∥∥
max

‖xt‖∞

Because r log1/2 T = o(T 1/2), Lemma A.14 and λmin(E(xtx
′
t)) > 0, which comes from

Assumption 4.5(d), following the proof of Lemma 3.1 in Fan et al. (2011), we have

∥∥∥(X′X)
−1

∥∥∥
max

�
∥∥∥(X′X)

−1
∥∥∥ � T−1 (A.13)

occurs with probability at least 1−O((N ∨T )−v). By Assumption 4.5(b), ‖xt‖∞ � log1/2 T

with probability at least 1 − O((N ∨ T )−v). Further with Lemma A.12 and Lemma A.13,

we achieve

max
t,i

|Ûti − Uti| �
(∥∥∥∥ 1

T
X′F

∥∥∥∥
max

+

∥∥∥∥ 1

T
X′E

∥∥∥∥
max

)
log1/2 T � log1/2(N ∨ T )log1/2T

T 1/2

occurs with probability at least 1−O((N ∨ T )−v), which complete the proof. �

Lemma A.15 Suppose Assumption 4.2 and 4.5 hold, we have

‖E′F‖max � T 1/2 log1/2(N ∨ T )

occurs with probability at least 1−O((N ∨ T )−v).

Proof: The proof is exactly the same as the proof of Lemma A.7. �

Lemma A.16 Suppose Assumption 4.1 and 4.4 hold, we have

‖EB‖max � N
1/2
1 log1/2(N ∨ T )

occurs with probability at least 1−O((N ∨ T )−v).
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Proof: The proof is exactly the same as the proof of Lemma A.8. �

Lemma A.17 (Consistency of estimated unobserved factors and loadings) If all the as-

sumptions in Theorem A.1 hold, the following error bounds hold with probability at least

1−O((N ∨ T )−v),

(a)

T−1/2‖F̂− F‖F � N
3/2
1 log1/2(N ∨ T )

NK(NK ∧ T )
,

(b)

N
−1/2
1 ‖B̂−B‖F � T 1/2N1 log

1/2(N ∨ T )

NK(NK ∧ T )
.

Proof: We follow the proof strategy of Theorem 2 in Uematsu and Yamagata (2022).

The optimisation of the SOFAR estimators implies that

1

2
‖Y −XA′ +XA′ −XÂ′ − F̂B̂

′‖2F + ηn‖B̂‖1

� 1

2
‖Y −XA′ +XA′ −XÂ′ − FB

′‖2F + ηn‖B′‖1,

which is equivalent to

1

2
‖E+ Û−U− F̂B̂+ FB

′‖2F + ηn‖B̂‖1 (A.14)

� 1

2
‖E+ Û−U‖2F + ηn‖B‖1.

Let Δ = F̂B̂
′ − FB

′
. We can rewrite (A.14) as

1

2
‖E+ Û−U−Δ‖2F + ηn‖B̂‖1 (A.15)

� 1

2
‖E+ Û−U‖2F + ηn‖B‖1.

Define Δf = F̂− F, Δb = B̂−B. We have

Δ = ΔfB
′
+ΔfΔb′ + FΔb′ . (A.16)
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Plugging (A.16) into (A.15) with some decomposition to (A.15) leads to

1

2
‖Δ‖2F � tr(E+ Û−U)Δ′ + ηn

(
‖B‖1 − ‖B̂‖1

)
�

∣∣∣tr(E+ Û−U)BΔf ′
∣∣∣+ ∣∣∣tr(E+ Û−U)ΔbΔf ′

∣∣∣
+

∣∣∣trΔbF′(E+ Û−U)
∣∣∣+ ηn

(
‖B‖1 − ‖B̂‖1

)
. (A.17)

Then, we use Hölder’s inequality and properties of matrix norms on the traces in (A.17).

The first trace is bounded as

∣∣∣tr(E+ Û−U)BΔf ′
∣∣∣

� ‖(E+ Û−U)B‖max‖Δf‖1

� (rT )1/2‖(E+ Û−U)B‖max‖Δf‖F

� (rT )1/2‖EB‖max‖Δf‖F + rT‖Û−U‖max‖B‖max‖Δf‖F. (A.18)

In a similar spirit of bounding the first trace, the second trace is bounded as

∣∣∣tr(E+ Û−U)ΔbΔf ′
∣∣∣

=
∣∣∣trEΔbΔf ′

+ tr(Û−U)ΔbΔf ′
∣∣∣

� ‖EΔb‖2‖Δf‖∗ + ‖Û−U‖max‖ΔbΔf ′‖1

� ‖E‖2‖Δb‖F‖Δf‖F + (NT )1/2‖Û−U‖max‖Δb‖F‖Δf ′‖F, (A.19)

where the last � holds because of properties of matrix norms and Lemma 4.1. Similarly,

the third trace in (A.17) is bounded as

∣∣∣trΔbF′(E+ Û−U)
∣∣∣ � ‖Δb‖1‖F′E‖max + ‖Δb‖1‖F′(Û−U)‖max. (A.20)
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By properties of matrix norms, the second term of the right-hand side of (A.20) is bounded

as

‖Δb‖1‖F′(Û−U)‖max

� (rK)1/2‖Δb‖1‖F′X‖max‖Â−A‖max (A.21)

= (rK)1/2‖Δb‖1‖F′X‖max‖(X′X)−1(X′FB+X′E)‖max

� rK1/2‖Δb‖1‖F′X‖max‖(X′X)−1‖max‖X′FB+X′E‖max

� rK1/2‖Δb‖1‖F′X‖max‖(X′X)−1‖max

(
(rK)1/2‖X′F‖max‖B‖max + ‖X′E‖max

)
� rK1/2‖Δb‖1‖F′X‖max‖(X′X)−1‖max

(
(rK)1/2cb‖X′F‖max + ‖X′E‖max

)
, (A.22)

where the last inequality holds because of Assumption 4.1. Hence,

∣∣∣trΔbF′(E+ Û−U)
∣∣∣

� ‖Δb‖1‖FE‖max

+ rK1/2‖Δb‖1‖F′X‖max‖(X′X)−1‖max

(
(rK)1/2cb‖X′F‖max + ‖X′E‖max

)
.(A.23)

From Assumption 4.4 on E, (A.13), Lemma 4.1, Lemma A.16 about EB Lemma A.15

about E′F, Lemma A.12 about X′F and Lemma A.13 about X′E, there exist some positive

constants c1–c6 such that the event E with probability at least 1−O((N ∨ T )−v) for large

fixed constant v > 0:

E =
{‖E‖2 � c1(N ∨ T )1/2

} ∩
{
‖EB‖max � c2N

1/2
1 log1/2(N ∨ T )

}
∩

{
‖F′E‖max � c3T

1/2 log1/2(N ∨ T )
}
∩

{
‖X′E‖max � c4T

1/2 log1/2(N ∨ T )
}

∩
{
‖X′F‖max � c5T

1/2 log1/2 T
}
∩

{
‖ (X′X)

−1 ‖max � c6T
−1

}
. (A.24)

On this event, setting the penalty term ηn = 2c3T
1/2 log1/2(N ∨T ) and employing the trace
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bounds (A.18), (A.19) and (A.23) on (A.17) give

‖Δ‖2F � (N1T )
1/2 log1/2(N ∨ T )‖Δf‖F + (N ∨ T )1/2 log1/2 T‖Δf‖F‖Δb‖F

+ ηn

(
‖Δb‖1 + 2ηn‖B‖1 − 2‖B̂‖1

)
. (A.25)

Next, directly following the steps starting from (A.6) in the supplementary material of

Uematsu and Yamagata (2022), we can complete the proof. Note that although compared

with (A.6) in the aforementioned material, the second term of the right-hand side of (A.25)

inludes an extra term log1/2 T due to the first stage OLS estimation, this extra term will

be divided by a much faster polynomial rate in the proof so that there will be no effect on

the final result. �

Lemma A.18 If all the assumptions in Theorem A.1 are satisfied, then

T−1

T∑
t=1

‖̂f t − ft‖2 � N3
1 log(N ∨ T )

N2
K(NK ∧ T )2

= ω2
NT

holds with probability at least 1−O((N ∨ T )−v).

Proof: Note that

1

T

T∑
t=1

‖̂f t − ft‖2 = 1

T
‖F̂− F‖2F � ω2

NT ,

where � holds because of Lemma A.17. �

Lemma A.19 Under the assumptions in Theorem A.1, we have

max
i�N

‖b̂i − bi‖ � log1/2(N ∨ T )

T 1/2
� N

3/2
1 log1/2(N ∨ T )

NK(NK ∧ T )

holds with probability at least 1−O((N ∨ T )−v).

Proof: Similar to the proof of Lemma (A.2), the SOFAR estimator B̂ under KKT coni-

tions is given by

B̂−B = T−1(BF′(F̂− F) + E′(F̂− F)) + T−1E′F− T−1ηnV(B̂)

− T−1(ÂX′ −AX′)(F̂− F)− T−1(ÂX′ −AX′)F, (A.26)

22



where the (i, k)th element of V(B̃) for given B̃ = b̃ik ∈ R
N×K is defined as

vik(B̃)

⎧⎪⎨
⎪⎩

= sgn(b̃ik) for b̃ik 
= 0

∈ [−1, 1] for b̃ik = 0.

Using the triangle inequality,

max
i�N

‖b̂i − bi‖

� T−1ηn + T−1
(
‖BF′(F̂− F)‖max + ‖E′(F̂− F)‖max

)
+ T−1‖E′F‖max

+ T−1
(
‖(ÂX′ −AX′)(F̂− F)‖max + ‖(ÂX′ −AX′)F‖max

)
. (A.27)

Note that we set ηn � T 1/2 log1/2(N ∨ T ) in Section 4. By the proof of Theorem 1 in

Uematsu and Yamagata (2021), we can directly get that in (A.27),

T−1
(
‖BF′(F̂− F)‖max + ‖E′(F̂− F)‖max

)
� T−1/2N

3/2
1 log(N ∨ T )

NK(NK ∧ T )

holds with probability at least 1−O((N ∨ T )−v).

Define F = {F̂− F ∈ R
T×K : ‖F̂− F‖F � CRn}, where C is some constant > 0 and

Rn =
N

3/2
1 T 1/2 log(N ∨ T )

NK(NK ∧ T )
.

Then, Lemma A.17 yields that F̂−F ∈ F occurs with probability at least 1−O((N∨T )−v).

Conditional on F̂ − F ∈ F , we also have F̂ − F = RnM for some matrix M such that

‖M‖F � C.

Next, using the similar proof strategy of Theorem 1 in Uematsu and Yamagata (2021),

we have, for any x > 0,

P
(
T−1/2‖(ÂX′ −AX′)(F̂− F)‖max > x

)
� P

(
‖T−1/2(ÂX′ −AX′)(F̂− F)‖max > x | F̂− F ∈ F

)
+ P

(
F̂− F /∈ F

)
� P

(
(rK)1/2‖Â−A‖max‖T−1/2X′(F̂− F)‖max > x | F̂− F ∈ F

)
+O((N ∨ T )−v)

� P
(
RnT

−1/2 log1/2(N ∨ T )‖T−1/2X′M‖max � x | F̂− F ∈ F
)
+O((N ∨ T )−v),

23



where the third � uses (A.21) and (A.22) to get ‖Â−A‖max � T−1/2 log1/2(N ∨T ). Setting

x = T−1/2Rn log
1/2(N ∨ T ) can yield that the upper bound is O((N ∨ T )−v). In a similar

spirit, we obtain that for any x > 0,

P
(
T−1/2‖(ÂX′ −AX′)F‖max > x

)

is also smaller than O((N ∨ T )−v). Thus, we have

T−1
(
‖(ÂX′ −AX′)(F̂− F)‖max + ‖(ÂX′ −AX′)F‖max

)
� T−1/2N

3/2
1 log(N ∨ T )

NK(NK ∧ T )

holds with probability at least 1 − O((N ∨ T )−v). Lemma A.15 gives T−1‖E′F‖max �

T−1/2 log1/2(N ∨ T ). Consequently, we have

max
i�N

‖b̂i − bi‖ � log1/2(N ∨ T )

T 1/2
� N

3/2
1 log1/2(N ∨ T )

NK(NK ∧ T )
= ωNT ,

where � holds because condition (4.11) ensures that

N
3/2
1 T 1/2

NK(NK ∧ T )
� N

1/2
1 T 1/2

(NK ∧ T )
� 1.

�

Lemma A.20 If all the conditions in Theorem A.1 are satisfied, then the following in-

equalities hold with probability at least 1−O((N ∨ T )−v) :

(a) maxi�N
1
T

∑T
t=1 |êti − eti|2 � ω̃2

NT ,

(b) maxi�N,t�T |êti − eti|2 � log(N ∨ T ).

Proof: Let Δb
i = b̂i − bi and Δf

t = f̂ t − ft. We first rewrite |êti − eti| as

|êti − eti| = |Ûti − Uti +Δf
tΔ

b
i

′
+Δf

tbi
′ + ftΔ

b
i

′|.
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Then, by a usual inequality (A + B + C + D)2 � 4(A2 + B2 + C2 + D2), Theorem 4.1,

Lemma A.12 and Lemma A.13, we get

max
i�N

1

T

T∑
t=1

|êti − eti|2

� 4

T

T∑
t=1

(Ûti − Uti)
2 + 4max

i
‖bi‖2 1

T

T∑
t=1

‖̂f t − ft‖2

+ 4max
i

‖b̂i − bi‖2 1
T

T∑
t=1

‖̂f t − ft‖2 + 4max
i

‖b̂i − bi‖2 1
T

T∑
t=1

‖ft‖2

� max

{
log(N ∨ T ) log T

T
, ω2

NT

}
= ω̃2

NT .

For (b), by Lemma 4.1 and the proof of Lemma A.3(b), we upper bound |êti − eti|2 as

max
i�N,t�T

|êti − eti|2

= max
i�N,t�T

|(Ûti − Uti) + (b̂′
if̂ t − b′

ift)|2

� max
i�N,t�T

|Ûti − Uti|2 + 2 max
i�N,t�T

|(Ûti − Uti)(b̂
′
if̂ t − b′

ift)|+ max
i�N,t�T

|b̂′
if̂ t − b′

ift|2

� log(N ∨ T ).

�

Lemma A.21 Under the assumptions of Theorem A.1, there exists a large enough constant

C > 0 such that for large T and N ,

(a)

P

(
max
i,j�N

∣∣∣∣∣ 1T
T∑
t=1

etietj − σe
ij

∣∣∣∣∣ � C log1/2(N ∨ T )

T 1/2

)
> O

(
(N ∨ T )−v

)
,

(b)

P

(
max
i,j�N

∣∣∣∣∣ 1T
T∑
t=1

(etietj − σe
ij)

2 − θij

∣∣∣∣∣ > C log1/2(N ∨ T )

T 1/2

)
� O

(
(N ∨ T )−v

)
,

(c)

P

(
max
i,j�N

1

T

T∑
t=1

(êtiêtj − etietj)
2 > CωNT log1/2(N ∨ T )

)
� O

(
(N ∨ T )−v

)
.
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Proof: The proofs can be done in the same way of Lemma A.4, so we skip the details

here. Note that Lemma A.20 will be used frequently. �

Lemma A.22 Under the assumptions in Theorem A.1, there exist some positive constants

θ3 and θ4 such that the event Θ = {θ3 > θ̂ij > θ4, ∀i, j > N} occurs with probability at

least 1−O((N ∨ T )−v).

Proof: The proof can be done in the same way of Lemma A.6. Note that the proof will

heavily depend on Lemma A.21. �

Lemma A.23 Under the assumptions of Theorem A.1, for some large enough constant C,

P

(
max
i,j�N

|σ̂e
ij − σe

ij| � Cω̃NT

)
� 1−O((N ∨ T )−v).

Proof: The proof is the same as the Lemma A.5 with applications of Lemma A.20 and

Lemma A.21. �

Next, we present the assertions in Theorem 4.5 as Theorem A.1-A.2 as well as their

proofs separately.

Theorem A.1 Suppose Assumption 4.1-4.2, 4.4-4.5 and condition (4.11) hold. Then, for

Σ̂
τ

e defined in (3.9), we have

(a) ‖Σ̂τ−1

e −Σe‖ � ω̃1−q
NT mN holds with probability at least 1−O((N ∨ T )−v);

(b) If mN ω̃
1−q
NT = o(1) also holds, then all the eigenvalues of Σ̂

τ

e are bounded from 0 with

probability approaching 1 and

‖Σ̂τ−1

e −Σ−1
e ‖ � ω̃1−q

NT mN

holds with probability at least 1−O((N ∨ T )−v).
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Proof: [Theorem A.1] The proofs follow the same strategies of Theorem 4.1 and 4.2.

Note that the proofs depend on the new versions of Lemma A.6 and Lemma A.5, which

are Lemma A.22 and Lemma A.23 respectively. �

Theorem A.2 Under the assumptions in Theorem A.1, for Σ̂ defined in (3.9), the follow-

ing results hold with probability at least 1−O((N ∨ T )−v) :

(a) ‖Σ̂−Σ‖2Σ � T−2N log2(N ∨ T ) + ω̃2−2q
NT m2

N ,

(b) ‖Σ̂−Σ‖max � ω̃NT .

Proof: [Theorem A.2]

(a) By the triangle inequality, we have

‖Σ̂−Σ‖2Σ

�
(
‖A( ˆcov(xt)− cov(xt))A

′‖2Σ + ‖A ˆcov(xt)(Â−A)′‖2Σ

+ ‖(Â−A) ˆcov(xt)(Â−A)′‖2Σ
)

+

(
‖B̂B̂−BB‖2Σ + ‖Σ̂τ

e −Σe‖2Σ
)

=: I + II. (A.28)

Following the proofs of Lemma B.3 in Fan et al. (2011), we have

(i) ‖A( ˆcov(xt)− cov(xt))A
′‖2Σ + ‖A ˆcov(xt)(Â−A)′‖2Σ � log(N ∨ T )T−1,

(ii) ‖(Â−A) ˆcov(xt)(Â−A)′‖2Σ) � log2(N ∨ T )T−2

hold with probability at least 1−O((N ∨ T )−v). Then, by the proof of Theorem 4.3,

we obtain with probability at least 1−O((N ∨ T )−v),

I + II � N log2(N ∨ T )

T 2
+ ω̃2−2q

NT m2
N .
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(b) Note that

‖Σ̂−Σ‖max

�
(
‖2A ˆcov(xt)(Â−A)′‖max + ‖A( ˆcov(xt)− cov(xt))A

′‖max

+ ‖(Â−A) ˆcov(xt)(Â−A)′‖max

+ ‖2A( ˆcov(xt)− cov(xt))(Â−A)′‖max

+ ‖(Â−A)( ˆcov(xt)− cov(xt))(Â−A)′‖max

)

+

(
‖B̂B̂−BB‖max + ‖Σ̂τ

e −Σe‖max

)

=: I + II. (A.29)

It then follows from Theorem 4.3 and the proof of Theorem 3.2 (b) in Fan et al.

(2011) that I + II � ω̃NT holds with probability at least 1−O((N ∨ T )−v).

�

Next, we state and prove the lemmas for proving Theorem 4.6. For notational ease,

let us denote BB′ + Acov(xt)A
′ = Σlr, B̂B̂′ + Â ˆcov(xt)Â

′ = Σ̂lr, Σ = Σlr + Σe, and

Σ̂ = Σ̂lr + Σ̂τ
e .

Lemma A.24 Under the assumptions in Theorem 4.6. We have

‖Σ̂lr −Σlr‖ �
(
N ∨ (N

1/2
1 T 1/2)

)
mN ω̃NT

holds with probability at least 1−O((N ∨ T )−v).
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Proof: We use the triangle inequality repeatedly. It follows that for some sufficient large

constant C > 0,

‖Σ̂lr −Σlr‖

� ‖B̂−B‖2 + ‖B‖‖B̂−B‖+ ‖(Â−A)( ˆcov(xt)− cov(xt))A‖

+ ‖Â−A‖‖cov(xt)‖‖A‖+ ‖A( ˆcov(xt)− cov(xt))A
′‖

� C

(
T ω̃2

NT +N
1/2
1 T 1/2ω̃NT +N

log1/2 N log1/2 T

T
+N1/2 log

1/2 N

T 1/2
+N

log1/2 T

T 1/2

)

�
(
N ∨ (N

1/2
1 T 1/2)

)
ω̃NT (A.30)

�

Lemma A.25 Under the assumptions in Theorem 4.6. We have

‖Σ̂lrΣ̂
τ−1

e −ΣlrΣ
−1
e ‖ �

(
N ∨ (N

1/2
1 T 1/2)

)
mN ω̃

1−q
NT

holds with probability at least 1−O((N ∨ T )−v).

Proof: We use the triangle inequality repeatedly. It follows that for some sufficient large

constant C,

‖Σ̂lrΣ̂
τ−1

e −ΣlrΣ
−1
e ‖

� ‖Σ̂lr −Σlr‖‖Σ̂τ−1

e −Σ−1
e ‖+ ‖Σ̂lr −Σlr‖‖Σ−1

e ‖+ ‖Σlr‖‖Σ̂τ−1

e −Σ−1
e ‖

� C

(
N ∨ (N

1/2
1 T 1/2)

)
ω̃NTmN ω̃

1−q
NT + C

(
N ∨ (N

1/2
1 T 1/2)

)
ω̃NT

+ CNmN ω̃
1−q
NT ,

where the last inequality holds due to Lemma A.24, Theorem A.1, ‖Σlr‖ = O(N) and

‖Σe‖ = O(1). Note that with simple algebras, it can be verified that

(
N ∨ (N

1/2
1 T 1/2)

)
ω̃NT � N

by condition (4.11). Then, the result follows. �
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Lemma A.26 Under the assumptions in Theorem 4.6. We have for some sufficient large

constant c,

P

(
λmin

(
I+ Σ̂lrΣ̂

τ−1

e

)
� cN

)
� 1−O((N ∨ T )−v). (A.31)

Proof: Because we have λmin(Σ
−1
e ) �

¯
c, λmin(AA′) � caN , λmin(BB′) � d2KNK and

λmax(cov(xt)) � cl by assumptions, we achieve for some positive constant c′ > 0,

λmin

(
I+ΣlrΣ

−1
e

)
� λmin(Σlr)λmin(Σ

−1
e )

= λmin(Acov(xt)A
′ +BB′)λmin(Σ

−1
e )

� c′N (A.32)

Then, Lemma A.1 in Fan et al. (2011) with (A.32) gives

P

(
λmin

(
I+ Σ̂lrΣ̂

τ−1

e

)
� cN

)

� P

(
‖(I+ Σ̂lrΣ̂

τ−1

e )− (I+ΣlrΣ
−1
e )‖ � cN

)

� P

(
‖Σ̂lrΣ̂

τ−1

e −ΣlrΣ
−1
e ‖ � c

(
N ∨ (N

1/2
1 T 1/2)

)
mN ω̃

1−q
NT

)
,

where the last inequality holds because of condition (4.15). Finally by Lemma A.25, the

proof completes. �
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Proof: [Theorem 4.6] By the triangle inequality and Binomial Inverse Theorem4, we have

‖Σ̂−1 −Σ−1‖

= ‖(Σ̂lr + Σ̂τ
e)

−1 − (Σlr +Σe)
−1‖

� ‖Σ̂τ−1

e −Σ−1
e ‖

+

∥∥∥∥
(
Σ̂τ−1

e −Σ−1
e

)(
I+ Σ̂lrΣ̂

τ−1

e

)−1

Σ̂lrΣ̂
τ−1

e

∥∥∥∥
+

∥∥∥∥∥Σ−1
e

(
I+ Σ̂lrΣ̂

τ−1

e

)−1(
Σ̂lr −Σlr

)
Σ̂−1

e

∥∥∥∥∥
+

∥∥∥∥∥Σ−1
e

(
I+ Σ̂lrΣ̂

τ−1

e

)−1

Σlr

(
Σ̂−1

e −Σ−1
e

)∥∥∥∥∥
+

∥∥∥∥Σ−1
e

([
I+ Σ̂lrΣ̂

τ−1

e

]−1

− [
I+ΣlrΣ

−1
e

]−1
)
ΣlrΣ

−1
e

∥∥∥∥
=: L1 + L2 + L3 + L4 + L5.

First, let G := I+ΣlrΣ
−1
e and Ĝ := I+ Σ̂lrΣ̂

τ−1

e . We have

‖G‖ � λmax(Σlr)λmax(Σ
−1
e ) = O(N) (A.33)

by Assumption 4.1, 4.2 and 4.5. Theorem A.1 directly gives L1 � mN ω̃
1−q
NT . For L2, it

follows from the triangle inequality that

L2 � L1‖Ĝ−1‖Σ̂lrΣ̂
τ−1

e . (A.34)

We have

‖Ĝ−1‖ � N−1 (A.35)

holds with probability at least 1−O((N ∨ T )−v) by Lemma A.26. Next, Lemma A.24 and

the triangle inequality gives

‖Σ̂lr‖ � ‖Σ̂lr −Σlr‖+ ‖Σlr‖ � N. (A.36)

4See Press (1972).
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Similarly, by Theorem A.1, we have ‖Σ̂τ−1

e ‖ is bounded with probability at least 1−O((N∨

T )−v). Thus, L2 � mN ω̃
1−q
NT with probability at least 1 − O((N ∨ T )−v). Similarly for L3,

we have

L3 � ‖Ĝ−1‖‖Σ̂lr −Σlr‖ � N−1NmN ω̃
1−q
NT = mN ω̃

1−q
NT (A.37)

because of Lemma A.24, Lemma A.26, ‖Σ−1
e ‖ = O(1) and ‖Σ̂τ−1

e ‖ being bounded with

probability at least 1−O((N ∨ T )−v). It is easy to get L4 � mN ω̃
1−q
NT . For L5, we have

L5 � ‖Σ−1
e ‖‖Ĝ−1 −G−1‖‖Σ−1

lr ‖‖Σ−1
e ‖

� ‖Σ−1
e ‖‖Σ−1

lr ‖‖Σ−1
e ‖‖Ĝ−G‖‖Ĝ−1‖‖G−1‖

� N−1NmN ω̃
1−q
NT N

−2

= mN ω̃
1−q
NT (A.38)

because of ‖Σ−1
e ‖ = O(1), ‖Ĝ−1 −G−1‖‖Σ−1

lr ‖ = O(N), Lemma A.25, line (A.33) and line

(A.35). Combing L1 − L5 can complete the proof. �

B Choice of the Threshold Tuning Parameters

In practice, the threshold constant Cτ in the threshold level τij = CτωNT (θij)
1/2 is deter-

mined by users. Following the procedures of Bickel and Levina (2008a) and Fan et al.

(2013), we use multi-fold cross-validations (CV) to choose Cτ :

Step 1. Obtain residuals {êt}Tt=1 from the only observable variables Û by our sparse-induced

weak factor models.

Step 2. Divide {êt}Tt=1 randomly into two groups, M1 and M2. Let M1 be the training group

{êt}t∈M1 with size T (M1), and M2 be the validation group {êt}t∈M2 with size T (M2),

where T (M1) = �T (1− log−1 T )	 and T (M1) + T (M2) = T .
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Step 3. Repeat Step 1-2 H times and denote each time as h. Then, select the optimal tuning

parameters C∗
τ by the following Frobenius risk

C∗
τ = argmin

Cτ∈[Cmin+ε, C̄]

1

H

H∑
h=1

∥∥∥Σ̂τ
e(Cτ )

M1,h − Σ̂M2,h
e

∥∥∥2

F
.

Here, for each time h, Σ̂τ
e(Cτ )

M1,h is the ePOET estimator using {êt}ht∈M1
with the threshold

constant ωNT , and Σ̂M2,h
e is the sample covariance matrix using {êt}ht∈M2

. Regarding the

interval of ωNT , C
min is the minimum value that guarantees the positive definiteness of

estimated idiosyncratic covariance matrices, ε > 0 is small, and C̄ is some sufficient large

constant determined by users.

C Discussion of the SOFAR and PC Estimators

Define

γn =
N1/2(Nr ∧ T )1/2

N
1/2
1 T 1/2

.

Uematsu and Yamagata (2022) show that the PC estimates for the sWF model hold with

probability at least 1−O((N ∨ T )−v) :

(a)

T−1/2‖F̂PC − F‖F � N
3/2
1 log1/2(N ∨ T )

NK(NK ∧ T )
(1 + γn),

(b)

N
−1/2
1 ‖B̂PC −B‖F � T 1/2N1 log

1/2(N ∨ T )

NK(NK ∧ T )
(1 + γn).

And recall that the SOFAR estimates hold with probability at least 1−O((N ∨ T )−v) :

(a)

T−1/2‖F̂− F‖F � N
3/2
1 log1/2(N ∨ T )

NK(NK ∧ T )
,
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(b)

N
−1/2
1 ‖B̂−B‖F � T 1/2N1 log

1/2(N ∨ T )

NK(NK ∧ T )
.

It can be seen that when model contains strong factors only, namely Nk = N for all

k = 1, ..., K, the convergence rates of factor loadings in both cases, for example, reduce to

log1/2(N ∨ T )T−1/2, which is identical to the original POET with given number of factors.

The extra term γn appears in the PC estimates only. When γn is bounded in probability

(i.e., N1 = N or T > N), PC is identical to SOFAR. Thus, in such case, the ePOET

estimator converges at least as fast as the POET estimator. However, when N1 < N and

relatively smaller than T , there are non-negligible extra costs for PC to recover the weak

factor structure in the sWF model, and the SOFAR estimates can achieve a sharper upper

bound than the PC estimates. Thus, covariance estimators of ePOET can converge faster

than those of the original POET.
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