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Abstract

Recently it is common to collect big spatial data on a national
or continental scale at discrete time points. This paper aims at a
regression model when both dependent and independent variables are
big spatial data. Regarding spatial data as functions over a region,
we propose a functional regression by a parametric convolution kernel
together with the least squares estimation on the frequency domain
by applying Fourier transform. It can handle massive datasets with
asymptotic validations under the mixed asymptotics. The regression
is applied to Covid-19 weekly new cases and human mobility collected
in city levels all over Japan to find that an increase of human mobility
is followed by an increase of Covid-19 new cases in time lag of two
weeks.

keywords: CARMA kernels, Convolution, Fourier transform, Irregularly
spaced data, Least squares estimation, NTT DoCoMo spatial statistics, Pe-
riodogram, Spurious regression.

1 Introduction

With rapid technological innovations, data structures become increasingly
complex and big data analysis becomes especially important. Recently, it
is common to collect big spatial data on a national or continental scale at
discrete time points. For example, NTT DoCoMo, Inc., a Japanese mobile
phone company, provides big spatial dataset recording number of people
staying at 500 meter meshes all over Japan every one hour, resulting in
terabytes scale spatial data.

Regarding a big spatial data recorded at a time point as one sample of
dependent or independent variable in regression analysis, we aim at a regres-
sion model in this paper that identifies a non-trivial relationship among big
spatial data. For example, it is an interesting problem how much increase
of human mobility promote Covid-19 infections, which will be carefully ex-
amined in the later section.

*Graduate School of Economics and Management, Tohoku University
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Let yt(s) and xt1(s), . . . , xtp(s), t = 1, . . . , T , be discrete time observa-
tions of big spatial data for s ∈ S ⊂ R2, a large scale region such as nation
or continent. Regarding them at each time point as a functional data, we
consider a regression model,

yt(s) = Φ1(xt1)(s) + · · ·+ Φp(xtp)(s) + εt(s), t = 1, . . . , T,

where Φj is not a constant in usual regression but a linear operator on L2(S).
This paper specifies it with a convolution, which is given by

Φj(xt)(s) =

∫
S
φj(s− u)xt(u)du,

where φj(·) is a function on S called a convolution kernel. We call a regres-
sion for functional data with a convolution kernel as convolutional regression.
Convolution kernel is a special case of Hilbert Schmidt kernel defined by

Ψj(xt)(s) =

∫
S
ψj(s, u)xt(u)du,

with the relation of φ(s−u) = ψ(s, u). A convolution kernel at s puts more
weights on closer points to s. Convolutional regression exploits this relation.

Existing studies in the fields of regression for functional data are found
in the literatures of functional data analysis. Ramsay and Silverman (2005)
introduces functional regression together with the estimation approach of
functional principal component analysis (fPCA). It is regarded as a non-
parametric approach to identify Hilbert Schmidt kernels with empirically
orthogonal functions. There have been plenty of studies on functional re-
gression under varieties of settings. See, for functional regression, Yao et al.
(2005), Horvath and Kokoszka (2012), Crambes and Mas (2013), Benatia et
al. (2017) and so on, while see, for functional auto-regression, Bosq (2000).
Liu et al. (2016) proposes the unique approach for functional auto-regression
with a convolutional kernel by a sieve estimation, which is another nonpara-
metric method different from fPCA. Baseline of them supposes a regression
or auto-regression with Hilbert-Schmidt kernels, and identifies the kernels
by fPCA under the condition of stationarity across time without restrictions
of stationarity across space. They basically suppose an application to func-
tional data on [a, b], a fixed compact interval on R, although it is claimed
that they can be extended to S ⊂ R2.

This paper tries an approach for spatial regression on huge scales as
an alternative to existing ones on fPCA from the two viewpoints. One is
that our approach employs parametric identification for convolution ker-
nels rather than nonparametric one for Hilbert Schmidt kernels. The other
one is that Fourier transform works to estimate convolution kernels in our
approach, while empirically orthogonal functions by fPCA does to identify
Hilbert Schmidt kernels in existing approaches. It means that our approach
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requires no singular value decompositions but Fourier basis functions in-
stead. Fourier transform restricts the applications to spatial data that must
be stationary across space but need not be across time, while fPCR restricts
spatial data that must be stationary across time but need not be across
space. As a result, our approach can handle spatio-temporal data nonsta-
tionary across time from short to large time periods including pure spatial
data without temporal points. Besides our approach does not suffer spurious
regression problems indicated by Granger and Newbold (1974), which will
be demonstrated in our simulation studies.

One feature of our approach to be stated finally is the asymptotic val-
idation of our estimation procedures on the frequency domain by Fourier
transform, which is obtained by extending the frequency domain techniques
developed by time series researchers such as Brockwell and Davis (1991,
chap. 10), Robinson (1995), Hosoya (1997) and so on, from time series to
spatial data. Under the asymptotic scheme called the mixed domain aymp-
totics (Stein, 1999, pp. 62), the consistency and asymptotic normality are
obtained under the condition of stationarity across space. The consistent
estimation of the asymptotic covariance matrix, easily evaluated in prac-
tice, makes it possible to conduct statistical inference by t tests in the same
way with usual regression analysis. It is actually demonstrated in the em-
pirical section that the statistical inference is successfully applied to detect
two week lagged effects between human mobility and Covid-19 new cases
collected on national scale in Japan.

2 Convolutional regression for spatial data

We introduce a regression model for spatial data on national or continental
scales. Convolutional kernels are employed to define a regression between
spatial data.

2.1 Parametric convolution kernels

Let L2(S) be the set of square integrable functions on a region S ⊂ R2.
We regard spatial data on S ⊂ R2 at discrete time of t = 1, . . . , T as re-
alizations of L2(S) valued random variables, denoted as yt(s) and xt(s) =
(xt1(s), . . . , xtp(s))

′, dependent and independent variables, respectively.
For f(s), a L2(S) function, a convolution is an operator that transforms

f(s) to L2(S) function by ∫
S
φ(s− u)f(u)du,

where φ(s) is a convolution kernel. A convolution is a special case of Hilbert
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Schmidt operator given by ∫
S
ψ(s, u)f(u)du,

where ψ(s, u) is a Hilbert Schmidt kernel.
Applying φj(s; θ), a parametric convolution kernel, to xtj(s), we define

a convolutional regression given by

yt(s) =

p∑
j=1

∫
S
φj(s− u; θ)xtj(u)du+ εt(s), s ∈ S, (1)

where εt(s) is an unobserved error term regarded as L2(S) valued random
variables.

Parametric convolutional kernels are employed in our approach rather
than nonparametric Hilbert Schmidt kernels in traditional approaches of
functional regression. Traditional approaches mainly target a regression
for L2[a, b], one dimensional functions on a compact region. Although it is
claimed that they are extended to that for L2(S), SsubsetR2, the extension is
not straightforward especially for big spatial data on national or continental
scale.

The spatial regression in (1) allows yt−1(s), . . . , yt−k(s), temporally lagged
terms of dependent variable, to be included as independent variables. Specif-
ically, convolutional auto-regression is defined in the same way as

yt(s) =
k∑
j=1

∫
S
ψj(s− u; θ)yt−j(u)du+

p∑
j=1

∫
S
φj(s− u; θ)xtj(u)du+ εt(s).

Conditions to confirm stationary across time can be derived by the argu-
ments in Bosq (2000). We omit details here as stationarity across time is not
necessary to validate the estimation in Section 3. We include convolutional
auto-regression in (1) throughout this paper. Estimation and asymptotic
validations in the later sections work for both convolutional regression and
auto-regression.

Let us comment on intercept terms in the convolutional regression. We
can include a parametric intercept term c(s; θ) in (1). However, each of inde-
pendent variables should be adjusted to be zero mean to avoid identification
issues indicated by Kokoszka and Reimherr (2017, pp 75).

2.2 Least squares estimation on the frequency domain

This section considers estimation of parameters that describe the parametric
convolutional kernels in (1) in practical situations when sampling points
are irregularly spaced and may not be identical for each time point. We
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will propose the least squares estimation on the frequency domain after
introducing the one on the spatial domain as the equivalent alternative.

The usual least squares estimation of θ is obtained by minimizing

Qsp(θ) =

T∑
t=1

∫ ∣∣∣∣∣yt(s)−
p∑
a=1

∫
ψa(s− u; θ)xta(u)du

∣∣∣∣∣
2

ds, (2)

which we call is the least squares estimation on the spatial domain.
Let us consider least squares estimation on the frequency domain as an

alternative to the one on the spatial domain, both of which are equivalent
mathematically. Fourier transform of f(s) ∈ L2(R2) is defined by

f̃(ω) =

∫
R2

f(s)e−is
′ωds, ω ∈ R2.

It is well known that Fourier transform of a convolution

g(s) =

∫
R2

ψa(s− u)f(u)du

is given by

g̃(ω) = ψ̃a(ω)f̃(ω).

Hence, applying the Fourier transform to (1), we obtain

ỹt(ω) =

p∑
j=1

ψ̃j(ω; θ)x̃tj(ω) + ε̃t(ω), ω ∈ R2, (3)

and we estimate the parameter θ by minimizing

Qfreq(θ) =
T∑
t=1

∫ ∣∣∣∣∣∣ỹt(ω)−
p∑
j=1

ψ̃j(ω; θ)x̃tj(ω)

∣∣∣∣∣∣
2

dω, (4)

which we call the least squares estimation on the frequency domain.
Since Qsp(θ) = Qfreq(θ) by Parseval’s theorem, the least squares esti-

mation on both spatial and frequency domains are completely equivalent.
Practical situations when we evaluate them by several approximations, how-
ever, makes the two least squares estimation be different. This paper will
focus the least squares on the frequency domain by two reasons. One is less
computational costs of the convolution caused by Fourier transform. The
other one is the asymptotic validations in Section 3 that make it possible to
conduct statistical inference.

Suppose we observe yt(s) and xta(s) on randomly distributed points
inside a rectangular A = [0, A1] × [0, A2], where observation points may
or may not be identical for t = 1, . . . , T . Let us denote them as s0tj , j =
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1, . . . , n0t for yt(s) and satj , j = 1, . . . , nat for xta(s). Then let us define the
discrete Fourier transform (DFT) of yt(s) and xt(s) by, for t = 1, . . . , T ,

ŷt(ω) =
1

n0t

n0t∑
j=1

yt(s0tj) exp(−iω′s0tj),

x̂ta(ω) =
1

nat

nat∑
j=1

xta(satj) exp(−iω′satj), a = 1, . . . , p.

Then replacing ỹt(ω), x̃ta(ω) in (3) with the DFTs on mesh points of Fourier
frequencies,

ωf =

(
2πf1
A1

,
2πf2
A2

)
, (f1, f2) ∈ Z2,

in a compact region D on R2, we estimate the parameter θ by minimizing

Q̃freq(θ) =
T∑
t=1

∑
ωf∈D

∣∣∣∣∣ŷt(ωf )−
p∑
a=1

ψ̃a(ωf ; θ)x̂ta(ωf )

∣∣∣∣∣
2

, (5)

which we denote as θ̂. Q̃freq(θ) is regarded as an empirical evaluation of
Qfreq(θ) = Qsp(θ). We propose the one minimizing Q̃freq(θ) as the estima-
tor in the practical situations when sampling points x and y are irregularly
spaced and may or may not be identical for each t with possibly time varying
sample sizes.

Remark 1. Let us introduce the empirically adjusted version of Qsp(θ)
in (2). Approximating the convolution with Riemannian summation, we
estimate θ by minimizing, for observation points satj , j = 1, . . . , Nat, a =
0, 1, . . . , p,

Q̃sp(θ) =
T∑
t=1

N0t∑
j=1

{
yt(s0tj)−

p∑
a=1

1

Katj

Nat∑
k=1

ψa(s0tj − satk; θ)xat(satk)

}2

,

(6)

with

Katj =

Nat∑
k=1

φ0(s0tj − satk; θ).

Although Qsp(θ) = Qfreq(θ) theoretically, their empirical counterparts of
Q̃sp(θ) and Q̃freq(θ) are not equal because of several differences in the ap-
proximations. It follows that the two least squares estimation on the spatial
and frequency domains are not the same. We claim advantages of the es-
timation on the frequency domain for big spatial data on huge scales that
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come from lower computational costs and the asymptotic validations in the
following section.

Remark 2. As in usual regression analysis, we often need to construct
predicted values. Approximating the convolution in (1) by Riemannian sum-
mation, we evaluate the forecast at v and t by

ŷt(v) =

p∑
a=1

1

Kat

Nat∑
k=1

ψ(v − satk; θ̂)xat(satk), (7)

Kat =

Nat∑
k=1

ψ(v − satk; θ̂).

2.3 Parametric family of CARMA kernels

Suitable parametric family of kernels are necessary to apply the convolu-
tional regression in (1) to real data in practice. They need to satisfy two
requirements. First, they cover reasonably broad class of convolutions by a
parametric family. Second, they have the closed form expressions of Fourier
transforms necessary to estimate the parameters by the least squares on the
frequency domain in (5). CARMA kernels, which were proposed in Brock-
well and Matsuda (2017) to define random fields as an extension of Ornstein
Uhlenbeck processes (Uhlenbeck and Ornstein, 1930), are introduced.

Let a(z) =
∏p
i=1(z

2 − λ2i ) with Re(λi) < 0 and b(z) =
∏q
i=1(z

2 − ξ2i )
with 0 ≤ q < p and λ2i 6= ξ2j for all i and j. CARMA(p, q) kernel is defined
by

φ(s) =

p∑
i=1

b(λi)

a′(λi)
exp(λi||s||), s ∈ R2,

where a′ denotes the derivative of the polynomial a and ||s|| is the Euclidean
norm of he vector s. CARMA kernel is an isotropic function of ||s|| and has
the closed form expressions of Fourier transform given by

φ̃(ω) = −
p∑
i=1

λib(λi)

a′(λi)(||ω||2 + λ2i )
3/2

.

The simplest kernel of CAR(1), obtained by substituting p = 1, q = 0
in the CARMA(p, q) kernel, and the Fourier transform are given by, after
transforming λ1 with −1/δ for later use,

φ(s;β, δ) =
β

2πδ2
e−||s||/δ, δ > 0, s ∈ R2, (8)

= βφ0(s; δ), say,

φ̃(ω;β, δ) =
β

δ3(||ω||2 + δ−2)3/2
, ω ∈ R2, (9)

= βφ̃0(ω; δ), say.
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The CAR(1) kernel here is normalized to let the integral over R2 be β and
make easier interpretation for the parameter β as a result. The convolutional
regression with the CAR(1) kernels is expressed as

yt(s) =

p∑
j=1

βj

∫
S

1

2πδ2j
e−||s−u||/δjxt(u)du+ εt(s), δ > 0, s ∈ S, (10)

=

p∑
j=1

βj

∫
S
φ0(s− u; δj)xt(u)du+ εt(s).

The parameter β measures a degree of spatial association between x and y,
while δ describes spatial effects that measure how far the neighbours of x(s)
affect y(s). As δj → 0, it reduces to

yt(s) =

p∑
j=1

βjxtj(s) + εt(s), s ∈ S,

the usual regression model without spatial effects. One point to be noticed
here is that β = 0 in (8) makes δ unidentifiable. Testing spatial independence
between x(s) and y(s) by β = 0 should be tried for a fixed value of δ. In the
later simulation studies, we tried the test of independence by testing β = 0
for δ = 0.

3 Asymptotic properties

This section considers asymptotic properties of the least squares estimator in
(5) when we have samples of yt(s), xta(s), a = 1, . . . , p, on irregularly spaced
points on [0, A1] × [0, A2] for t = 1, . . . , T . Three kinds of asymptotics are
known in spatial statistics literatures (Stein, 1999). This paper employs
the mixed asymptotic among the three when both region of [0, A1]× [0, A2]
and number of sampling points diverge jointly in the spatial dimension,
while the temporal size of T is finite and fixed in the temporal dimension.
The techniques to prove the asymptotic results are based on Matsuda and
Yajima (2009) and Matsuda and Yajima (2018), which have developed the
method to manage irregularly spaced data under the mixed asymptotics.
Let us denote the least squares estimator minimizing (5) as θ̂ throughout
this section.

3.1 Consistency and asymptotic normality

Let us clarify the conditions under which consistency and asymptotic nor-
mality of our estimator is validated.

C1. The sample sizes nat and the sampling region A = [0, A1] × [0, A2]
diverge jointly such that A1 → ∞, A2 → ∞, A1/A2, A2/A1 = O(1),
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nat/nbt = 0(1) and |A|/nat → 0, a, b = 0, 1, . . . , p, t = 1, . . . , T , for the
area |A| = A1×A2. We shall employ a suffix k such as A = Ak, nat =
natk when we indicate explicitly that they diverge as k tends to infinity.

C2. Let Sat be the set of sampling points in A = [0, A1]×[0, A2]. We assume
that elements in Sat are written as, for a = 0, 1, . . . , p, t = 1, . . . , T ,

satj = (A1u1,atj , A2u2,atj), j = 1, . . . , nat,

where uatj = (u1,atj , u2,atj)
′ is a sequence of independent and identi-

cally distributed random vectors with a probability density function
g(x) supported on [0, 1]2 which has continuous first derivatives. Sam-
pling points s and observed variables xt, εt at s are independent for all
t.

C3. xt(s) = (xt,1(s), . . . , xt,p(s))
′ has finite moments of all orders for any

t = 1, . . . , T , s ∈ R2, and is stationary across s ∈ R2 with all higher
order spectral density functions that are all bounded and integrable.
The 2nd order spectral density function,

fx,t1t2,a1a2(ω) = (2π)−2
∫
R2

Cov(Xt1,a1(s), Xt2,a2(s− u))e−iu
′ωdu,

is positive definite and twice differentiable.

C4. xt(s) is strictly exogenous in the sense that xt1(s1) is independent of
εt2(s2) for any t1, t2 = 1, . . . , T, s1, s2 ∈ R2. εt(s) has finite moments
of all orders, and is stationary across s ∈ R2 with all higher order
spectral density functions that are all bounded and integrable. The
2nd order spectral density,

fε,t1t2(ω) = (2π)−2
∫
R2

Cov(εt1(s), εt2(s− u))e−iu
′ωdu,

is positive and twice differentiable.

C4’. xt(s) is contemporaneously exogenous in the sense that xt(s1) is in-
dependent of εt(s2) for any t = 1, . . . , T, s1, s2 ∈ R2. εt(s) has finite
moments of all orders, is serially independent across t and stationary
across s ∈ R2 with all higher order spectral density functions. The
2nd order spectral density function,

fε,t(ω) = (2π)−2
∫
R2

Cov(εt(s), εt(s− u))e−iu
′ωdu,

is positive definite and twice differentiable.
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C5. Let Θ be a compact parameter space in Rq for θ = (θ1, . . . , θq), and D
be a fixed symmetric compact region on R2. ψ̃(ω; θ) has a continuous
first derivative with respect to θ on Θ × D. θ1 6= θ2 implies that
ψ̃(ω; θ1) 6= ψ̃(ω; θ2) on a subset of D with positive Lebesgue measure.

C1 clarifies the details of the mixed asymptotics under which the asymptotic
properties of the estimator is validated. Notice that the asymptotics in space
is employed with fixed and finite temporal size T rather than joint asymp-
totics of space and time. C2 specifies irregularity of sampling points over the
diverging region A = [0, A1] × [0, A2] with the identical density function of
|A|−1g(s/A). The distribution of sampling points needs to be independent
of dependent and independent variables. It should be emphasized that C3
and C4 (C4’) confine zt(s) = (yt(s), xt(s)) to be stationary across s without
stationary restrictions across t. Namely, zt(s) can be nonstationary across
t. C4 assumes the strict exogeneity of xt(s) to allow serial correlation of the
error terms, while C4’ assumes serially independency of the error terms to
relax the strict exogeneity with the contemporaneous exogeneity. C5 is the
usual assumption of identifiability of parametric convolutional kernels.

Now we are in a position to state the consistency and asymptotic nor-
mality. The proofs are shown in the final section of appendix.

Theorem 1. Under Assumptions C2, C3, C4 and C5,

θ̂ →p θ0

in the asymptotic scheme defined by C1. Assumption C4 can be replaced
with C4’ to have the consistency.

Theorem 2. Under Assumptions C2, C3, C4 and C5, if |A|3/2/nat =
o(1), a = 0, 1, . . . , p,√

|A|(θ̂ − θ0)→ N
(
0, (2π)2bgΩ

−1ΣΩ−1
)

in the asymptotic scheme defined by C1, where

bg =

{∫
[0,1]2

|g(u)|4du

}{∫
[0,1]2

|g(u)|2du

}−2
,

Ω =

∫
D

Ψ̇(ω; θ0)

{
T∑
t=1

fx,tt(ω)

}
Ψ̇′(ω; θ0)dω,

Σ =

∫
D

Ψ̇(ω; θ0)

1

2

T∑
t1,t2=1

fε,t1t2(ω)fx,t1t2(ω)

 Ψ̇′(ω; θ0)dω,

and where fx,tt(ω) is the spectral density matrix whose (a, b)th element is
fx,tt,ab(ω) in Assumption C3 and Ψ̇(ω; θ) is the q by p matrix whose (i, j)th
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element is

∂ψ̃j(ω; θ)

∂θi
, i = 1, . . . , q, j = 1, . . . , p.

If Assumption C4’ is assigned for Assumption C4, Σ in the asymptotic vari-
ance matrix reduces to

Σ =

∫
D

Ψ̇(ω; θ0)

{
1

2

T∑
t=1

fε,tt(ω)fx,tt(ω)

}
Ψ̇′(ω; θ0)dω.

We will give a few remarks on the asymptotic results. First, the asymp-
totic results are validated under the asymptotics when observation region
and samples inside together diverge for a fixed time period, which makes
it possible to relax stationarity across time under stationarity only across
space. Secondly, bg is the term that clarifies the effects of distributions of
sampling points to the asymptotic variance. Sampling points uniformly dis-
tributed over a rectangular make the least squares estimation most efficient.
Non-uniform distributions over a region that deviates from a rectangular
worsen the efficiency. Thirdly, the asymptotic variance corresponds with
the heteroskedasticity- robust one in the traditional regression analysis. In
other words, the error term in (3) is regarded as the one with heteroskedas-
tic variance on the frequency domain. Finally, |A|, the area of the sampling
region, is the normalizing factor in the asymptotic distribution. This is the
notifying feature in the asymptotics that contrasts with the sample size in
the traditional central limit theorems for iid sequences.

3.2 consistent asymptotic variance estimation

Let us consider the consistent estimation of the asymptotic variance matrix
in Theorem 2, which shall be used to conduct statistical inference for the
parameters in the kernels ψa(u, θ), a = 1, . . . , p. First, we estimate the
density g(x) in condition C2 that appears in the asymptotic variance matrix.
Let K be a kernel function that is positive and continuous on [0, 1]2, and
let Kh(s) = h−11 h−12 K(s1/h, s2/h), s = (s1, s2) ∈ [0, 1]2 for h = (h1, h2), a
bandwdith. Estimate g(x), x ∈ [0, 1]2 by

ĝ(x) =
1

(p+ 1)T

p∑
a=0

T∑
t=1

ĝat(x),

ĝat(x) =
1

nat

nat∑
i=1

Kh(sati/A− x),
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where sati/A = (sati,1/A1, sati,2/A2). Then for xi ∈ [0, 1]2, i = 1, . . . , N2,
mesh points equally dividing [0, 1]2 into N2 squares, let

b̂g =

1
N2

N2∑
i=1

ĝ(xi)
4

 1
N2

N2∑
i=1

ĝ(xi)
2


2 .

Then the asymptotic variance matrix evaluated in Theorem 2 as

|A|−1(2π)2bgΩ
−1ΣΩ−1,

is consistently estimated by

b̂gΩ̂
−1(θ̂)Σ̂(θ̂)Ω̂(θ̂)−1,

where

Ω̂(θ) =
∑
ωf∈D

Ψ̇(ωf ; θ)

{
T∑
t=1

x̂t(ωf )x̂t(ωf )
′
}

Ψ̇(ωf ; θ)′, (11)

Σ̂(θ) =
∑
ωf∈D

Ψ̇(ωf ; θ)

 T∑
t1,t2=1

{Lt1t2(ωf ; θ) +Mt1t2(ωf , θ)}

 Ψ̇(ωf ; θ)′,

Lt1t2(ωf ; θ) = Re{ε̂t1(ωf ; θ)}Re{ε̂t2(ωf ; θ)}Re{x̂t1(ωf )}Re{x̂t2(ωf )′},
Mt1t2(ωf ; θ) = Im{ε̂t1(ωf ; θ)}Im{ε̂t2(ωf ; θ)}Im{x̂t1(ωf )}Im{x̂t2(ωf )′},

ε̂t(ωf ; θ) = ŷt(ωf )−
p∑
a=1

ψ̃a(ωf ; θ)x̂ta(ωf ).

The consistent estimator for the asymptotic variance makes it possible to
conduct the t test for the least squares estimators. The term of (2π)2|A|−1
in the asymptotic variance cancels in the consistent estimation with the
Riemannian approximation for the integral.

4 Simulation studies

This section examines empirical performances of the least squares estimation
on the frequency domain proposed in Section 2.2. We validated the asymp-
totic consistency and normality under Assumption C2-C4 in the asymptotic
scheme in C1, where C3 assumes stationary only across space, does not
across time. Namely, our estimation is validated even for temporally unit
root processes. We check the empirical performances under C3 when tem-
poral stationary is not necessarily satisfied.
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First, we study the spatial extension of spurious regression problem found
by Granger and Newbold (1974). They found that, for yt and xt, which are
mutually independent unit root processes, the t test for the simple regression
analysis rejects the independence more often than significance level, which is
the so called spurious regression. Now we shall check it for our least squares
estimation.

We simulate yt(s), xt(s), which are mutually independent spatio-temporal
data on A = [0, 20]2 by spatial moving averages of unit root processes. Let
uk, vk, k = 1, . . . , 2000 be knots uniformly distributed on A = [0, 40]2 and
simulate by

yt(s) =
2000∑
k=1

η
(1)
tk e
−||s−uk||, xt(s) =

2000∑
k=1

η
(2)
tk e
−||s−vk||, (12)

where η
(i)
t,k, i = 1, 2 are mutually independent unit root processes for each k,

simulated by

η
(i)
tk = η

(i)
t−1,k + ε

(i)
tk , t = 1, . . . , T,

where ε
(i)
tk are independent iid standard normal variables. We simulated

xt(s) and yt(s) on two different sets of uniformly distributed 2000 points
on A for t = 1, . . . , T . They are mutually independent processes by the
simulating models.

For the simulated dataset of xt(s) and yt(s) that are mutually indepen-
dent, we fitted the convolutional regression model in (1) with the CAR(1)
kernel in (8). The true kernel function in this case is attained by (8) with
β = 0 for any values of δ > 0, namely δ is not an identifiable parameter in
the independent case. Hence we fix δ with 0.5 and 2.0 in the kernel as ex-
amples, and estimate β by the least squares in (5) for the fixed δ = 0.5, 2.0,
where D is the half circle with the centre of origin on the upper half plane
adjusted to make the number of elements to 2000/2 = 1000. Figure 1 de-
picts the histograms of the t values of β for T = 30 and 200, evaluated by
100 simulations.

Figure 1 demonstrates that the asymptotic theory in section 3.1 works for
non-stationary unit root processes across time. Namely, the t values follow
distributions well approximated by standard normal one. The sizes of the
ttest are 3, 6, 6 and 6 for the cases of δ = 0.5, T = 30. δ = 0.5, T = 200,
δ = 2, T = 30 and δ = 2, T = 200, under the 5% significance level. Hence it is
clarified empirically as well as asymptotically that convolutional regressions
do not suffer from the spurious regression problems indicated by Granger
and Newbold (1974).

Next, let us move on to dependent cases when yt(s) is given by a convo-

13
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Figure 1: The histograms of t values for the mutually independent spatio-
temporal dataset simulated by (12) evaluated by 100 simulations.

lution of xt(s). We simulated yt(s) by, for A = [0, 20]2,

yt(s) = β

∫
A
φ0(s− u; δ)xt(u)du+ εt(u), t = 1, . . . , T,

where φ0 is the CAR(1) kernel in (8), and

xt(s) =
6000∑
k=1

ξ
(1)
tk e
−||s−uk||, εt(s) =

6000∑
k=1

ξ
(2)
tk e
−||s−vk||,

ξ
(i)
tk = ρξ

(i)
t−1,k + f

(i)
tk , i = 1, 2,

and where uk, vk are knots uniformly distributed on A and f
(i)
tk , i = 1, 2,

are independent standard normal variables. The convolution operator was
approximated with the Riemannian summation when we simulated in prac-
tice. Notice that the simulated dataset satisfy Assumption C4 for any value
of ρ. We have an interest in the estimation performances of β and δ when
ρ is designed as 0 and 1 that simulate stationary and unit root across time,
respectively.
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ρ = 0 ρ = 1

β δ β δ

mean 1.01 0.49 1.04 0.51
RMSE 0.041 0.023 0.18 0.10
ave(se) 0.061 0.052 0.16 0.11

Table 1: The means and RMSEs of LSE minimizing (5) for β = 1, δ = 0.5 in
the CAR(1) kernel in the cases of ρ = 0 and 1, which simulate stationary and
unit root across time, respectively, evaluated by 100 simulations. ave(se) is
the average of estimated standard errors in (11).

For 100 sets of yt(s), xt(s) simulated for β = 1, δ = 0.5 on 6000 uniformly
scattered points on A with T = 30 in cases 1 and 2 of ρ = 0 and 1, respec-
tively. We estimated β, δ in the CAR(1) kernel by minimizing (5). Table 1
lists the average and root mean squared error of β̂ and δ̂.

Table 1 demonstrates that the least squares by minimizing (5) works
efficiently for both cases of ρ = 0, error term is stationary across time, and
ρ = 0, unit root across time. They have small biases and root mean squares
that are well approximated by the standard errors in (11) based on the
asymptotic variance in Theorem 2. The simulation results validate that the
asymptotic distribution approximates the empirical distribution accurately
for both cases of stationary and unit root non-stationary of error terms.

5 Real data analysis

In this section, we demonstrate the applications of the convolutional re-
gression model in (1) to two real spatio-temporal data. They are monthly
precipitation recorded at US weather stations and weekly number of new
cases of COVID-19 in every city all over Japan. Observation points in both
examples are irregularly spaced in the way we supposed for the estimation
in section 2.2.

Here let us denote several remarks for the demonstrations. First, we
shall employ CAR(1) kernels in (8) for all the convolutional regression mod-
els in the section. Secondly, all the spatial data we considered for dependent
and independent variables at all temporal points were detrended in order
to avoid the intercept issues in Section 2.1 as well as as well as to satisfy
stationary conditions in Assumption C4 in Section 3. Specifically we de-
trended separately for each temporal points by fitting CAR(1) random field
by Brockwell and Matsuda (2017),

ψj(s;α) = e−α||s−uj ||, α > 0, s ∈ R2, (13)

where uj , j = 1, . . . , N , are knots scattered randomly over the observation
region. Finally, we took two benchmarks for comparisons with the forecast-
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Figure 2: Weather stations in United States

ing performances. For our forecast with the least squares estimation on the
frequency domain in (5), the first benchmark is the predicted value with the
estimation on the spatial domain in (6), and the other one is the trend that
we identified for the removal of the trend function by CAR(1) random field.

5.1 US weather data

Here we apply the functional regression model in (1) to US precipitation
data, which is monthly total precipitation, maximum and minimum temper-
atures observed at weather stations all over the US from 1895 through 1997,
available on the Institute for Mathematics Applied Geosciences (IMAG)
website. All the observations are recorded monthly as spatio-temporal data
with their longitudes and latitudes. For more details, visit
http://www.image.ucar.edu/Data/US.monthly.met/USmonthlyMet.shtml.
Around 6,000 weather stations are shown in Figure 2.

Regarding the monthly precipitation, and maximum and minimum tem-
peratures as dependent and independent variables, respectively, we fitted the
functional spatial regression model in (1) given by, for the CAR(1) kernel in
(10),

pptt(s) = β1

∫
φ0(s− u; δ1)tmint(u)du

+ β2

∫
φ0(s− u; δ2)tmaxt(u)du+ εt(s). (14)

We took the observations from 1986 to 1990 as in-samples and those in
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variable param. LSE by (5) se

min temp.
β1 1.97 (0.15)
δ1 0.62 (0.053)

max temp.
β2 −1.64 (0.10)
δ2 0.38 (0.023)

Table 2: The estimated parameters for (14) with their standard errors,
when we took A = [0, 50]× [0, 30] to construct the periodogram on the mesh
points (2πi/A1, 2πj/A2), i, j 6= 0 in D = {ω ∈ R2, ||ω|| < K}, where K was
adjusted to make the number of the elements be 4000.

forecasting MSE
model in-sample out-of-sample

CAR(1) by (5) 23.7 28.8
CAR(1) by (6) 23.4 28.6

trend fit by (13) 28.7 36.3

Table 3: Forecasting MSE for in-samples (60 months in 1986-1990) and
out-of-samples (12 months in 1991) in US precipitation over 6000 weather
stations.

1991 as out-of-samples. The precipitation, maximum, and minimum tem-
perature do not share the same observation points that differ from month to
month. Thus the numbers of the observations depend on month. They are
around 6000 for precipitation and 4000 for maximum and minimum temper-
ature on average. The total period is 72 months, 60 months for in-samples
and 12 months for out-of-samples.

We transformed the coordinate of latitudes and longitudes to record the
observation locations into Cartesian coordinate based on global distance
with an unit of 100 km. Applying the discrete Fourier transform to the
in-sample observations, we estimated the parameters, β1, β2, δ1, δ2 by mini-
mizing the equation in (5) with (9), where we took A = [0, 50] × [0, 30] to
construct the periodogram on the mesh points (2πi/A1, 2πj/A2), i, j 6= 0 in
D = {ω ∈ R2, ||ω|| < K}, where K was adjusted to make the number of the
elements be 4000. The estimation results are shown in Table 2.

Then we constructed the forecasts by (14) in (7) with the estimated
parameters to compare the mean squared errors with those of the bench-
marks. The MSEs evaluated by, for vkt, k = 1, . . . , nt, the out-of-samples at
t = 61, . . . , 72,

1

n61 + · · ·+ n72

72∑
t=61

nt∑
k=1

(
pptt(vkt)− ˆpptt(vkt)

)2
are shown in Table 3.
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We find from Table 2 that we identified the non-trivial relations. Namely,
precipitation is negatively correlated with maximum temperatures, while it
is positively correlated with minimum temperatures. The evaluated stan-
dard errors for the estimators indicate that they are strongly significant
with the p-values less than 1%. Table 3 demonstrates that our estimation
on the frequency domain works as well as that on the spatial domain, while
it outperforms the benchmark of the fitted trend. The two least squares
estimation on the frequency and spatial domains shares almost equivalent
results, although the one on the spatial domain is slightly better. It may
come from the approximation to evaluate the out-of-sample forecats in (7)
that gives advantage to the estimation on the spatial domain in (6) over the
one on the frequency domain in (5).

5.2 COVID-19 outbreak in Japan

This section applies the convolutional regression in (1) with CAR(1) kernels
to analysis of COVID-19 outbreak in Japan in relation with human mo-
bilities. We aim to identify the impact of human mobility to outbreak of
COVID-19.

We collected the weekly new cases of COVID-19 infections at all of 1,896
cities in Japan as dependent variables, while we evaluated weekly human
mobility based on dataset provided by NTT DOCOMO, Inc., one of the
largest Japanese mobile phone companies as an independent variable. More
precisely, the dependent variable is the covid19 infection rate, which is, for
nti and Nti, weekly new cases and population at a city i and a week t, defined
by,

covid19t(si) =
nti
Nti
× 10, 000.

NTT Docomo, inc. provides spatio-temporal dataset that counts numbers
of people in 500 meter meshes at every one hour period all over Japan. We
aggregate it into city level that counts the weekly number of people who
enter a city from outside the city. For mti, weekly number of people who
enter a city i at si from outside at a week t, and define the independent
variable by

hmobilt(si) =
mti

Nti
.

In addition, we collected weekly total precipitation at 936 weather stations
in Japan as one more possible independent variable.

All the variables have longitudes and latitudes to indicate their locations.
We transformed the coordinate of latitudes and longitudes into Cartesian
coordinate based on global distance with an unit of 50 km. We took the
dataset collected weekly for 86 weeks from Feb 12th, 2020 to Sep. 30th,
2021, and the last ten weeks were separated as the out-of -samples.
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Figure 3: Locations of 1,896 Cities in Japan

We fitted the convolutional regression that includes lagged terms of de-
pendent variables as

covid19t(s)

= β1

∫
φ0(s− u; δ1)covid19t−1(u)du+ β2

∫
φ0(s− u; δ2)covid19t−2(u)du

+ β3

∫
φ0(s− u; δ3)hmobilt−1(u)du+ β4

∫
φ0(s− u; δ4)hmobilt−2(u)du

+ β5

∫
φ0(s− u; δ5)pptt−2(u)du+ εt(s), (15)

for the CAR(1) kernel φ0(·; δ) in (10).
We estimated the parameters by minimizing (5) with (9), where we

took A = [0, 40] × [0, 40] to construct the periodogram on the mesh points
(2πi/A1, 2πj/A2), i, j 6= 0 in D = {ω ∈ R2, ||ω|| < K}, where K was ad-
justed to make the number of the elements be 1800. The estimation results
are shown in Table 4.

Then we constructed the forecasts by (15) with (7) with the estimated
parameters to compare the mean squared errors with those of the bench-
marks. The MSEs evaluated by, for vkt, k = 1, . . . , nt, t = 77, . . . , 86, the
out-of-sample period,

1

n77 + · · ·+ n86

86∑
t=77

nt∑
k=1

(
covid19t(vkt)− ˆcovid19t(vkt)

)2
are shown in Table 5.

We find from Table 4 that covid-19 is a strongly autocorrelated data by
the estimators for the first and second lagged autoregressive terms. Hmobil
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variable param. LSE by (5) se

covid−1
β1 0.99 (0.021)
δ1 0.14 (0.0078)

covid−2
β2 −0.39 (0.027)
δ2 0.45 (0.027)

hmobil−1
β3 −0.50 (0.062)
δ3 0.11 (0.052)

hmobil−2
β4 0.59 (0.065)
δ4 0.12 (0.043)

ppt−2
β5 −0.0031 (0.00092)
δ5 0.13 (0.19)

Table 4: The estimated parameters for (15) with their standard errors,
when we took A = [0, 40]× [0, 40] to construct the periodogram on the mesh
points (2πi/A1, 2πj/A2), i, j 6= 0 in D = {ω ∈ R2, ||ω|| < K}, where K was
adjusted to make the number of the elements be 1800.

is negatively correlated with covid-19 at the first lag, while it is positively
related at the second lag, when we control the first and second lagged covid-
19. The negative correlation with the first lag means that human mobility is
strictly controlled by local or central government. Namely the government
predicts the tendency of increasing or decreasing new cases and fixes the
policies to control the mobilities based on the prediction, which can produce
the negative correlation at the first lag. On the other hand, the second lagged
human mobility positively related with covid-19, which demonstrates the
well known result that it takes around two weeks for a man to be infected
with the virus. Finally we find that the precipitation at the second lag
correlates covid-19 negatively. From the fitted models that are not shown
here, it is seen that the precipitation at any other lags is not significant.
Although it is not clear which causes the negative correlation in two weeks,
restricted human mobility by rain or effects of humidity, it is interesting to
detect the negative relationship by the convolutional regression.

Table 5 indicates that the least square estimation on frequency domain
has larger MSEs than that on the spatial domain in terms of both in-sample
and out-of-sample comparisons, although they should be theoretically equiv-
alent. The difference here is even greater than that in the US weather data
case in Table mse. The greater difference of MSE as well as the estimation
between the two estimation may come from the difference of the sample
sizes. There are around 6,000 weather stations in the first example, while
there are around 1,800 cities recorded for weekly new cases of infections.
Frequency domain estimation requires more sample sizes than that on the
spatial domain to attain the equivalent approximation accuracy.
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forecasting MSE
model in-sample out-of-sample

CAR(1) by (5) 1.82 12.7
CAR(1) by (6) 1.71 11.8

trend fit by (13) 2.45 31.3

Table 5: Forecasting MSE for in-samples (77 weeks in Feb. 2020-Jul. 2021)
and out-of-samples (8 weeks in Aug. -Sep. 2021) in Covid-19 new cases over
1,760 cities in Japan.

6 Discussion

This paper tries a parametric convolutional regression for big spatial data
on huge scales at discrete time points. Applying Fourier transform to the
regression, we propose the least squares estimation on the frequency domain.
We have found several features of the convolutional regression for big spatial
data.

First, our approach can handle a regression among big spatial data on
national or continental scale. Second, our approach does not require station-
arity across time but do across space, while existing approaches on functional
PCA need not stationarity across space but do across time. Non-stationary
behaviours including unit root across time or even one time point observation
suffices to estimate parametric convolution kernels consistently. Stationarity
across space necessary for our approach to work is the price for no restric-
tions across time. As a result, our regression is free from spurious regression
problem indicated by Granger and Newbold (1974), which is well demon-
strated in the simulation studies. Thirdly, our approach allows irregularly
spaced data over space and irregularity can change with time varying sam-
ple sizes across time, which is common in collecting big spatial data. The
discrete Fourier transform works critically to make it possible to estimate
properly under irregular sampling across space. Finally, the leat squares
estimation on the frequency domain is validated asymptotically under the
so called mixed asymptotics. Since the consistent asymptotic variance ma-
trix estimator is easily constructed, statistical inference for convolutional
regression becomes possible. The t test in the empirical study of Covid-19
analysis in relation with human mobility data collected on national scale
in Japan detects the significant relation statistically that two week lagged
human mobility associates positively current week Covid-19 new cases.
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7 Proofs

We define L(θ) by normalizing Q(θ) in (5) as

L(θ) = (2π)2Q(θ)

=
(2π)2

|A|
∑
ωf∈D

T∑
t=1

{
It,yy(ωf )− 2φ̃(ωf ; θ)It,xy(ωf ) + φ̃(ωf ; θ)It,xx(ωf )φ̃′(ωf ; θ)

}
,

where φ̃(ω; θ) = (φ̃1(ω; θ), . . . , φ̃p(ω, θ)) and

It,xx(ω) = |A|x̂t(ω)x̂t(ω)
′
,

It,xy(ω) = |A|x̂t(ω)ŷt(ω),

It,yy(ω) = |A|ŷt(ω)ŷt(ω),

the periodograms.

7.1 Proof of Theorem 1

Let θ1 ∈ Θ be a parameter that is not equal to θ0. By applying Lemmas 1
and 2 to the periodograms with the relations,

ft,yy(ω) = φ̃(ω; θ0)ft,xx(ω)φ̃′(ω; θ0) + ft,εε(ω), t = 1, . . . , T,

ft,xy(ω) = ft,xx(ω)φ̃′(ω; θ0),

ft,xε(ω) = 0,

we have

L(θ1)→τg
T∑
t=1

∫
D

{(
φ̃(ω; θ1)− φ̃(ω; θ0)

)
ft,xx(ω)

(
φ̃(ω; θ1)− φ̃(ω; θ0)

)′
+ ft,εε(ω)

}
dω

:= L∞(θ1),

say, in probability as k tends to be infinity in the asymptotic regime of C1.
Since ft,xx(ω) is positive definite,

L∞(θ1)− L∞(θ0) =

τg

T∑
t=1

∫
D

(
φ̃(ω; θ1)− φ̃(ω; θ0)

)
ft,xx(ω)

(
φ̃(ω; θ1)− φ̃(ω; θ0)

)′
dω

> 0.

It follows that, for any positive constant K(θ0, θ1) that is smaller than
L∞(θ1)− L∞(θ0),

lim
k→∞

P (L(θ0)− L(θ1) < −K(θ0, θ1)) = 1.
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Let Mt(ω) be the maximum eigenvalue of the periodogram matrix

It(ω) =

(
It,yy(ω) It,xy(ω)

′

It,xy(ω) It,xx(ω)

)
, ω ∈ D, t = 1, . . . , T.

Then for any θ1 and θ2 that satisfy |θ2 − θ1| < δ,

|L(θ2)− L(θ1)| < Cδ sup
ω∈D

max
t
Mt(ω) = Hδ,

say. It is seen that there exists a δ > 0 such that

lim
k→∞

P (Hδ < K(θ0, θ1)) = 1.

Applying Lemma 2 in Walker (1964), we have the consistency.

7.2 Proof of Theorem 2

Applying Taylor series expansion to ∂L(θ̂)
∂θ at θ0, we have

0 =
∂L(θ̂)

∂θ
=
∂L(θ0)

∂θ
+
∂2L(θ∗)

∂θ∂θ′
(θ̂ − θ0),

where θ∗ is the mean value between θ0 and θ̂. Hence

√
|A|
(
θ̂ − θ0

)
=

{
∂2L(θ∗)

∂θ∂θ′

}−1√
|A|
{
−∂L(θ0)

∂θ

}
.

The first factor, which is the Hessian matrix, is evaluated as,

2
(2π)2

|A|
∑
ωk∈D

∂φ̃(ωk; θ
∗)

∂θ′

{∑
t

It,xx(ωk)

}
∂φ̃′(ωk; θ

∗)

∂θ

−2
(2π)2

|A|
∑
t

∑
ωf∈D

p∑
a=1

{
It,yxa(ωf )− It,xax(ωf )φ̃(ωf ; θ∗)

} ∂2φ̃a(ωf ; θ∗)

∂θ∂θ′
,

which converges in probability by Lemmas 1 and 2 to

2τg(2π)2Ω, (16)

since θ∗ converges to θ0 under the consistency, and ft,yx(ω) = ft,xx(ω)φ̃′(ω; θ0).
The second factor, which is the score vector, is evaluated as

−2

√
|A|(2π)2

|A|
∑
ωf∈D

T∑
t=1

∂φ̃(ωf ; θ0)

∂θ
|A|x̂t(ωf )

{
ŷt(ωf )− φ̃(ωf ; θ0)x̂t(ωf )

}

23



which is, by Lemma 2, equal to

−2

√
|A|(2π)2

|A|
∑
ωf∈D

∂φ̃(ωf ; θ0)

∂θ

{
T∑
t=1

It,xε(ωf )

}
+ J, (17)

where

It,xε(ω) = |A|x̂t(ω)ε̂t(ω),

ε̂t(ω) =
1

n0t

n0t∑
j=1

εt(s0tj) exp(−iω′s0tj),

and E|J | is bounded by

C max
ω∈D

max
1≤t≤T

max
1≤a≤p

×

√√√√√|A|1/2E
∣∣∣∣∣∣ |A|

1/2

n0t

n0t∑
j=1

xta(s0tj − u)e−i(s0tj−u)
′ω − |A|

1/2

nat

nat∑
j=1

xta(satj)e
−is′atjω

∣∣∣∣∣∣
2

=o(1),

by Lemma 1. Hence it is equivalent to show the asymptotic distribution of

K = 2
√
|A|
∫
D

∂φ̃(ω; θ0)

∂θ

{
T∑
t=1

It,xε(ω)

}
dω,

by applying Lemma 3 to the first term.
We shall show in Lemmas 4, 5 and 6 that

E(Ka)→ 0, a = 1, . . . , q,

E(KaKb)→ 4(2π)6τg2Σab, a, b = 1, . . . , q,

cum (Ka1 , . . . ,Kar))→ 0, for 1 ≤ a1, . . . , ar ≤ q, r ≥ 3,

respectively, as k tends to ∞, which proves the asymptotic normality in
Theorem 2 in combinations with (16).

8 Lemmas

For the unified treatment of the periodograms, we define, for t = 1, . . . , T ,

zt0(s) = yt(s),

zta(s) = xta(s), a = 1, . . . , p,

and, re-define the periodogram and spectral density matrix of z by, for
a, b = 0, 1, . . . , p,

It,ab(ω) = |A|ẑta(ω)ẑtb(ω),

ft,ab(ω) = ft,z,ab(ω), a, b = 0, 1, . . . , p,
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Lemma 1.

EIt,ab(ω) = (2π)2τgft,ab(ω) +O

(
ntab|A|
ntantb

+A−21 +A−22

)
, a, b = 0, 1, . . . , p,

where nta, ntb and ntab are the number of elements in Sta, Stb and Sta ∩ Stb,
respectively, and

τg =

∫
[0,1]2

|g(x)|2dx.

Proof. This is an immediate consequence of Lemma 3 in Matsuda and Ya-
jima (2009).

Lemma 2. For a square integrable function ψ(ω), ω ∈ R2,

var

(2π)2

|A|
∑
ωj∈D

It,ab(ωj)ψ(ωj)

 = O
(
|A|−1

)
, a, b = 0, 1, . . . , p.

Proof. Let

ψ̂(s) =
(2π)2

|A|
∑
ωj∈D

ψ(ωj)e
−iω′js, s ∈ A = [0, A1]× [0, A2],

which is extended periodically to [−A1, A1] × [−A2, A2]. Then the object
for the variance is evaluated as

|A|3/2

ntantb

nta∑
c=1

ntb∑
d=1

zta(satc)zb(sbtd)ψ̂(satc − sbtd).

The variance is given by

E
|A|3

n2tan
2
tb

∑
c1

∑
d1

∑
c2

∑
d2

(
cum (zta(satc1), ztb(sbtd1), zta(satc2), ztb(sbtd2))

+ γt,aa(satc1 − satc2)γt,bb(sbtd1 − sbtd2) + γt,ab(satc1 − sbtd2)γt,ba(sbtd1 − satc2)

)
× ψ̂(satc1 − sbtd1)ψ̂(satc2 − sbtd2)

=

∫
A

∫
A

∫
A

∫
A

(
cum(zta(u1), ztb(v1), zta(u2), ztb(v2))

+ γt,aa(u1 − u2)γt,bb(v1 − v2) + γt,ab(u1 − v2)γt,ba(v1 − u2)
)

× ψ̂(u1 − v1)ψ̂(u2 − v2)|A|−1g(u1/A)g(v1/A)g(u2/A)g(v2/A)du1dv1du2dv2 + o(1).
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The first term is, by expressing the cumulant term with the cumulant spec-
trum:

ft,abab(ω1, ω2, ω3) =
m∑

e,f,g,h=1

κt,efghG̃tae(ω1)G̃tbf (ω2)G̃tag(ω3)G̃tbh(ω1 + ω2 + ω3),

(18)

given by∫
R2

∫
R2

∫
R2

ft,abab(ω1, ω2, ω3)e
iω′1(u1−v2)eiω

′
2(v1−v2)eiω

′
3(u2−v2)dω1dω2dω3

|A|−1
∫
A

∫
A

∫
A

∫
A
ψ̂(u1 − v1)ψ̂(u2 − v2)g(u1/A)g(v1/A)g(u2)/Ag(v2/A)du1dv1du2dv2,

which is, by Schwarz inequality, bounded by

2∏
j=1

√∫
R2

∫
R2

∫
R2

|ft,abab(ω1, ω2, ω3)|Pjdω1dω2dω3, (19)

for

P1 = |A|−1
∣∣∣∣∫
A

∫
A
ψ̂(u1 − v1)g(u1/A)g(v1/A)eiω

′
1u1eiω

′
2v1du1dv1

∣∣∣∣2 ,
P2 = |A|−1

∣∣∣∣∫
A

∫
A
ψ̂(u2 − v2)g(u2/A)g(v2/A)e−i(ω1+ω2)′v2eiω

′
3(u2−v2)du2dv2

∣∣∣∣2 .
By applying Perseval’s equality to both terms, (19) is bounded by

C

∫ A1

−A1

∫ A2

−A2

∣∣∣ψ̂(s)
∣∣∣2 ds, (20)

which is evaluated as

4C|A|(2π)4

|A|2
∑
ωj∈D

|ψ(ωj)|2 < C ′
∫
D
|ψ(ω)|2dω = O(1).

Also the second and third terms in the variance are bounded by a constant
with the same argument, which completes the proof.

Lemma 3. For a square integrable function ψ(ω), ω ∈ R2,√
|A|(2π)2

|A|
∑
j∈JD

It,xaε(ωj)ψ(ωj)−
√
|A|
∫
D
It,xaε(ω)ψ(ω)dω

= op(1), a = 1, . . . , p, t = 1, . . . , T.
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Proof. Let

ψ̂(s) =
(2π)2

|A|
∑
ωj∈D

ψ(ωj)e
−iω′js, s ∈ A = [0, A1]× [0, A2],

ψ̃(s) =

∫
D
ψ(ω)e−iω

′sdω, s ∈ R2,

the first one of which is extended periodically to [−A1, A1]× [−A2, A2]. For
δ(s) = ψ̂(s)− ψ̃(s), the difference is evaluated as

L =
|A|3/2

ntant0

nta∑
c=1

nt0∑
d=1

xa(stac)ε(st0d)δ(stac − st0d).

E|L|2, which is similarly evaluated till (20) in Lemma 2, is bounded by

C

∫ A1

−A1

∫ A2

−A2

|δ(s)|2 ds. (21)

Notice that ψ̂(s), ψ̃(s) are square integrable, since∫ A1

0

∫ A2

0
|ψ̂(s)|2ds = |A|(2π)4|A|−2

∑
ωj∈D

|ψ(ωj)|2 < C

∫
D
|ψ(ω)|2dω <∞,

∫
R2

|ψ̃(s)|2ds = (2π)2
∫
D
|ψ(ω)|2dω <∞.

It follows that, for any ε > 0, there exists a compact set BM = [−M1,M1]×
[−M2,M2] ⊂ [−A1, A1]× [−A2, A2] such that∫ A1

−A1

∫ A2

−A2

∣∣∣ψ̂(s)− ψ̂(s)IBM
(s)
∣∣∣2 ds < ε,∫

R2

∣∣∣ψ̃(s)− ψ̃(s)IBM
(s)
∣∣∣2 ds < ε.

Then (21) is bounded by

C

{∫ A1

−A1

∫ A2

−A2

∣∣∣ψ̂(s)− ψ̂(s)IBM
(s)
∣∣∣2 ds+

∫
BM

∣∣∣ψ̂(s)− ψ̃(s)
∣∣∣2 ds

+

∫
R2

∣∣∣ψ̃(s)IBM
(s)− ψ̃(s)

∣∣∣2 ds}
< C ′ε,

which completes the proof.

Lemma 4.

E(Ka) = O

(
A
−3/2
1 A

1/2
2 +A

1/2
1 A

−3/2
2 +

T∑
t=1

|A|3/2

nta

)
, a = 1, . . . , q.
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Proof. It follows immediately from Lemma 3 in Matsuda and Yajima (2009)
and ft,εx(ω) = 0.

Lemma 5.

E(KaKb)→ 4(2π)6τg2Σab, a, b = 1, . . . , q,

Proof. Re-express Ka by

T∑
t=1

p∑
c=1

|A|3/2

n0tnct

nct∑
j=1

n0t∑
l=1

Xtc(sctj)εt(s0tl)ψ̃ac(sctj − s0tl), (22)

where

ψac(ω) =
∂φ̃c(ω; θ0)

∂θa
,

ψ̃ac(s) =

∫
D
ψac(ω)e−iω

′sdω,

First, ψ̃ac(s) in Ka defined in (22) may be replaced with

ψ̃Mac (s) = ψ̃ac(s)IBM
(s),

for a sufficiently large compact set BM = [−M1,M1]× [−M2,M2], since the
variance of the difference between them may be made arbitrary small by
following the argument till (20) in Lemma 2. Then EKaK̄b replaced with
ψ̃Mac (s) and ψ̃Mbc (s) is evaluated as

T∑
t1,t2=1

p∑
c1,c2=1

|A|−1
∫
A

∫
A

∫
A

∫
A
γx,t1t2,c1c2(u1 − u2)γε,t1t2(v1 − v2)ψ̃Mac1(u1 − v1)ψ̃Mbc2(u2 − v2)

×g(u1/A)g(v1/A)g(u2/A)g(v2/A)du1dv1du2dv2 + o(1).

The first term is evaluated as

T∑
t1,t2=1

p∑
c1,c2=1

∫
R2

∫
R2

fx,t1t2,,c1c2(ω1)fε,t1t2(ω2)|A|−1Pdω1dω2

for

P =

∫
A

∫
A

∫
A

∫
A
ψ̃Mac1(u1 − v1)ψ̃Mbc2(u2 − v2)eiω

′
1(u1−u2)eiω

′
2(v1−v2)

×g(u1/A)g(v1/A)g(u2/A)g(v2/A)du1dv1du2dv2.

By change of variables by u1 − v1 = l1, u2 − v2 = l2 and the compactness of
the supports of φ̃M , |A|−1P is evaluated as

(2π)4ψMac1(ω1)ψ
M
bc2(ω1)Fg2(ω1 + ω2) + o(1),
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where

Fg2(ω) = |A|−1
∣∣∣∣∫
A
g2(u/A)eiω

′udu

∣∣∣∣2 ,
ψMac1(ω) = (2π)−2

∫
BM

ψ̃Mac1(s)eiω
′sds.

It follows by Lemma 1(c) in Matsuda and Yajima (2009) that the first term
converges to

T∑
t1,t2=1

p∑
c1,c2=1

(2π)6τg2

∫
R2

fx.t1t2,c1c2(ω)fε,t1t2(ω)ψMac1(ω)ψMbc2(ω)dω.

We have the result arbitrary close to (2π)6τg2Σab by taking BM large.

Lemma 6. For r ≥ 3,

cum(Ka1 , . . . ,Kar) = O
(
|A|−r/2+1

)
.

Proof. First, ψ̃ac(s) in Ka defined in (22) may be replaced with

ψ̃Mac (s) = ψ̃ac(s)IBM
(s), a = 1, . . . , q,

for a sufficiently large compact set BM = [−M1,M1]× [−M2,M2], since the
variance of the difference between them may be made arbitrary small by
following the argument till (20) in Lemma 2.

The cumulant for the one replaced with ψ̃Mac (s) is evaluated as

cum(Ka1 , . . . ,Kar) =
T∑

t1,...,tr=1

q∑
c1,d1=1

· · ·
q∑

cr,dr=1

|A|−r/2

×
∫
A
· · ·
∫
A
cum(xt1,c1(u1)εt1(v1), . . . , xtr,cr(ur)εtr(vr))

×
r∏
j=1

ψ̃Majcj (uj − vj)g(uj/A)g(vj/A)dujdvj + o(1),

in which the cumulant is evaluated as

cum(xt1,c1(u1), . . . , xtr,cr(ur))× cum(εt1(v1), . . . , εtr(vr))

=

∫
R2

· · ·
∫
R2

fx,t1...tr,c1···cr(ω1, . . . , ωr−1)

r−1∏
j=1

eiω
′
j(uj−ur)dω1 · · · dωr−1

×
∫
R2

· · ·
∫
R2

fε,t1...tr(λ1, . . . , λr−1)

r−1∏
j=1

eiω
′
j(vj−vr)dλ1 · · · dλr−1.
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By replacing the cumulant term with the spectrum expression, the summand
of the corresponding term is given by

|A|−r/2
∫
R2

· · ·
∫
R2

fx,t1...tr,c1···cr(ω1, . . . , ωr−1)dω1 · · ·ωr−1

×
∫
R2

· · ·
∫
R2

fε,t1...tr(λ1, . . . , λr−1)dλ1 · · ·λr−1

×
r−1∏
j=1

∫
A

∫
A
ψ̃Majcj (uj − vj)e

iω′jujeiλ
′
jvjg(uj/A)g(vj/A)dujdvj

×
∫
A

∫
A
ψ̃Marcr(ur − vr)e−i(ω1+···+ωr−1)′ure−i(λ1+···+λr−1)′vrg(ur/A)g(vr/A)durdvr

=C|A|−r/2
∫
R2

· · ·
∫
R2

fx,t1...tr,c1···cr(ω1, . . . , ωr−1)dω1 · · ·ωr−1

×
∫
R2

· · ·
∫
R2

fε,t1...tr(λ1, . . . , λr−1)dλ1 · · ·λr−1 ×
r−1∏
j=1

D2(ωj + λj)ψ
M
ajcj (ωj)

×D2(−ω1 − λ1 − · · · − ωr−1 − λr−1)ψMajcj (−ω1 − · · · − ωr−1) + o(1),

where

D2(ω) =

∫
A
g2(u/A)e−ω

′udu.

We find it to be O(|A|−r/2+1) by Lemma 2 in Matsuda and Yajima (2009).
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