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A Multi-generational Diffusion Model with Social
Media Effects and Pre-Launch Forecasting of Smart
Phone

This paper proposes a diffusion model for multi-generational smart phone by using social media which allows us to
forecast sales not only at early stage after launch of specific generation but also before its launch. The model is based on
multigenerational generalized Bass model and includes the hierarchical model on the structure of parameters for
connecting sequential generations. The social media topics are extracted by the labelled dynamic topic model and they
are plugged in the adoption rate function and hierarchical model for parameters as covariates. The model reveals how
social media accelerates and decelerates the diffusion in the pre-launch and post-launch phases. Unlike previous multi-

generational diffusion models, this model forecasts sales of new-generation products before launch.

The empirical results show that the model forecasts the unlaunched product sales with better precision compared to
extensive comparative models including sentiment analysis and non-diffusion model, and social media topics accelerate
sales in the pre-launch period and their effects decrease with varying patterns in the post-launch period. In conjunction
with its effects on switching and leapfrogging, the model provides useful information for product management over long

range time horizon.

Key words: pre-launch forecasting, multi-generational diffusion, hierarchical model, social media, topic model, word-

of-mouth

1. Introduction

With the rapid development of social media, the impact of the electronic word-of-mouth effect on the
diffusion of products has drawn increasing attention. As more customers tend to read online reviews before
purchasing, it becomes important to measure and understand the role of these unstructured data. Compared to
one-way communication through traditional media, the diffusion process of a new product has become
highly affected by social media. The amount of information about a recently released product is larger and
more varied than it has ever been; people can rely on in-person word of mouth (WOM), expert product
reviews, YouTube reviews, comments on social media, etc. As a field, we benefit from obtaining a deeper

view of how these information sources affect product purchases.

As literature provides empirical evidence that customer WOM has a significant impact on customer
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purchasing behavior (e.g., Chevalier & Mayzlin, 2006) and a growing number of studies have examined the

influence of user-generated content in marketing.

Most WOM research focuses on two types of WOM. The first type is the consumer reviews on retail
platforms such as Amazon.com. For example, Lee and Bradlow (2011) show that the automated analysis of
consumer reviews promises to support managerial decision making both descriptively and prescriptively
instead of the expert guidebook and user survey, and Moe and Trusov (2011) find that WOM valence
represented by the rating is helpful for sales forecasting. Additionally, Tirunillai and Tellis (2014) show that
the latent topics extracted from consumer reviews are also informative when measuring customer experience
such as perceived quality. The second type of WOM exists in the form of the comments posted on social
media such as Twitter, Facebook, and bulletin board systems (BBS). For example, Netzer et al. (2012) offer
empirical evidence that WOM from consumer forums provides insightful information for firms to
investigate the product positioning often at a lower cost in comparison to traditional data sources. In
addition, the valence represented by the positivity of WOM is also demonstrated to increase the precision of
forecasting such as stock or sales (e.g., Chen et al., 2017; Ritesh et al., 2017). These works focus on the

effect of WOM after the product is released, and it is the post-launch effects of social media.

Compared to retail platforms, WOM in social media is not only available after the product is released but
also available before the product is launched. The use of social media to predict demand before product
launch has aroused considerable recent interest (Gopinath et al., 2013; Marchand et al., 2016; Divakaran et
al., 2017; Kim & Hanssens, 2017). It becomes critical for managers to make proper marketing decisions for
pre-launched products with very limited data history, or even without any data history — likely
overestimating or underestimating demand — which can influence potential profit and cost management
(Croxton et al., 2002). These studies showed that WOM before product launch affects future marketing as

the pre-launch effects of social media.

Although there are already many implications of social media on marketing, there are mainly three
limitations. First, most studies focus on only the roles of social media in the pre-launch or post-launch
period. While several previous studies acknowledge that the effect of WOM differs substantially in different

situations, such as the types of WOM (customer reviews, social media), there is no study to discuss the
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different roles of pre- and post-launch WOM effects. Second, pre-launch forecasting approaches
incorporating social media are mainly based on non-diffusion models. Fore example, regression models
(e.g., Gopinath, 2013) generally start with one-step ahead forecasting, and updates as additional data
become available. On the other hand, diffusion models based on the Bass model (Bass, 1969), which has a
relatively high explanatory power despite its simple structure, are widely applied in pre-launch forecasting
problems (e.g., Kim et al., 2013; Lee et al., 2014). However, they do not incorporate social media
information into the diffusion model. Third, previous studies investigate the effect of social media only for
single-generation products. Continuous innovation in high-technology industries made product lifecycles
shorter and shorter (Shen & Willems, 2012). One notable aspect of short lifecycle products (e.g., iPhone) is
that they release upgraded models of the product on a regular schedule, which makes it more challenging

and important to forecast diffusion for the new generation.

Motivated by the discussion above, we develop a mulita-generational diffusion model with social media
for forecasting the specific generational smart phone sales in even pre-launch period, and explore the roles of

social media between the pre- and post-launch periods.

We analyze the product diffusion of the iPhone series (iPhone 5—iPhone 8/X) for empirical analysis. Our
data include quarterly sales, pre- and post-launch WOM from social media, and price information for each
generation. In addition to price, featured in the extended Bass models of Von Bertalanffy (1957),
Mahajan and Muller (1981), Easingwood et al. (1983), Bewley and Fiebig (1988), and Jiang and Jain
(2012), we construct the covariates by extracting the features from social media and incorporate them in the
adoption rate function as the post-launch effect of social media. Additionally, previous diffusion models
assume that key parameters of market potential and imitation rates are independent among generations when
the innovator parameter is given. Our model structures generation-specific parameters to hierarchically
depict the mechanism underlying parameter shifts between generations. Our structural model of parameter
shift across generations facilitates forecasting sales of new-generation products before launch. The social
media covariates are also incorporated in this hierarchical model for forecasting pre-launch sales.

Section 2 discusses the effects of social media on multi-generational diffusion in the literature. Section 3

explains our model. Section 4 presents the empirical results for successive generations of iPhones and



shows that our model preforms better pre-launch forecasting by using social media covariates. Section 5
discusses the roles of social media on multi-generational diffusion in pre- and post-launch periods in the
points of sales, leapfrogging and switching. The managerial implications are provided in sections 6 and we

conclude in section 7.

2. Research Background

2.1 Feature Extraction on Social Media

WOM from social media generally requires preprocessing before being incorporated into the model as
covariates. Besides volume, represented by the frequency of WOM, valence is also an important factor when
explaining the demand for a product. The definition of valence differs in previous studies. Gophinath et al.
(2014) defines “attribute-focused,” “emotion focused,” and “recommend-focused” as three distinct WOM
valences, and Godes and Mayzlin (2004), Liu (2006), Rui and Whinston (2013), Hennig-Thurau et al.
(2015), and Burmester et al. (2015) use the positivity of WOM as valence.

Valence is usually extracted from WOM by various methods, such as binary sentimental classification
(Tirunillai & Tellis, 2014), conditional random field (Netzer et al., 2012), and latent Dirichlet allocation
(LDA) (Blei et al., 2003). In this study, we use the LDA model since it has been successfully applied to
many kinds of marketing problems. For example, Tirunillai and Tellis (2014) use the LDA model to
incorporate consumer reviews into five sets of marketing data to extract dimensions (topics) from user-
generated content for comparison among markets. They find that some topics resonate across multiple
markets and others only in certain markets. Through sentimental analysis, they tag topics for better
interpretation and show that multidimensional scaling via LDA captures the dynamics of brand positioning.
Ansari et al. (2018) use supervised topic model to identify topics hidden in product reviews that reveal
consumer preferences. They employ the variational Bayesian approach for fast and scalable inferences from
big data.

As the most related to our study, Li and Terui (2018) incorporate social media effects into a diffusion
model to discuss how they influence market potential and internal parameters. Analyzing text data from
social media on a smart phone, they extract subjective and objective features by naive Bayes and topic

analysis, respectively, and then use them as covariates for time-varying market potential and imitation



parameters. They show how social media affects the single-generation diffusion of smart phone and
enhances forecasts.
These studies show that both interpretability and forecasting precision benefit from the latent topics of

WOM in marketing.
2.2 Multi-generational Diffusion Model

Research on the diffusion across product generations adopts the framework of multi-generational diffusion
models. The main differences among previous models are the assumptions about key parameters and the use
of marketing mix variables. Among studies distinguished by their key parameters, Norton and Bass (1987)
assume that market potential m for a generation of product depends on innovation and imitation parameters
p and g are constant across generations. Mahajan and Muller (1996), Jun and Park (1999), Kim et al. (2000),
Danabher et al. (2001), and Jiang and Jain (2012) assume the constancy of p across generations, generation-
specific market potential, and imitation parameters. Jiang (2010) and Guo and Chen (2018) assume that all
parameters vary across generations. Shi et al. (2014) show that assuming the heterogeneity of the diffusion
parameters for the multi-generational diffusion model performs better empirically than the model with a
homogeneous structure, even if only with total sales data.

Among diffusion studies distinguished by marketing mix variables, Robinson and Lakhani (1975) and
Bass (1980) introduce the price effect term into the adoption rate function. These studies show that price
information improves model performance. Horsky and Simon (1983) incorporate an advertising variable
directly into sales rather than the adoption rate function, and Horsky (1990) incorporates advertising and
price information jointly. The adoption rate function in Bass et al. (1994) includes two marketing mix
variables: rates of change in prices and advertising expenditures relative to expenditures at product launch.
Jiang and Jain (2012) extend this model to a multi-generational diffusion model.

Table 1 shows a summary of previous literature compared to our framework. Comparing the related
approaches, our study has the following distinguished features. (i) Previous studies highlight the importance
of pre-launch forecasting for diffusion models (e.g., Bass et al., 2001; Lee et al., 2014). In the literature,
some studies (e.g., Dellarocas et al., 2007) forecast later-week revenues quite soon after launch for single-

generation products by using data from reviews as early forecasting. However, no study has used social



media for pre-launch forecasting while utilizing the diffusion model. Our model employs social media for
pre-launch forecasting of the multi-generational smart phone, as well as post launch forecasting. (ii) Social
media was used by Li and Terui (2018) as a covariate in a single-generation diffusion model. Their
empirical results show that social media topics had a significant impact on the diffusion process, while the
sentiment of WOM was not significant in their proposed model. Despite multi-generational products
becoming more common and their lifecycles becoming shorter in recent years (e.g., Huang & Tzeng, 2008),
social media data have never been applied to multi-generational product diffusion models. In the existing
literature, only covariates of price and promotion are used (Jiang & Jain, 2012; Guo & Chen, 2018). (iii)
Research considering both pre- and post-launch effects of social media have been conducted using non-
diffusion models.

Compared with non-diffusion models, the diffusion models provide more useful insight into real business
implications in the following points: (i) Most non-diffusion models could perform better locally, i.e.,
forecast near-future sales, while the diffusion model is capable of forecasting globally, that is, depicting the
entire product lifecycle. (ii) Besides direct effect of social media on sales, we can investigate the impact of
social media on sales indirectly by way of potential market and internal parameters. (iii) The proposed
model allows us to discuss the leapfrogging and switching in the process of multi-generational diffusion as
is shown in section 5. Hence, estimating the diffusion model provides more insightful information with
firms for cost management and marketing strategies by forecasting potential sales over long periods and key

numbers of imitation rates, leapfrogger and swichter at respective generations by using proposed model.



Social Media

Authors Forecasting Model Marketing Variable Diffusion Model Multi-Generation
Post-Launch Pre-launch
Norton and Bass (1987) Norton—-Bass Model No No No Yes Yes
Bass et al. (2001) Bass Model No No No Yes No
Trusov et al. (2009) Vector Autoregression (VAR) Yes Yes No No No
Jiang and Jain (2012)  Generalized Bass Model (GBM) Yes No No Yes Yes
. Linear, log-log, semilog
Gopinath et al. (2013) ) Yes Yes Yes No No
Regression
Ensemble Machine Learning

Lee et al (2014) Yes No No Yes No

Method

Dynamic Hierarchical Linear

Gopinath et al. (2014) Yes Yes No No No

Model

Extension of Norton-Bass

Shi et al. (2014) No No No Yes Yes

Model
Burmester et al. (2015) Econometric Model Yes No No No No
Marchand et al. (2016) Econometric Model Yes Yes Yes No No

Structural Equation Model

Divakaran et al. (2017) Yes Yes No No No
(SEM)
Liand Terui (2017) Extension of Bass Model Yes Yes No Yes No
Extension of Norton-Bass
Guo and Chen (2018) Yes No No Yes Yes
Model
Our study Hierarchical GBM Yes Yes Yes Yes Yes

Table 1 Comparison of related studies

3. Models

Our mulita-generational diffusion model consists of three parts: (i) feature extraction of social media data,
(ii) hierarchical model involving pre-launch social media covariates for prior structure of model parameters,
and (iii) marketing mix incorporating post-launch social media and price to define the likelihood by

adoption rate function. An overview of our framework is shown in Figure 1.
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Figure 1 Framework of Model
3.1. Measures of WOM on Social Media

We use both volume and valence as covariates extracted from social media in the pre- and post-launch
periods. Volume is defined by the frequency of WOM, and in the similar spirit of related study of Gopinath
(2014), valence consists of the latent topics. Note that we define valence in this study not by the positivity
of WOM but by the coverage share among social media topics. Our proposed model only considers
objective social media topics for two reasons: (i) Li and Terui (2018) proposed the diffusion process of a
single generation of the same product and social media site as in our study and their empirical results
showed that subjective sentiment terms were not significant, while objective topics had significant effects.
(i1) Responding to this result, we adopt the principle of parsimonious modeling and focus on the role of
topics in this study.

The topic model (e.g., Blei et al., 2003) extracts the latent topics from WOMs, which distinguishes
what the subject of WOM is, such as sports, music, or games. Compared to positivity, social media topics
define a multi-dimensional feature vector for each instance of WOM. We apply the labeled dynamic topic
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model (LDTM), where we assume that the topic proportion 8; follows a dynamic process according to its
hyperparameter ag, which follows ag,~N(ag,_,, 04) (see Blei & Lafferty, 2006), and incorporate seed
words — the words that are fixed to specific topics for the dynamic topic model for better interpretability.
This model is included in the class of semi-supervised topic models such as the labeled topic model (Daniel
et al., 2009) and the seeded-LDA model (Lu et al., 2011), which show higher interpretability compared to
the unsupervised topic model (Watanabe & Zhou, 2020).

We set four categories of valence for our proposed LDTM, that is, “attribute,” “emotion,” “recommend,”
and “others,” and set seed words for the first three topics by following Gopinath et al. (2014). We describe
further details of the seed words and topics in Section 4.1.

The goal of feature extraction is to obtain an N numbers of K-dimensional vector from WOM data by

LDTM, where N is the number of WOM and K is the topic number. One example of feature extraction is

shown in Figure 2.

Comment #11167

It is the best and standard phone than any other make and model. Not
small or big. Easy one hand operation. The head phones boom good and
feel something great in our hand when carrying. With 3G activated, the
battery time reduces. A good, handy, best and quality made phone.

¥

0.7
06
0.5
04
0.3
0.2
0.0

Attribute Emotion Recommend Others

Topic share

Figure 2 Feature Extraction from WOM
We first identify topics on social media and then incorporate them as covariates into our multi-

generational diffusion model to reflect dynamic changes in consumers’ interests. The algorithm is shown in

Appendix A.

3.2 Multi-Generational Diffusion Model with Social Media Covariates



We employ the diffusion model generalized by Jiang and Jain (2012), which assumes p is constant across
generations, however, ¢ and market potential m are generation-specific; we use the sales function in

Srinivasan and Mason (1986) to define our multi-generational diffusion model.
First, we denote mg, qg as the market size, imitation rate for G-th generation, and y;(¢) as the number of
adaptors at time ¢ with launch time 7; > 0, and then, following Jiang and Jain (2012), we define our model

with additive noise for the adoption of each generation as follows:

Starting with the first generation launched at time 0, we have

(@) =m f,(1) +u, (0), 1<7,,
{yl(t)zmlfl(t)(l—Fz(t—rz))+ul(t), t>1,,
Ve@)=1,()+L,(t)+S;(t)+u,(t), 7, <t<t.,,, I<GZN,
=M fo(t=7) 5 (1 =76 )+ Yo, (DFG (£ =76 )+ Yo () fo (t = 76) +ug (1)
Yo () =1,(t)+ L (1) + S, (1) = Ly, (1) +ug (0), t>7,,, 1<G<N,
= (mg fo(t =76)Fy (1= 76 )+ Yo (OF (1 =76) + Yo, (0 fo (1= 75))
x(1=Fypy (1 =74 ) ) Fue (), ()

where /() is the independent adoption of the G-th generation, Y (¢) denotes cumulative adoptions (sales)
of the G-th generation at time ¢, f.(¢) = F; (t ) -F, (t - l) and L.(¢) and S, (¢)are adoptions from
leapfrogging and switching from the previous generation, respectively.

In Eq. (1), the error term 4;(t) is assumed to follow a normal distribution u,,(t) ~ N (0, 0'2)

independently across generations and time. We assume constant variance across generations because our
data do not identify sales by generation. The adoption rate function fy; ( t ) for the G-th generation product

includes not only marketing mix according to Jiang and Jain (2012) but also social media effects:

l_exp(_(p+QG )XG (t))

F.(t)= , 2
) T n)e v, 13,0) @)

where the covariate X . (¢) is formulated by the hierarchical model as follows:
Xs(t) = t + ag log(P;(1)) + B¢ log(Topicy (t — 1)) + e, (t) 3)

10



In the above, P¢(t) = P;(t)/P;(0) and Topic; (t — 1) = Topicg(t — 1)/ Topicg(—1). Py (0) and
P (¢) mean the price of G-th generation product at the launch 7 and ¢ period after launch respectively, and
a is the coefficient on the price. Topicg(¢—1) is a K+ dimensional column vector with elements of

Topicgi(t —1),i =1, ...,K and Freq;(t — 1), which means the share of topics in the i-th topic and the

frequency of comments at #-/ for generation G, respectively. Topic;(—1) means the corresponding vector of
one period before launch. log(-) denotes the operator of taking the log of each element. B is the K+1
dimensional corresponding coefficient vector. We assume that the error term e_(#) follows
e, (t) ~ N(0,02).

We use Topicg;(t — 1) rather than Topicg;(t) to acknowledge the leading property of the social media

effect, as it is typical in WOM research (Chintagunta et al., 2010; Godes & Mayzlin, 2004; Gopinath et al.,

2014; Li & Terui, 2018).
3.3 Hierarchical Model for Generation-Specific Parameters with Social Media

We assume that diffusion in each generation persists from the previous generation. Specifically, generation-
specific parameters are determined by those of previous generations. We first define T as the vector of
share for each topic before the new generation is released. The k-th element, T, is defined as the share of

topics for past w days before generation G is released, i.e., Zii(m_ w) TOPiCGk (t) /w. We define w = 90

days according to the interval of sales data (quarterly) in our empirical application.

Then, we define the structural equations for the diffusion parameters (m;, q;), and the response

parameters (&, f3;) in the adoption rate function, respectively, as

* % '
mG _§m0+5 mG-l +5mT TG+gm

ml
* *

qG = 5{]0 + 5q1qG—1 + 6qT 'TG + 8q
—_ ' 1

{ac =0, 10, 't ,+0,,'T; +¢,

B = 5/30 +5/31ﬁG—1 +§ﬂ 'T, + &y,

“

where mg; = log(mg), q; = log(qs) and we assume ¢&;(t) ~ N (0, O'iz) for the i-th equation and
independence across equations. Eq. (4) defines prior distributions for the parameter, and we constitute the
posterior distributions when combined with the likelihood function derived by Egs. (1) - (3).

We note that models by Jiang and Jain (2012) and Norton and Bass (1987) structurally do not allow
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forecasting of next-generation sales before launch as they assume no structure of connecting successive
generations by their parameters. The hierarchical model in Eq. (4) accommodates parameter shifts from
previous generations and social media effects on the parameters. The joint posterior density is given in the

Appendix.
3.4 Predictive Density

In terms of Egs. (1) and (2), if we simulate sales for the G-th generation product, we need at least one data
point of that generation to estimate not only m,; and q,; even when p is assumed constant across
generations, but also a; and ¢ in the adoption rate function.

Before the G-th generation launches, social media provides information about a new generation of the G-
th product. Then, in terms of the hierarchical model in Eq. (4), implying prior information, we can forecast
the adoption of new generations when parameters are given. After the G-th generation product launches, the
marketing mix (Eq. (3)) enters the adoption rate function to continuously update the forecast with new
information such as the latest WOM and price information.

The likelihood and prior functions using social media make it possible to forecast sales before and after

the new generation’s launch. Bayesian forecasts are formally constituted by the predictive density as

p(¥6(®)mg.q4. p. X (1), T, Topic, (¢ -1), P, (1))

= [ P(36(®) MGG, )P (Mg 46s P 1M 1961, T, ) dmdgedp  if <7,

= Ip(yc(t) | mG,anPaXG(t))p(mGaQG’p | mG—l’qG—l’TG) &)
xp(X4(1)| dg.Be.t. Topic, (t—1), P, (1))
xp(ag.Bg | CosBoas Ty ) dX ;(t)dmdg do,dBdp if t>1,

These integrations are numerically evaluated with Markov Chain Monte Carlo (MCMC) iterations, as
were successfully applied to time series forecasting by Terui et al. (2010) and Terui and Ban (2014). The

algorithm for Eq. (5) appears in Appendix B2.

4. Empirical Results

4.1 Data
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We use five generations of iPhone products, iPhones 5 through 7, as training data, that is, G1 (iPhone 5),
G2(iPhone 5s, 5¢), G3 (iPhone 6, 6 Plus), G4 (iPhone 6s, 6s Plus), and G5 (iPhone 7, 7 Plus). The last
generation G6 (iPhone 8, 8 Plus, X) is reserved for the test data. All data between 2012Q4 and 2018Q3 were

obtained from Statista (www.statista.com), the statistics portal for market data.

iPhone iPhone iPhone iPhone iPhone
5 5S 6 6S 7
Sales Data
100 im—gum Sales

80

60 - iPhone

Release Date

Sales (Million)

201

]
I
]
]
[
]
]
1
]
]
1

04

201204 201304 201404 201504 2016Q4
Time period (quarter)

Figure 4 iPhone Sales

Sales data are comprised of the total iPhone sales shown in Figure 4. As there are no unit sales data for
each generation, it is harder to optimize all parameters for each generation only based on total sales.
However, a related study by Shi et al. (2014) showed that the multi-generation diffusion model works
properly for multiple products using only total sales, and the diffusion model with generation-specific
heterogeneous diffusion parameters performs better than the model with homogeneity structure, especially
for iPhone series.

Historical prices on amazon.com are used as price data in this study. We collect the price at an interval of
quarterly to match the sales data by using the price tracker application “Keepa,” which provides historical
prices for various products on amazon.com. As there are many variations even for one generation (i.e.,
RAM, color), we trace two types of iPhone that had the highest and lowest prices at release and take mean
value as the price of generation G for each time period. The descriptive statistics of price data is shown in

Table 2.
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unit: US dollar

Gl G2 G3 G4 Gb5
mean 533.0 595.0 763.3 835.0 1015.0
std 261.0 223.3 137.0 109.4 115.0
min 280.0 320.0 580.0 740.0 900.0
25% 300.0 397.5 697.5 750.0 937.5
50% 450.0 550.0 755.0 805.0 1000.0
75% 675.0 712.5 802.5 885.0 1077.5
max 1200.0 1050.0 1030.0 1050.0 1160.0

Table 2 Descriptive statistics

Text data were acquired from gsmarena (http://www.gsmarena.com/). This is a well-known bulletin board
system (BBS) where users worldwide comment on mobile phones. Although it has a smaller volume of
available WOM in comparison to popular social media (i.e., Facebook and Twitter), we employ this site for
three reasons. (i) Most WOM in the BBS is generated from aficionados for a specific product, and we expect
higher quality and relevancy from this BBS. (ii) Additionally, “gsmarena” has the advantage that a specific
generation of iPhone is identifiable for each comment. In contrast, for most popular social media such as
Twitter, it is hard to classify each comment according to the specific generation properly as all the WOM for
iPhone products are mixed. (iii) Finally, it has a relatively strong influence on potential customers among
the smartphone forums (e.g., over 60 million hits for the iPhone 5s topic, over 75 million hits for iPhone 6
topic).

Through conventional natural language preprocessing procedures, punctuations, stop words, and low
frequency words (used less than ten times) were removed. After preprocessing, 56,541 comments in total

remained for all generations.
4.2 Dynamic Topics

As mentioned in Section 3.1, we assume four topics and define seed words for three topics: “camera,” “screen,”
“battery,” and “ram” for topic 1 represent the “attribute” topic; “bad,” “good,” “great,” “worse,” “worst,” and
“best” for topic 2, the “emotion” topic; “buy,” “bought,” “advice,” “recommend,” and “should” for topic 3,

the “recommend” topic; and no seed words for the last topic, “others.” As there is no common standard for
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choosing the seed words, we employ a weakly supervised topic modeling approach with a smaller number of
seed words as minimal prior knowledge, which empirically showed better performance than the standard
supervised approach by Lu et al. (2011).

LDTM allows us to detect changes in each topic, implying potential changes in customer interest. Figure
5 shows the volume and composition of dynamic topics through generations. The left panel (a) shows the
relationship between sales and volume of WOM. Apparently, in most cases, the volume of WOM becomes
the leading indicator of sales. Note that the dashed line represents the release date of the new generation.
The right panel (b) shows the compositions of the four topics through all generations, which are generated
from the LDTM. The percentage in the figure represents the average share of the four topics for each
generation. We observe that the “emotion” topic has the largest average share, and the composition of topics
changes through generations. Specifically, “attribute” increases the most, “emotion” follows, “recommend”
is relatively stable, and “others” continuously decreases. This may imply that social media users have placed

more importance on the three labeled topics for new iPhone products in recent years.

(a) unit sales and volume of WOM (b) topic share

100 ) i —r Unit sajes W attribute
- - —L+ volumd of WOM 3000 31% 3% @@ emotion
__ B0 : : : ; : A 08 BBe recommend
5 SUNETRAR R =2 =
= I ] 1 ] - o, o,
E 6 i [ ; 2003 3 06 2% 2%
AR ..
T 40 ; i i 1500E S 04
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- [ 1000~
/ I 0.2
i 500
0 [}
0.0
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Figure 5 Diffusion and Dynamic Topics
4.3. Model Comparison
We now compare seven models according to the combination of covariates, generation-specific heterogeneity
of parameters, and the hierarchical structure of parameters connecting current and previous generations.
Models 1-3

Model 1 is the benchmark multi-generational diffusion model by Norton-Bass (1987). Model 2 uses the

specification by Jiang and Jain (2012), which incorporates the price variable. Model 3 adds the topic variables

15



from LDTM to Model 2. Models 1-3 lack the structure to connect generations except as an innovator
parameter p (i.e., no transgenerational memory). Thus, we call them zero-order models.
Model 4-Model 5

Models 4-5 include the structure for parameter shifts to the next generation as hierarchical models. Model
4 only has the parameters of previous generations. Model 5 includes additional topic variables. These models
can predict the diffusion of the next generation even before launch. These are first-order models.
Model 6-Model 7

Models 6 and 7 are also first-order models. Compared with Models 4 and 5, they have homogeneous
coefficients for marketing mix variables between generations, that is, ¢; = « and B; = B. We assume that
marketing variables are homogeneous for all generations to achieve parsimony.

Model §

Model 8 is the extended model of Model 7 by incorporating sentiment analysis. We add two sentiment
variables (share of positive comments and negative comments) in the adoption function and hierarchical
structure in Egs. (3) and (4). We employ a pre-trained sentiment classifier model - VADER (Valence Aware
Dictionary and sEntiment Reasoner), which uses rule-based values tuned to sentiments from social media by
Hutto and Gilbert (2014).

Alternative Model: Vector Autoregression (VAR)

Our model forecasts diffusion for pre-launched products with only aggregated sales data; there are very
limited alternative models in the literature. We choose a vector autoregressive (VAR) model by Trusov et al.
(2009), which shows that the VAR performs well with the WOM data by accounting for dynamic responses
and interactions between marketing variables, topic variables, and sales. This approach forecasts the sales of
future generations. To be consistent with a multi-generational structure, we use total sales, total topic shares,
and volumes as model variables.

We compare the models using three measures: log of marginal likelihood (LMD), deviance information
criteria (DIC), and root mean square error (RMSE) of forecasts for training data (G1-G5), and test data (G6)
(pre-launch forecasting). Note that we only use social media before the product is released for pre-launch

forecasting to evaluate whether social media is informative for forecasting. We evaluate the out-of-sample
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fit by forecasting both one step (one quarter) and four steps ahead (one year). We confirmed convergence
for all models using Geweke’s test (Geweke, 1992) at 95% significance.

The results are shown in Table 3. Zero-order models (Models 1-3) cannot forecast the sales of test data
(G6) because of lacking structure to accommodate the shift of (mG »qc ) We evaluate all first-order models

by RMSE (Train), log of marginal likelihood, DIC, and RMSE (Test).

Zeroth-Order First-Order
Model Model1 Model2 Model3 Model4 Model5 Model6 Model7 Model 8 VAR
RMSE(Train) 6.980 3.012 2.248 2.358 2.218 3.735 2.612 2.744 6.385
RMSE(Test) - - - 19.425 19.870 15.861 12.114 12.743 21.721
log(ml) -509.715 -128.642 -114.943 -119.528 -113.476 -179.266 -112.416 -119.458 -307.290
DIC 1027.614  308.255 348.142 362.415 337.978 419.303 293.935 307.567 401.595

Table 3 Model evaluations
Model 5 shows the best in-sample performance as indicated by RMSE, implying that the marketing mix

with social media improves forecasting precision, while Model 7 performs best according to log (ml),
RMSE for test data, and DIC. Focusing on RMSE for test data, we find that without social media topics,
Model 4 and Model 6 generate poor one-step forecasts, as the RMSEs are 21.705 and 114.849 for these
models. The proposed model with social media topics in the hierarchical structure performs best for the test
data, and this implies that it is not necessarily overfitting, and the social media topics are informative
beyond one-step-ahead forecasting. Last, the performance of Model 8 implies that the sentiment analysis
does not improve the precision of the diffusion model in our empirical case.

According to the log(ml), the RMSE of test data, and DIC criteria, we chose Model 7 and examine the
results of estimation in the following sections.
Robustness Check

We examined the robustness of our best proposed model, Model 7, by comparing with two alternative
models. A/t. Model I replaces the LDTM with unlabeled DTM by Blei and Lafferty (2006), when fixing all
other parameters, such as topic number, as the same value. Alt. Model 2 includes two-period lag terms for

X in the adoption function in Eq. (4), as follows:

X6 (8) =t + aglog(Pg(t)) + B1g' log(Topicg(t — 1)) + B2¢'log(Topicg(t — 2)) + ex(t). (6)
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The results of alternative models are shown in Table 4. We observe two findings. (i) Our proposed
model performs better than Alt. Model 1 for both in-sample and out-of-sample evaluations. In particular,
the results of test RMSE (1.394 compared to 7.283) show that the diffusion model with LDTM greatly
improves in short-term forecasting, and this implies that our labeled topics are more informative for the
diffusion process, compared to the auto-generated, unlabeled topics. (ii) The performance of Alt. Model 2
is not notably different from the proposed model even when it contains the two-period lag terms, and we

employ the simpler proposed model following the principle of parsimonious modeling.

Model Proposed 4 ‘\fodel 1 Alt. Model 2

Model
log(ml) -112.416 -128.642 -114.048
DIC 293.935 308.255 289.233
RMSE(Train) 2.612 3.042 2.739
1-step ahead 1.394 7.283 2.311

RMSE(Test)

4-step ahead 12.114 14.180 10.281

Table 4 Robustness Check

4.4. Parameter Estimates

Parameter estimates of Model 7 are shown in Table 5, where number indicates posterior means and the 95%

highest posterior density (HPD) interval.

mg p 4c
Mean 95% HPD Mean 95% HPD Mean 95% HPD
G1 164.575  [161.876, 166.218] 1.031 [ 0.981, 1.080]
G2 4.816 [ 2.810, 6.605] 1.024 [ 0.978, 1.072]
G3 66.867 [ 63.785, 70.108] 0.072 [ 0.067,0.081] 1.102 [ 1.061, 1.143]
G4 0.703 [ 0.365,  0.948] 1.131 [ 1.079, 1.191]
G5 3.329 [ 2.118, 4.631] 1.140 [ 1.095, 1.202]

Table 5 Parameter Estimates

The columns show that estimates of market size m, imitator parameter q, the innovator parameter p are
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constant across generations for the G-th generation’s diffusion. Estimates of mg; imply that the market size
estimate (164.5) for G1 (iPhone 5) is potentially much higher than any other generation. The first generation
faces an original higher potential market, and G2’s (iPhone 5s) market is estimated much smaller than G1.
Except for G1, the market size of G3 (iPhone 6) has the biggest value (66.867) among all the generations,
while G4 (iPhone 6s) has the smallest market size estimate (0.703). The results of m; shows that the
potential market size increases significantly only in G3 (iPhone 6).

A previous empirical study on the diffusion for a variety of products indicates that the average value of
the innovation parameter p has been found to be 0.03, and often less than 0.01 as shown by Mahajan et al.
(1995). In contrast, the higher estimated value (0.072) in this study suggests that iPhone products are
expected to have more innovators than other products.

Estimates for the imitation parameter q; increase slowly across all generations except G2. This finding
suggests that consumers tend to become imitators more as generations proceed, and they will use WOM
reviews before buying new-generation products.

Table 6 provides the estimates of coefficient parameters for the hierarchical diffusion model and
hierarchical adoption rate function in Egs. (4) and (3), respectively. Note that the coefficients for the post-

launch response parameters are homogeneous for Model 7.

Hierarchical structure Adoption rate
Param. Mean 95% HPD Param. Mean 95% HPD Param. Mean 95% HPD
price - - - - - - ag -0.201 [ -0.430, 0.041]
attribute 0.895 [ 0.514, 1.375] 0.256 [-0.572, 0.901] 0.463 [ 0.264, 0.684]
emotion _ 1.948 [ 0.328, 3.528] 3 -0.024  [-1.619, 1.443] R -0.442 [ -0.765,-0.118]
recommend Smr -2.871 [ -4.160, -1.871] qT -0.086 [ -1.043, 0.952] Ba 0.180 [ 0.024, 0.346]
volume 3.095 [ 1.717, 4.632] -0.104  [-1.319, 1.393] 0.300 [ 0.103, 0.484]
intercept Smo 1.257 [ 0.044, 2.538] Sqo 0.027 [ -1.200, 1.453] -
lag 5m -0.095 [ -0.235, 0.046] Slll 0.006 [-1.972, 1.741] -

Table 6 Hierarchical Parameter Estimates

Hierarchical Diffusion Parameters

For the potential market size parameter m, we find that topics “attribute” and “emotion” are positively
associated with m;* with estimates of 0.895 and 1.948, respectively. The estimate of topic “recommend” is
-2.871, implying that this topic is negatively associated with m¢*. The studies by Kopalle and Lehmann
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(2006), Joshi and Hanssens (2009), and Kim et al. (2017) provide empirical evidence that excessive
promotion during the pre-launch period can have a negative effect. Our result might correspond to their
result for social media in that excessive recommendation by unexperienced users can have a negative impact
on potential sales during the pre-launch period. In addition, the estimate of the coefficient for volume is
3.095, meaning that the volume of WOM is positively associated with sales. There is a constant increment
of the baseline for market size, as the estimate (1.257) for the intercept term §,,,¢. Finally, the estimated
coefficient of §,,; is not significant in the sense of a 95% HPD interval. This means that the incremental
market size mg, is independent of m_, that is, a unique market size for a specific generation. Our result
supports the specification of previous studies (e.g., Norton & Bass 1987, Jiang & Jain 2012). On the other
hand, none of the estimates on the imitation parameter are significant. This implies that the imitation
parameter, recognized as the post-launch WOM effect in the literature including the above studies, is highly
unpredictable during the pre-launch stage.

Adoption Rate Parameters

The 95% HPD region indicates that every covariate constructed by volume and valence is significant
while the price covariate is not significant. The estimate for topic “attribute” is 0.463, with a positive
influence on market size. The topic “emotion” is negatively associated with sales since its estimate is -0.442.
Topic “recommend” (0.180) and volume (0.300) have significant positive impacts on sales.

As for the topic “attribute,” the empirical results show that this topic is positively related to sales, which
implies that the more users of BBS focus on the “attribute,” the more potential sales can be expected. On the
other hand, the result of the topic “emotion” implies that consumers may tend to have a positive attitude
toward the new generation of iPhones; however, it generally turns negative after the product is released.
This means that users may have positive expectations for the new generation before it is released and
disappointed after launch. The results are opposite for the topic “recommend”—only post-launch
recommendations are positively associated with sales, and this implies that excessive promotion or
recommendation in the pre-launch period may have a negative influence on sales. In contrast, potential
customers tend to trust recommendations by experienced users.

As is shown above, we find the different roles of social media between pre- and post-launch periods.
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5. Pre- and Post-launch Effects of Social Media

5.1 Social Media Effects on Sales

We showed that volume (frequency) and valence (topics) have a significant influence on diffusion in our
empirical results. Next, we investigate how sales are influenced by the topics for each generation by
decomposing the sales. We denote the estimated sales in time period ¢ as Y (t), then we decompose the

estimated sales as

9e(0) = 21 987 @ + 95V 0, @)
where ¥, )(k) is the estimated sales influenced by topic £ in time period ¢, and ¥ A(Others) is the sales when
excluding the effect of social media. Then, we can further decompose )7ék) (t) as

A(k) (t) (k pre) (t) +9 (k post) (t) (8)
where yG(k pre) (t) and ﬁc(k pOSt)(t) represent the estimated sales in time period ¢, which are influenced by the
pre- and post-launch effects of topic k, respectively.

First, we calculate ?ék’pre) (t) for the pre-launch effect by controlling the covariates in the hierarchical

structure in Eq (4). We denote ig" as the estimated potential market size when excluding the covariate term
of topic & for generation G. We note that g is not considered since the coefficient estimates are not

significant for the pre-launch effect. Then we define the pre-launch effect as

fék'pre) ) =g (mG!)?G (t)) - (mc Xe (t)) )
where g(-) reflects the comprehensive sales function described in Eq. (1). Next, considering the post-launch

effect, topic k affects the sales of generation G via X;; (t) in Eq. (3). Denote X; *(t) by the covariate when

excluding the covariate term of topic k. The post-launch effect can be similarly defined as
~(k, PN P
YG( posr)(f) = g(mG:XG(t)) —g(mG,XGk(t)). (10)
Note that both ﬁék'pre)(t) and ﬁék'p“t) (t) can be negative, as the influence of the topic on sales is not

always positive.

Figure 6 shows the differences in sales for each generation when excluding specific topics.
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Figure 6 Pre- and Post-launch Effect on Sales

For the expected sales shift caused by the pre-launch effect shown in the left panel, we notice that all the
topics accelerate sales and have the highest positive influence for the 3rd generation (iPhone 6). This implies
that consumers may generally have positive expectations for the new generation, however, after iPhone 6
was launched, their expectations started to decline. Furthermore, we find that the topic “recommend” has the
greatest influence among all the topics and throughout the generations.

On the other hand, the result for the post-launch effect shows a different impact — the topic “recommend”
generally accelerates sales, while the topic “emotion” decelerates sales. The topic “attribute” rarely
influences sales for the first four generations, and its influence increases in the last generation (iPhone 7).
5.2 Leapfrogging and Switching
Next, we detect leapfrogging and switching to a later generation induced by social media. Following Jiang

and Jain (2012), we calculate them as

Ly() =y, (OF;(t—745)(1-F,,(t—74.,), 1<G<5 .
LG(t)zyG—](t)FG(t_TG)’ G=5 (1)
Se(O=Y, () fo(t—75)1-F;,(t—-75,), 1<G<5, (12)
SG(t):YG_1(t)fG(t_TG)a G=5

where L (t) and S; (t) are, respectively, denoted as the number of leapfrogs and switches from the previous

generation in time period ¢. L, (¢) is induced by the remaining fraction of the previous generation, and
S, () is affected by the installed fraction of the previous generation. Similar to Eq. (8), we calculate

Z(Gk'pre), ig;k’po“), S'C(;k'pre), S C(;k'pOSt), which are the estimated numbers of leapfrogs and switches induced by
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the &-th topic in social media for the pre- and post-launch periods, respectively. To measure the impact of

topics on leapfrogging and switching for each generation, we calculate the share of leapfrog influenced by
each topic, for example, the share of leapfrog f(Gk'pre) calculated by lA,E;k’pre) /Lg, where L is the estimated

total number of leapfrog for G.

The results of the pre- and post-launch impact on leapfrogging are shown in Figure 7.
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Figure 7 Pre- and Post-launch Effects on Leapfrogging

We observe that, (i) the topic “attribute™ has the greatest impact on leapfrog among topics for the pre-launch
period, and its share increases through the generations, implying that more consumers decide leapfrogging
to the latest generation according to the pre-launch social media topic “attribute”; (ii) the post-launch impact
of “attribute” on leapfrogging is relatively small, implying that the topic “attribute” may no longer affect
leapfrogging after the product released; (iii) the shares of three topics keep increasing in the pre-launch
period while they tend to decrease in the post-launch period, implying that the role of pre-launch
information has become more important than the post-launch for leapfrogging.

Next, we show the pre- and post-launch effects of topics on switch in Figure 8.
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Figure 8 Pre- and Post-launch Effect on Switch

First, we find that the pre-launch effects increase for all topics as G proceeds. Specifically, the impact of
the topic “emotion” increases rapidly from G3 (iPhone 6). On the other hand, the post-launch effect is
relatively small for the switch effect — the total impact of topics on switch is less than 15% for all
generations. This implies that switchers are mainly influenced by the pre-launch information related to the
topic “emotion.”

Through the results of sections 5.1 and 5.2 above, we find that the topic “recommend” affects sales the
most, while the topic “attribute” has the biggest impact on leapfrogging, and the topic “emotion” has the
biggest influence on switching, which shows that different topics influence diffusion in different ways.
Furthermore, our results also show that the topic “attribute” generally has a strong impact on leapfroggers,
while it has a weak impact on switchers. Goldenberg and Oreg (2007) mentioned that leapfroggers skip
generations mainly to reach the latest technology. Our results are consistent with their statement in the sense
that the topic “attribute” is the key factor for leapfroggers to adopt the new generation. In contrast, switchers

who already owned the previous generation do not care about this topic.

6. Managerial Implications

Our framework with a hierarchical diffusion process and dynamic topics extracted from social media
provides many useful implications in real business situations.

The first is pre-launch forecasting for a new generation. Short-life cycle products such as smartphones
face the problem of predicting demand. However, as the possibility of refinement is quite limited after the
product launch, managers benefit from better pre-launch forecasting (Divakaran et al., 2017). Using
estimated hierarchical structure and diffusion model parameter estimates, we can forecast sales of new
generations before launch. In the empirical application, we examined the pre-launch forecast of the new-
generation G6 and compared it with actual sales from 2017Q4 to 2018Q3. The RMSE for the hold-out
sample is described in section 4.3, where the proposed model performs better than the comparative models.
In addition, Figure 9 indicates the performance of the forecast with a box plot diagram by comparing actual
observations from one through four steps ahead. The forecasting results show that all predictions except the

third step are relatively close to the actual observation of the sales unit, which implies that social media is
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useful and reliable for pre-launch forecasting. Managers can form expectations of their new-generation sales
based on prior information from social media. Furthermore, the forecasting can be continuously updated
when the sales, price, and WOM data of the next period are available during the post-launch period, as

shown in Figure 10.
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Figure 9 Pre-launch Forecasting of G6 (iPhone 8/X)
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Figure 10 Post-launch Forecasting of G6 (iPhone 8/X)
Second, our approach provides useful insights into understanding the role of social media during the pre-
and post-launch periods. While many studies emphasize the importance of marketing promotion in the pre-

launch period, such as marketing campaigns (Elberse & Anand, 2007) and WOM advertising (Kim and
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Hanssens, 2017), our empirical results show that post-launch WOM also significantly affects the diffusion
process. In particular, our implication indicates that the impact of post-launch social media on sales keeps
increasing throughout generations, implying that firms may be beneficial by investing resources in post-
launch WOM advertising.

Third, contrary to previous studies that use positivity for the valence of WOM, we employ topic
proportion as the valence of WOM and have shown that valence has a significant impact on diffusion. In the
last section, we found that each topic affects sales, leapfrog, and switch in different ways in the in pre-
launch and post-launch periods. Thus, our approach helps managers to not only quantify the impact of each
topic on product sales, but also to optimize WOM advertising by focusing on the topics that impact the

target generation.
7. Conclusion

This study proposed a multi-generational diffusion model with social media information, where we set a
hierarchical structure connecting diffusion parameters of successive generations. We also proposed a labeled
dynamic topic model (LDTM) to extract dynamic features hidden in social media.

Unlike previous multi-generational diffusion models, our model makes it possible to forecast sales of
new-generation products before launch. Our empirical result shows that the performance of high precision
and useful insight for firms on their management over product lifecycle.

The post-launch effects of social media on sales were directly measured in the adoption rate functions,
and the pre-launch effects were evaluated indirectly by shifts in market size and imitation parameters of the
multi-generational diffusion model in the hierarchical structure. The empirical results show that social media
has a significant positive impact on sales in the pre-launch period. Social media effects decrease after launch
but can gradually increase with different roles, including becoming a negative influence. We conducted a
similar discussion on leapfrogging and switching behaviors.

Our study highlights the significance of the valences of WOM represented by latent topics, and shows
that the topics play different roles in the diffusion process. Furthermore, we seek the contribution ratio of the
topics in the diffusion process by decomposing the sales. For example, the topics have the biggest impact on

leapfrog in the pre-launch period, while the topics have little influence on switching in the post-launch
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period.

Further issues remain. First, as the upgrade of the iPhone product follows a cyclical pattern, it is
challenging to investigate the performance of the proposed model in more “irregular” markets. The
treatment of possible feedback from sales to social media is another challenging problem. Second, our
proposed model only considered objective social media topics as valence. It can be further extended by
incorporating the positivity of topics, such as sentiment LDA (Li et al., 2010). Third, some explanations for
the empirical results such as the role of topic “emotion” in pre- and post-launch period is difficult. As there
is no relative literatures focus on the topic share in the diffusion process, the role of topic deserves more

research attention in the future. We leave these issues for future research.
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Appendix.

A. Labeled Dynamic Topic model

The DTM is base model for LDTM as detailed in Blei and Lafferty (2006). Assuming we define a set of
seed words seed_words = {"camera": 1,"like": 2}, means word “camera” is fixed to the 1% topic, while
“like” is fixed to the 2™ topic. seed_words[word] denotes the corresponding topic of the related word.

Based on DTM, The algorithm of LDTM can be written as

Fort=1,2,...,T
1. Draw Topics
ﬁt,k |ﬁt—1,k ~ N(ﬁt—l,k' 0'21)
2. Draw a;
aglag_q ~ N(ag_q,6°1)
For each document:
3. Topic proportion
Miala: ~ N(a,a’l)
Oi,alnia~ m(1iq)
For each word:
if word in seed words:
Zi gn = seed_words[word]
else:
4. Topic-word assignment

Zean|0sa ~ Multinomial(6,4)

wd_n|zd,n{[3t_k} ~ Multinomial (T[(ﬁt;zd,z))

Here 7(*) is a softmax function that can fix the sum of f; ,, _to 1.
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B. MCMC method for the Bass model

B.1 Prior Settings for the Bass model

Parameter

Setting

mg *~ N(:umOrTmO_l)

Hmo = 0, Timo = 0.1

qc" ~ N(qu; qu_l)

‘u.qo == 0, qu = 0.01

p* ~ N(.Upo' Tpo_l)

‘u.po = 0, Tpo = 0.01

Xe(®) ~ N(ux, 7™

Uxo = 0, Txo = 0.01

o~ 1G(a,b)

a=05b=05

ag ~ N(piqo, TaO_l)

Hao = 0, Tao = 0.01

B¢~ N(ﬂﬁo: TBo_l)

‘U.'BO == 0, TBO = 0.01

o,~1G(a,b)

a= 0.5,b = 0.5

O~ N(ugo, Teo 1)

Heo = 0, Too = 0.01

2~ IG(a, b)

a=05b=05

* 8 is the vector of (Am, Ag, 0q, O'B), Z is the vector of (O’m, 0q,0q, 0/3).

B.2 Posterior Density for Model Parameters

The joint posterior density of our model parameters is represented by

P({me: 46, P} X0}, 0.{06, Bo} 0 {An A AA L {0,,0,.0,,6, 1| {961}, { Topicg (t-1),
=p({mgq6: P} X O} {yes1} {AwA ) {06, Bo}.0) P01 {mgs g P} {96t X (D))

x p (@ [{Xe ()1, Topicg (t=1), B, (0} A, 0,

x p(Bs 1{X(0),1, Topic, (t=1), B, (0} Ay, 0, ) p (o,

{T,}.0,)p(0, [{mg.mq.,}.{

o1-0,) (0, 1{46:46. (T, ). A, )

A |{mG,m

xp(A, s
xp(A 1{d6-96}-{
><p(

xp(

{ T,
A, Hag, a6} AT,
{

o

Ay

G}’O-a)p(o- Hag. a6} {15} A )

b .
BorBi s} ATo )64 ) (04 1{Be B s} AT oAy

where A, is the coefficient of the vector of each equation in Eq. (4).

{06, Be}{ X1, Topicy (¢ ~1), B, (1)})
T,}.A,)

NAOH



The second line of Eq. (B.1) captures the product of conditional posterior density for parameters in the
diffusion model in Egs. (1) and (2). The third and fourth lines are joint posterior density of parameters in the
marketing mix in Eq. (3). The fifth to eighth lines define joint posterior density for parameters in the
hierarchical structure connecting the (G-1) generation to the G generation in Eq. (4).

We employ MCMC to estimate parameters because the procedure for hierarchical models is well-
established and some of necessary conditional posterior densities are available in closed form. The sampling
scheme of MCMC for estimating the model is a hybrid of Metropolis-Hastings and Gibbs sampling for other

parameters in hierarchical models.

B.3 Conditional Posterior Distributions

(D mg" [{ye(®), t, Xc (O} {p" a6"} 0
For iter (=1, ..., R) of MCMC iterations, we use Metropolis-Hastings with a random walk algorithm for

each generation G,
*(iter) __ «(iter—1) i
mg = mg + Ay A ~ N(0,0.1), (B.2)

where the acceptance probability is

p (ma | 6 (0.t X6 (0} 0" 46}, )

o =min| 1, ter—D) (B.3)
p (my V| {y6(6), £, X (D}, (0", 46"}, 0)
wheret=1,...,Nand G=1, 2, ..., 5.
@) p" H{ye(®),t, Xc(®)} {me", g6} 0
For p and q¢, we also use Metropolis-Hastings sampling, which is the same as m; above.
pr(iten) = prliter=1) 4 2 - 2, ~ N(0,0.01). (B.4)
The probability of acceptance is
(P 1 e, £ X6 (), (me, 6}, 0)
min| 1, weT— (B.5)
p(p | 76 (0, £, X6 ()}, {mg, 46}, 0)
(3) g6 1 {ys (), t, X6 (O)}, {mg, p}, 0
«(iter) _ _x(iter—1) i
dc = qg + Aq; Aq ~ N(0,0.01). (B.6)
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The acceptation probability is

p (a5 1 6(8), £, X6}, (mg, P}, 0)

"\ (45" 1 6 (6, £, X6 (O}, {mg, P, 0) &7
® Xe(@®) | {m¢, q¢, v} 0
X () = XD (6) + Ay Ax ~ N(0,0.01). (B.8)
The acceptation probability is
min (1’ p(XG (t)Fiter_) | {ye (), t,},{m¢, 96,0}, C’) > . (B.9)
p(Xe (e | {ys (1), t}, {me, 46,1}, 0)
() o[ {ye(®),t, Xe(®)}, {me, q¢, P}
If we define estimated sales in period t for the generation G as
J6 () = f({ye (). t, X ()}, {me, 46}, (B.10)
we can update ¢ by
o (a LR SRS St (t))2>' B0

M stands for number of generations in this equation.

Marketing Mix.

(6) ag | {BG}' {XG (t)' t, TOpic’G (t - 1)! PC,; (t)}, Oy

N ((ncﬁ + GBO)_l (O'x Z(XG (t) — B¢ ' Topicg;(t—1))P,(t)™ 1 + ,uﬁocﬁo),(nox + O'BO)_l) (B.12)

=1

(1) B {ag} {Xs(0), t, Topicg(t — 1), P; (1)}, 0x
For each topic j the posterior of coefficient ;; can be derived from a normal regression equation from
n
N(noy + 0g9)~" sz Xe(©) —ag - Pg(8) — Z Topicg(t — 1) - Bar | Topicg;(t — 17" + pao0a0 |

i=1 k#j
,(noy, + Gao)_l)

(B.13)
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(8)0-)6 | {aGl BG}I {XG (t), t, TOpiC’G(t - 1)) P(’; (t)}

L1(Xg(t) —ag - Pgi(t) — Bg ' Topicg;(t — 1))2>
5 .

16 <a+g,ﬁ+ (B.14)

Hierarchical Structure.

) A, | {mG’mG—l}9{TG} 50,
Assuming D as data matrix for hierarchical structure for m, and A,, as coefficient vector, we can derive the

posterior of coefficient A, ; by

M K#j
N|{ (nopm + ome) ™| © Z Z(Dcz 8mz) | DG} + MmoOmo |, (Gp + Opo) ™
(B.15)
(10) 0, {mg,mg 1§ {Ts}.A,,
G <a+g’ﬁ+2g=1(mc - 52:1(1)02 : 8mz))2>’ (B.16)

where Z means the number of coefficients in the hierarchical structure. As the sampling methods are the
same among all the hierarchical structures, we can sample for other parameters (A4, A, and Apg) as well.
Forecasting
(10) y(8) | mg, g, p, X6 (8), Tg, Topicg(t — 1), Pg (t)

For iter = 1, ..., ITER, where ITER means the max iteration, after sampling all the parameters using

MCMC, the forecasting unit sales for the G-th generation y; (t) can be written as

{yl O =m0 £,0), t<t,,
1O =m " [ (1-F (1 —1,)), t>1,,
YO =m " f(t =15 Fy (t—15) T, <t<t,,, 1<G<N,
+ Yo (" Fy (t=176) + Yo (0" fo(t = 75),
YO =(m;" " fo(t —t5)Fy (t—174) t>7,,, I<G<N,
+ Yo, (D" Fy (1 =74 ) + Yo (0 fo(t =z ) x (1= Fyy (1= 74.1))

(B.16)
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where

l—exp(—( P +q ) X, (t)(izer'))

F.t (iter) (iter) \ _ . B.1
G ( | p :qG ) 1+(qG"’”’/p“’“"’)eXp(—(p“’”"’+qG“'”’)XG (t)(nm) ( 7)
Note that
{XG o, ST (Bas)
Xg ()W) = t + a8V 10g(PL(1)) + B log(Topicy(t — 1)), t> 15 '
then total sales V(¢ )(iter) can be calculated by
YO =3y )" (B.19)

G
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