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MULTIVARIATE CARMA RANDOM FIELDS

YASUMASA MATSUDA AND XIN YUAN

Abstract. This paper conducts a multivariate extension of isotropic Lévy-

driven CARMA random fileds on Rd proposed by Brockwell and Matsuda
(2017). Univariate CARMA models are defined as moving averages of a Lévy
sheet with CARMA kernels defined by AR and MA polynomials. We define
multivariate CARMA models by a multivariate extension of CARMA kernels

with matrix valued AR and MA polynomials. For the multivariate CARMA
models, we derive the spectral density functions as explicit parametric func-
tions. Given multivariate irregularly spaced data on R2, we propose Whittle

estimation of CARMA parameters to minimize Whittle likelihood given with
periodogram matrices and clarify conditions under which consistency and as-
ymptotic normality hold under the so called mixed asymptotics. We finally in-
troduce a method to conduct kriging for irregularly spaced data on R2 by mul-

tivariate CARMA random fields with the estimated parameters in a Bayesian
way and demonstrate the empirical properties by tri-variate spatial dataset of
simulation and of US precipitation data.

1. Introduction

Continuous-time Autoregressive and Moving Average (CARMA) processes have
been applied as a useful tool to analyze continuous time behaviors in physics and
engineers for many years. Ornstein and Uhlenbeck process by Uhlenbeck and Orn-
stein [22] is such a typical example that is regarded as a CARMA (1, 0) process.
Doob [10] is one of several papers that examined basic properties and statistical
analysis of CARMA processes. Recently CARMA models have been a resurgence of
interest by growing needs to analyze high frequency observations in financial time
series. CARMA modeling can be a tool to connect partial differential equations
with high frequency data in finance. Statistical properties of CARMA time series
models, including stationary conditions, parametric forms of covariance and spec-
tral density functions, estimation and prediction, have been investigated by many
authors. Brockwell [6] is a good review to see the recent progress in statistical
analysis by CARMA processes.

Brockwell and Matsuda [7] extended CARMA models for continuous time series
to those for random fields on Rd, d ≥ 1, which we call CARMA random fields. The
main difficulty for the random field extension from time series is in no trivial order in
space like that in time series from past to future. Recalling that CARMA processes
are defined by moving averages of Lévy processes specified by CARMA kernels
constructed from AR and MA polynomials with negative real roots, Brockwell and
Matsuda [7] employed bilateral moving averages by isotropic CARMA kernels on

Key words and phrases. Bayesian kriging, CARMA random fields, Irregularly spaced data,
Lévy sheet. periodogram, Spectral density function, Whittle likelihood.
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2 YASUMASA MATSUDA AND XIN YUAN

Rd, given by

g(s) = g0(||s||), s ∈ Rd,

where g0 is a time series CARMA kernel and || · || is Euclidean norm. to avoid
the difficulty. Several choices of AR and MA polynomials in the CARMA kernels
provide a flexible class of isotropic random fields.

This paper tries a multivariate extension of the univariate CARMA random
fields on Rd. The extension is conducted in a straightforward way of extending
AR and MA polynomials in the univariate models to AR and MA polynomials
with matrix coefficients, which is similar to the extension from discrete ARMA
to vector ARMA models. The extension here is restricted to the cases when AR
polynomial matrices are diagonal in order to obtain explicit parametric expressions
for CARMA kernel matrices. The spectral density matrices are expressed in explicit
parametric forms as a result, which works for parameter estimation on the frequency
domain by the Whittle likelihood, while auto-covariance matrices are not explicitly
obtained except for d = 1, and 3 but are given by Hankel transform of the spectral
densities. It should be notified here that multivariate CARMA random fields target
multivariate irregularly spaced data where observation points for each component
are not supposed to be identical with those for the other components. We develop
a series of procedures to conduct statistical analysis for irregularly spaced data
by multivariate CARMA random fields, following the standard way of time series
analysis in Box, Jenkins and Reinsel [4]. Namely, estimation of model parameters
and kriging, which is prediction in spatial data, by the estimated model as if the
parameters are known, are developed. We employ frequency domain approach for
the parameter estimation by the Whittle likelihood, while we choose spatial domain
approach for the kriging.

The Whittle estimation is a classical technique in time series analysis which
has been employed by many time series researchers such as Dunsmuir [11], Robin-
son [21], Hosoya [15] and Dahlhaus [9]. Brockwell and Davis (Chapter 10, 1991)
provides an excellent introduction to the Whittle estimation. This paper employs
the periodogram extended for irregularly spaced data for the Whittle estimation,
which was originally proposed by Matsuda and Yajima [18] and Bandyopadhyay
and Lahiri [1], and has been applied to irregularly spaced data analysis by Bandy-
opadhyay and Subba Rao [3], Bandyopadhyay, Lahiri, and Nordman [2], Matsuda
and Yajima [19] and Subba Rao [20]. We define the Whittle likelihood function for
multivariate spatial data in a modified form from Matsuda and Yajima [18] to let
it be free from the extra nuisance estimation for distributions of sampling points.
We have established asymptotic normality of the Whittle estimator for multivariate
CARMA random fields which can be non-Gaussian with finite moments of all orders
under the so called mixed asymptotics, which is the asymptotic scheme where sam-
ple size and sampling region jointly diverge. The asymptotic results are regarded
as a non-trivial extension of the classical result for discrete stationary time series
by Dunsmuir and Hannan [12] and Dunsmuir [11] to those for continuous random
fields. The nontrivial difference between them is in the form of asymptotic variance
matrix for random field cases which is not separated as those of CARMA kernel and
noise variance unlike time series cases (Remark 4, Dunsmuir [11]). The difference
comes from a feature of continuous processes for which Kolmogorov formula (see
i.e. sec. 5.8 in Brockwell and Davis [5]) does not hold any more.



CARMA RANDOM FIELDS 3

Kriging, which is usually referred to as a minimum mean squared error method of
spatial prediction that depends on the second order properties of spatial processes
(Cressie[8]), is one of main purposes in spatial data analysis. Kriging for multi-
variate spatial data, which is often called as cokriging, is a challenging topic and
lots of methods have been proposed in the literatures. Gelfand and Banerjee [13]
is a good review for kriging with multivariate spatial process models. Multivariate
CARMA random fields can be regarded as a multivariate extension of the kernel
convolution approach by Higdon [14] in spatial statistics literatures. Our approach
re-expresses multivariate spatial observations following CARMA random fields as
a form of spatial regression model. Assuming Gaussian for Lévy noise terms driv-
ing CARMA, we follow Bayesian approach to conduct kriging by regarding it as a
Bayesian hierarchical model. With the multivariate model involving a large number
of locations, the Bayesian regression requires too heavy computational burden to
work for kriging in practice. We apply the technique of Zhang, Sang and Huang
[24] to the spatial regression context, which can bee seen also as a kind of covari-
ance tapering by Kaufman, Schervish and Nychka [16]. Specifically, we divide a
whole region of spatial observations into several sub-regions to partition the spatial
regression into several sub-models, which lets the posterior computation feasible for
large multivariate spatial dataset.

Let us start from the definition of multivariate CARMA random fields.

2. Multivariate extension of CARMA random fields

We define multivariate CARMA random fields in a formal way from univariate
ones without introductory arguments. For motivating implications on CARMA
models, see Brockwell [6] or Brockwell and Matsuda [7]. We start from the definition
of multivariate L’evy sheets necessary for the multivariate extension.

2.1. Multivariate Lévy sheet. Define an m-variate Lévy sheet L(x) for m ≥ 1,
which is necessary to multivariate extension of CARMA random fields, by

L(x) = L̇((0, x]), x = (x1, . . . , xd)
′ ∈ Rd

+,

for a random measure L̇, which satisfies

(a) if A and B are disjoint Borel sets on Rd, L̇(A) and L̇(B) are independent,
and

(b) for every Borel set A on Rd with finite Lebesgue measure |A|,

E[exp{iθ′L̇(A)}] = exp{|A|ψ(θ)}, θ ∈ Rm,

where ψ is the logarithm of the characteristic function of an infinity divisible
distribution.

We follow the tradition in writing the integral of a deterministic function g on Rd

with respect to L̇ as
∫
Rd g(x)L(dx).

Let us introduce typical examples.

(a) If ψ(θ) = −θ′Cθ/2 with a positive definitem×m matrix C, L is am-variate
Brownian sheet.

(b) If, for a Borel set A on Rd,

L̇(A) =

∞∑
i=1

Yi1xi(A),
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where xi denotes the location of the ith unit point mass of a Poisson random
measure on Rd with intensity λ and {Yi} is a sequence of IID random vectors
with distribution function F and independent of {xi}, L is a m-variate
compound Poisson sheet.

We shall restrict attention in this paper to second order Lévy sheets, i.e. those
for which E[Li(t)

2] < ∞, i = 1, . . . ,m at t = (1, 1, . . . , 1), and then the first and
second order moments for the sheets are determined by

E{L̇(A)} = µ|A| and var{L̇(A)} = Σ|A|,(1)

for a m× 1 vector µ and m×m positive definite matrix Σ.

If h is a m ×m matrix valued function on Rd of the form h(x) =
∑k

i=1 Ci1Ai ,
where Ai, i = 1, . . . , k are disjoint Borel subsets on Rd with finite Lebesgue measure
with m×m matrix Ci, i = 1, . . . , k,∫

Rd

h(x)dL(x) :=
k∑

i=1

CiL̇(Ai).

This definition can be extended, by a standard construction, to include all matrix-
valued functions h whose components are in L1(Rd) ∩ L2(Rd).

2.2. Multivariate CARMA random fields. Let us recall the definition of uni-
variate CARMA random fields on Rd by Brockwell and Matsuda [7]. Let L(x) be
an univariate Lévy sheet on Rd.

Definition 1. Let a∗(z) = zp + a1z
p−1 + · · · ap =

∏p
i=1(z − λi) be a polynomial of

degree p with real coefficients and distinct zeros λ1, . . . , λp having strictly negative
real parts and let b∗(z) = b0 + b1z + · · · bqzq =

∏q
i=1(z − ξi) with real coefficient bj

and 0 ≤ q < p. Suppose also that λi ̸= µj for all i and j. Then defining

a(z) =

p∏
i=1

(z2 − λ2i ) and b(z) =

q∏
i=1

(z2 − ξ2i ),

the univariate CARMA(p, q) random field driven by a Lévy sheet L is

Sd(x) =

∫
Rd

g(||x− u||)dL(u), x ∈ Rd,

where ||x − u|| denotes the Euclidean norm of the vector x − u and g(s) is the
CARMA kernel defined by

g(s) =

p∑
j=1

b(λj)

a′(λj)
eλjs, s ∈ R,

where a′ denotes the derivative of the polynomial a.

We shall extend univariate models to m-variate CARMA random fields by ex-
tending the scaler functions a(z), b(z) in Definition 1 to the matrix ones with an
m-variate Lévy sheet on Rd described by (1). Here we restrict the cases when a(z)
is extended trivially to matrix one by a(z)Im in order to obtain explicit expressions
for CARMA kernel matrix.
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Definition 2. Let a(z) =
∏p

j=1(z
2 − λ2j ) with Re(λj) < 0 be the polynomial in

Definition 1 and define the matrix polynomial with real m×m matrices B1, . . . , Bq

by

B(z) = z2qIm +B1z
2q−2 + · · ·+Bq−1z

2 +Bq,

where B(λi) ̸= 0 for i = 1, . . . , p. The m-variate CARMA(p, q) random field driven
by a m-variate Lévy sheet L is

Sd(x) =

∫
Rd

G(||x− u||)dL(u), x ∈ Rd,

where G(x) is the m×m CARMA kernel matrix defined by

G(s) =

p∑
j=1

1

a′(λj)
B(λj)e

λjs, s ∈ R.

Here we introduce two typical kernels for multivariate CARMA(1,0), CARMA(2,1).

Example. Defining a(z) and B(z) in Definition 2 as (z2−λ2) and Im, respectively,
we obtain CAR(1) kernel matrix given by

G(s) =
1

2λ
Ime

λs, Re(λ) < 0.

Defining a(z) and B(z) in Definition 2 as (z2 − λ21)(z
2 − λ22) and Imz

2 + B1,
respectively, we have CARMA(2,1) kernel matrix given by

G(s) =
λ21Im +B1

2λ1(λ21 − λ22)
eλ1s +

λ22Im +B1

2λ2(λ22 − λ21)
eλ2s, Re(λ1) < Re(λ2) < 0.(2)

2.3. Second order properties. We show the second order properties of multi-
variate CARMA(p, q) random fields on Rd, when the driving Lévy sheet has finite
variance. We show in Theorem 1 the spectral density matrix and autocovariance
matrix without proof, since it is obtained in a straight forward way from the proof
in Theorem 2 in Brockwell and Matsuda [7]. Let us notice that the spectral density
matrix is explicitly expressed as a function of a,B and Σ, while the auto-covariance
matrix is not obtained explicitly except for d = 1 and 3, but given by the Hankel
transform of the spectral density matrix. The explicit form of the spectral den-
sity matrix leads us to propose the Whittle likelihood estimation to estimate the
CARMA parameters in the next section.

Theorem 1. If L is a m-variate Lévy sheet with parameters µ and Σ in (1) and
if the m-variate CARMA random field is defined as in definition 2, then the mean
vector is

ESd(x) =

p∑
i=1

1

a′(λi)

πd/2Γ(d+ 1)

|λ|dΓ(d/2 + 1)
B(λi)µ,

and the spectral density matrix is

fd(ω) = G̃d(ω)ΣG̃
′
d(ω), ω ∈ Rd,(3)

where

G̃d(ω) = cd

p∑
i=1

2λi

a′(λi) (||ω||2 + λ2i )
d+1
2

B(λi),
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with

cd =

{
−2d/2−1Γ

(
d+1
2

)
/
√
π, if d is odd,

−2−d/2Γ(d)/Γ
(
d
2

)
, if d is even.

The autocovariance matrix is

Γd(h) = (2π)d/2Hd/2−1Fd(||h||), h ∈ Rd,

where Fd(||ω||) := fd(ω) and Hr denotes the modified Hankel transform of order r
defined by, for Jr, the Bessel function of the first kind of order r,

HrFd(x) =

∫ ∞

0

Fd(y)
Jr(xy)

(xy)r
y2r+1dy, x > 0, r ≥ −1

2
.

The autocovariance matrix, which is given by the Hankel transform of the spec-
tral density matrix, is explicitly evaluated for d = 1 and d = 3 as

Γ1(h) =

p∑
i=1

Resz=λi

{
exp(z||h||)
a(z)2

B(z)ΣBt(z)

}
, h ∈ R

and

Γ3(h) = − 2π

||h||

p∑
i=1

Resz=λi

{
exp(z||h||)
za(z)4

D(z)ΣDt(z)

}
, h ∈ R3,

respectively, where

D(z) = a′(z)B(z)− a(z)B′(z).

3. Parameter estimation

3.1. Setup. This section focuses on parameter estimation for multivariate CARMA
random fields on R2. The results here on R2, however, can be extended to those
on R3 easily. The point to prevent higher dimensional extension is the rate of
convergence in Lemma 1, from which the approximation in (11) is not validated for
d ≥ 4.

Let X(s) = (X1(s), . . . , Xm(s))′, s ∈ R2 be a m-variate random field on R2,
given by

X(s) =

∫
R2

G(ψ; s− u)dL(u),(4)

where G is a m ×m CARMA(p, q) kernel matrix defined in Definition 2 with the
parameter ψ = (λ1, . . . , λp, B1, . . . , Bq), and L is a m-variate Lévy sheet on R2 that
satisfies (1) with µ = 0. The spectral density function is given in Theorem 1 by

f2(θ;ω) = G̃2(ψ;ω)ΣG̃
′
2(ψ;ω), ω ∈ R2,(5)

for θ = (ψ,Σ) ∈ Rpdim with

G̃2(ψ;ω) = −1

2

p∑
i=1

2λi

a′(λi) (||ω||2 + λ2i )
3
2

B(λi).

Let us propose the Whittle estimation for the parameter θ, which is extended
from the one for classical time series analysis, when observation points for each
component of X(s) = (X1(s), . . . , Xm(s))′ are not supposed to be identical. with
those for the other components.
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3.2. Whittle Estimation. Suppose we have observed irregularly spaced data that
follow multivariate CARMA random fields (4). Here we allow locations and sample
size of the observations for each component not necessarily to be identical. Namely,
we suppose that pth component has observationsXp(spj), j = 1, . . . , np on locations
spj that can depend on p, which we assume distributes irregularly over a region in a
rectangular A = [0, A1]× [0, A2] on R2. Let |A| be the area of A, ie., |A| = A1×A2.
.

First let us define the periodogram matrix whose (p, q)th element by

Ipq(ω) = dp(ω)dq(ω), ω ∈ R2,

where

dp(ω) =

√
|A|
np

np∑
j=1

Xp(spj)e
−iω′spj .

For a grid point j = (j1, j2) on Z2, define a frequency ωj by

ωj =

(
2πj1
A1

,
2πj2
A2

)′

.

For a symmetric compact set D on R2 such that −s ∈ D for s ∈ D, define

JD =
{
j = (j1, j2) ∈ Z2|ωj ∈ D

}
,

and |JD| by the number of elements in JD. The Whittle estimator θ̂ is defined by
the one that minimizes the Whittle likelihood:

lw(θ) = log

 1

m|JD|
∑
j∈JD

tr

{(
f(θ;ωj) + ηK̂

)−1

I(ωj)

}(6)

+
1

m|JD|
∑
j∈JD

log
wwwf(θ;ωj) + ηK̂

www ,

where η is the scaler nuisance parameter that is to be estimated jointly with θ, and
K̂ is the matrix to compensate for the bias of the periodogram, which is defined
by, for the set of observation points Sp = {spj , j = 1, . . . , np}, p = 1, . . . ,m,

K̂pq =
|A|
npnq

∑
sj∈Sp∩Sq

Xp(sj)Xq(sj), p, q = 1, . . . ,m,

and defined by 0 if Sp ∩ Sq is null.
Notify the following two points for the proposed likelihood function. First, it is

modified to be scale invariant in the sense that the spectral density matrix multi-
plied with any constant provides exactly same parameter estimate. In other words,
the variance matrix Σ requires a restriction such as Σ11 = 1 for the identifiability.
Second, the reason why we make the likelihood be scale free is because no-additional
estimation is necessary to let the Whittle estimation be consistent. In other words,
it would be necessary to estimate the quantity related with a density function of
sampling points, if we define the Whittle likelihood with a scale parameter τ by∑

j∈JD

[
tr

{(
τf(θ;ωj) + η̃K̂

)−1

I(ωj)

}
+ log

wwwτf(θ;ωj) + η̃K̂
www]

.
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See Remark 1 in Matsuda and Yajima [18]. The scale-free likelihood in (6), which
is given by concentrating out the scale parameter, makes it possible to estimate
the parameter θ without any additional estimation at the sacrifice of the scale
parameter in Σ. For a practical discussion, see the beginning of Section 5.

3.3. Asymptotic Results. This section will show the asymptotic results of the
Whittle estimator that minimizes (6). First we clarify the scheme under which the
asymptotic results shall be derived, which is not trivial unlike time series cases. We
state it as assumption given as C1 below. Under the scheme in C1, we consider the
asymptotic results for the Whittle estimator.

C1. The sample size np and the sampling region A = [0, A1] × [0, A2] diverge
jointly such that A1 → ∞, A2 → ∞, A1/A2 = O(1) and |A|/np → 0, p =
1, . . . ,m for the area |A| = A1 × A2. We shall employ a suffix k such as
np = npk, A = Ak to indicate explicitly that they diverge as k tends to
infinity.

C2. Let Sp, p = 1, . . . ,m, be the set of sampling points of Xp in A = [0, A1] ×
[0, A2]. We assume that elements in Sp are written as, for p = 1, . . . ,m,

spj = (A1u1,pj , A2u2,pj), j = 1, . . . , np,

where upj = (u1,pj , u2,pj) is a sequence of independent and identically dis-
tributed random vectors with a probability density function g(x) supported
on [0, 1]2 which has continuous first derivatives.

C3. X(s), s ∈ R2 follows a random field in (4) driven by a zero-mean Lévy
sheet on R2 with finite moments of all orders. Every component of the
CARMA kernel is bounded and integrable and the spectral density matrix
has continuous second derivatives.

C4. Let Θ be a compact subset in Rpdim and D be a symmetric compact region
on R2. The parametric spectral density matrix f(θ;ω) defined in (5) is
positive definite and has continuous second derivatives with respect to θ
on Θ ×D. θ1 ̸= θ2 implies that f(θ1;ω) ̸= f(θ2;ω) on a subset of D with
positive Lebesgue measure.

Let us introduce the asymptotic results for the Whittle estimator as k tends to
be ∞ under the asymptotic scheme of C1.

Theorem 2. Under Assumptions C1-C4, the Whittle estimator θ̂k minimizing (6)
converges to θ0 in probability as k tends to be infinity.

Theorem 3. If |Ak|3/2/np → 0 for p = 1, . . . ,m. and g(x), x ∈ [0, 1]2 has con-

tinuous second derivatives, in addition with Assumptions C1-C4,
√

|Ak|
(
θ̂k − θ0

)
converges in distribution to

N
(
0, bg(Ω1 − Ω2)

−1(2Ω1 +Π)(Ω1 − Ω2)
−1

)
,
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as k tends to be infinity, where, for p, q = 1, . . . , pdim,

bg = (2π)2

{∫
[0,1]2

|g(u)|4du

}{∫
[0,1]2

|g(u)|2du

}−2

,

Ω1,pq =

∫
D

tr

(
∂f(θ0;ω)

∂θp
f−1(θ0;ω)

∂f(θ0;ω)

∂θq
f−1(θ0;ω)

)
dω,

Ω2,pq =
1

m|D|

(∫
D

∂ log ||f(θ0;ω)||
∂θp

dω

)(∫
D

∂ log ||f(θ0;ω)||
∂θq

dω

)
,

Πpq =
m∑

a,b,c,d=1

κabcd×[∫
D

G̃′
2(θ0;ω)

∂f−1(θ0, ω)

∂θp
G̃2(θ0;ω)dω

]
ab

[∫
D

G̃′
2(θ0;ω)

∂f−1(θ0, ω)

∂θq
G̃2(θ0;ω)dω

]
cd

,

where κabcd is the fourth order cumulant of the Lévy sheet given by

cum(La(du), Lb(du), Lc(du), Ld(du)) = κabcddu, a, b, c, d = 1, . . . ,m.

Remark 1. There are several interesting differences in the asymptotic variance
matrix from the classical one in discrete time series. First, Ω2 vanishes with respect
to ψ in θ = (ψ,Σ) in discrete time series cases, because it holds for a spectral density
matrix for discrete time series that

1

2π

∫ π

−π

log ||f(ω)||dω = log

wwww 1

2π
Σ

wwww
by Kolmogorov formulra (Theorem 5.8.1, Brockwell and Davis, [5]), while it does
not hold any more in continuous random fields. Second, Π vanishes in discrete
time series except for the components with respect to Σ in θ = (ψ,Σ) (Remark 3,
Dunsmuir, [11]), while it does not in continuous random fields. In other words, the
asymptotic variance matrix with respect to ψ and Σ are not separated for continuous
processes.

The twice differentiable assumption for g(x) in Theorem 3 as well as the differ-
entiability in Theorem 2 are strict assumptions around edges of sampling points in
A = [0, A1] × [0, A2], which is rare to be satisfied. To avoid the difficulty, let us
propose the tapered periodogram. For a taper h(x), a continuous positive function
on [0, 1]2, the tapered periodogram is defined by

Ih,pq(ω) = d̃p(ω)d̃q(ω),

for

d̃p(ω) =

√
|A|
np

np∑
j=1

Xp(spj)h(spj,1/A1, spj,2/A2)e
−iω′spj , p = 1, . . . ,m.

The Whittle likelihood in (6) replaced with the tapered periodogram provides The-
orems 1 and 2 under relaxed conditions on g(x), namely, the first and second
differentiability for g(x)h(x), not for g(x).

Let θ̃ be the estimator minimizing the modified Whittle likelihood with a taper
h(x), x ∈ [0, 1]2.
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Theorem 4. Under C1-C4, where w(x) = g(x)h(x) has continuous first derivatives

instead of g(x) in C2, the Whittle estimator θ̃ constructed with a taper h(x) is con-
sistent. If we assume more that w(x) = g(x)h(x) has continuous second derivatives
and that |A|3/2/np → 0 for p = 1, . . . ,m, the asymptotic normality in Theorem 3
still holds, where bg in the asymptotic covariance is replaced with

bh =

{∫
[0,1]2

|g(x)h(x)|4dx

}{∫
[0,1]2

|g(x)h(x)|2dx

}−2

.

4. CARMA Kriging

This section shall propose a way to conduct kriging by multivariate CARMA
random fields when the parameters are known, although they are estimated in
practice by the Whittle estimation we stated in the last section. The kriging is
conducted by following the way of time series forecasting by moving average models,
where the forecast is constructed with the error process recovered by the moving
average recursions. We regard the recovered error term in a Bayesian way as the one
obtained from the posterior distribution when iid assumption for the error terms
is seen as the prior. We extend the time series forecasting procedure to kriging
for multivariate spatial data, where it should be noticed that Gaussian assumption
that is not necessary for the Whittle estimation is imposed in this section.

4.1. Setup as a spatial regression. We assume that the Lévy sheet driving a
m-variate CARMA random field is a compound Poisson sheet, which is as a result
given by

Y (s) =
∞∑
j=1

G(s− uj)Zj , s ∈ R2,

where {uj}, j = 1, . . ., which are called as knots, are randomly distributed over
R2 and Zj follows iid with mean 0 and variance matrix Σ. The restriction to
compound Poisson sheet does not lose generality in terms of covariances. In other
words, the class of covariances by CARMA models driven by Lévy sheets and of
those by compound Poisson sheets are identical. We suppose the following special
but practical situations under which we shall introduce a method for kriging.

a. We truncate the range of the knots within a compact region C with the
number of knots M , which follows a Poisson distribution. In addition,
inserting a constant term and an iid measurement error, we employ the
following empirically modified CARMA model for kriging by

Y (si) = µ+
∑

{uj ,j=1,...,M}⊂C

G(si − uj)Zj + εi, si ∈ R2,(7)

where we denote the set of knot points as KM = {uj , j = 1, . . . ,M} ⊂ C.
b. The parameter Σ is a diagonal matrix without loss of generality, because,

for the Cholesky decomposition of Σ given by Ldiag(σ2
1 , . . . , σ

2
m)L′ with the

lower triangular matrix L with Lii = 1, i = 1, . . . ,m, and the re-defined
G by GL, we obtain the CARMA model driven by the compound Poisson
sheet with the diagonal variance matrix Σ = diag(σ2

1 , . . . , σ
2
m).

c. The CARMA kernel G is assumed to be known, although it is in practice
estimated by the Whittle estimation.
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d. The diagonal variance matrices Σ = diag(σ2
1 , . . . , σ

2
m) and ∆ = diag(δ21 , . . . , δ

2
m)

for Zj and εi, respectively, are both unknown parameters to be estimated
in the kriging procedure.

e. We observe samples of Yp(s) at Sp = {spj , j = 1, . . . , np} for p = 1, . . . ,m,

and aim to krig unknown values of Yp(s) at S̃p = {vpj , j = 1, . . . , ñp} for

p = 1, . . . ,m. Denote Vp = Sp ∪ S̃p with Np = np + ñp.

Under the setup, let us express (7) in a componentwise way as

Yp(si) = µp +

m∑
q=1

∑
uj∈KM

Gpq(si − uj)Zjq + εip, si ∈ Vp,

which we stack together for p = 1, . . . ,m, rewriting in a vector form as

Y = GuZ + E,(8)

where

Y = (Y ′
1 , . . . , Y

′
m)′ for Yp = Yp(si), si ∈ Vp,

Gu =


1N1 0N1 · · · 0N1 Gu,11 Gu,12 · · · Gu,1m

0N2 1N2 · · · 0N2 Gu,21 Gu,22 · · · Gu,2m

...
...

. . .
...

...
...

...
...

0Nm 0Nm · · · 1Nm Gu,m1 Gu,m2 · · · Gu,mm


for Gu,pq = Gpq(si − uj), si ∈ Vp, uj ∈ KM ,

Z = (µ′, Z ′
1, . . . , Z

′
m)′ for µ = (µ1, . . . µm)′ and Zq = (Z1q, . . . , ZMq)

′,

E = (ε′1, . . . , ε
′
m)′ for εp = (ε1p, . . . , εNp,p)

′.

4.2. Gibbs sampling. We shall recover Z in (8) in order to construct the krigged
value. We evaluate the posterior of Z by

p(Z,Σ,∆|Y, u) ∝ p(Y |Z, u,∆)p(Z|Σ)p(Σ)p(∆),(9)

where we assume Gaussian distributions for the first and second terms in the
right hand side with the precision matrices given by diag(δ−2

1 1′N1
, · · · , δ−2

m 1′Nm
),

and diag(0′m, σ
−2
1 1′M , · · · , σ−2

m 1′M ) respectively. Assuming the independent non-
informative inverse Gamma distributions as the priors of σ2

i and δ2i for i = 1, . . . ,m,
we obtain the posterior samples for Z by the Gibbs sampler. Iteratively sampling
from the posteriors in (9) given knots u simulated independently at each iteration,
we aim to obtain the marginal posterior samples given Y .

0. Initialize Y at S̃p and σ2
p, δ

2
p, p = 1, . . . ,m.

1. Simulate knots u = (u1, . . . , uM ) uniformly distributed over C for M that
follows a Poisson distribution.

2. Update Z for given Y, u,Σ and ∆ by the posterior N(Ωa,Ω) with

a = G′
uD

−1
E Y,

Ω =
(
G′

uD
−1
E Gu +D−1

Z

)−1
.

3. Simulate Ỹ for given u, Z by the posterior N(GuZ,DE) and update Y with

Ỹ only at S̃p, p = 1, . . . ,m.

4. Update σ−2
p and δ−2

p for given u, Z,E = Y−GuZ by the posteriorsGa(M/2,
∑M

j=1 Z
2
jp/2)

and Ga(Np/2,
∑Np

j=1E
2
jp/2), respectively, for p = 1, . . . ,m.



12 YASUMASA MATSUDA AND XIN YUAN

5. return to 1.

As the result of the iterations, we obtain the posterior samples in Step 3 for Y at
S̃p, p = 1, . . . ,m, by which we can construct interval as well as point estimation as
kriging.

Remark 2. We just simulate the prior samples for u at Step 1 in the Gibbs sampler
unlike Zhang, Sang and Huang [24], since knots are not parameters to generate
CARMA processes but are randomly distributed ones independent of observations.
It means that we construct the krigged values by the marginal posteriors at Step 3
when knots are distributed uniformly over C in (7).

Step 2 requires the inverse of m(M + 1) × m(M + 1) dense matrix, which is
infeasible when M is large. In the empirical example shown later, we will consider
US precipitation data in which CARMA models with M = 6, 000 and m = 3 are
fitted, where the step 2 requires 18, 000 × 18, 000 matrix inversion. In order to
avoid the difficulty of huge dimensional matrix inversion, we propose a sub-chain
to approximate the inversion in the step 2 with a lower dimensional one.

2-a. We divide the region C randomly into several sub-regions as C1, . . . , Ck.
Following the division, we partition Y, u, Z,Gu, DZ and DE into the ones
corresponding with the devision, denoted as, for i = 1, . . . , k, Y (i), u(i),

Z(i), G
(i)
u , and DZ(i) and DE(i). We include the constant term µ(i) for all

the divisions Ci, i = 1, . . . , k. In other words, we allow µ to be dependent
on the sub-regions.

2-b. Initialize Z.
2-c. For i = 1, . . . , k, update Z(i) with N(Ω(i)a(i),Ω(i)) for

a(i) = G′(i)
u D−1

E(i)

{
Y (i) −G(−i)

u Z(−i)
}
,

Ω(i) =
(
G′(i)

u D−1
E(i)G

(i)
u +D−1

Z(i)

)−1

,

where G
(−i)
u and Z(−i) are the sub-components of Gu and Z excluding the

ones corresponding with Ci.

Iterating 2-c in the sub-chain for step 2, we obtain the posterior samples of Z by
(m+ 1)Mi × (m+ 1)Mi matrix inversion for Mi given roughly by M/k.

5. Empirical studies

5.1. tri-variate CARMA(2,1) kernel matrix. This section focuses on tri-variate
CARMA (2,1) random fields on R2 and demonstrates the empirical properties in
terms of estimation and kriging for simulated and real data. Although it is possible
to apply general class of CARMA(p, q) models, CARMA (2,1) shall be employed
with the two reasons. First, CARMA (2,1) provides wide enough class of covariance
structures to express flexible behaviors both at short and long lags by the CARMA
kernel in (10). The first and second terms in (10) control the behaviors at short
and long lags, respectively. Second, model selection issues from general CARMA
are in a challenging topic currently out of scope in this paper.

We shall employ the CARMA(2,1) kernel in (2) in a modified form. Normalizing
the kernel to satisfy G(0) = Im to guarantee the identifiability of Σ with a new
parameter m×m matrix Φ, we obtain

G(s) = Φeλ1s + (Im − Φ)eλ2s, Re(λ1) < Re(λ2) < 0.
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λ1 λ2 ϕ11 ϕ22 ϕ33 ϕ21 ψ21 ϕ31 ψ31 ϕ32 ψ32 log σ2
2 log σ2

3
true −3.951 −0.619 0.822 0.864 0.825 1.595 0.160 1.017 0.032 0.608 0.079 0 0
mean −3.938 −0.648 0.825 0.858 0.805 1.547 0.156 0.963 0.030 0.694 0.079 −0.002 −0.191
RMSE 0.325 0.083 0.027 0.145 0.069 0.204 0.033 0.163 0.033 0.293 0.096 0.500 0.372

Table 1. The means and root mean squared errors of the Whittle
estimators for tri-variate CARMA (2,1) random field in (10), which
were evaluated by 100 simulations.

We impose a restriction on Φ and Σ, the variance matrix of Lévy sheet, to increase
the identifiability of CARMA kernel by the Whittle likelihood in (6).

For the Cholesky decomposition for Σ, which is given by

Σ = Ldiag(σ2
1 , σ

2
2 , σ

2
3)L

′,

for the lower triangular matrix L with Lii = 1, i = 1, 2, 3, modify the CARMA(2,1)
kernel as

G(s)L = ΦLeλ1s + (I3 − Φ)Leλ2s.

We restrict the parameter matrix Φ to be within the class of lower triangular, which
improves significantly low identifiability of Φ by the Whittle likelihood. As a result,
the tri-variate CARMA(2,1) kernel we shall employ in this section is expressed as

G(s) =

 ϕ11 0 0
ϕ21 ϕ22 0
ϕ31 ϕ32 ϕ33

 eλ1s +

 1− ϕ11 0 0
ψ21 1− ϕ22 0
ψ31 ψ32 1− ϕ33

 eλ2s,(10)

with the diagonal variance matrix Σ for Lévy sheet, which is re-parametrized as

Σ = σ2
1diag(1, σ

2
2 , σ

2
3).

Recalling that the Whittle likelihood in (6) is scale invariant, we notice that the
estimable parameters in the CARMA(2,1) model are λ1, λ2, ϕij , ψij and σ2

2 , σ
2
3 .

5.2. Simulation studies. W examined the Whittle estimation for simulated tri-
variate data by the CARMA (2,1) kernel in (10) on irregularly spaced points over
the compact set A = [0, 50]× [0, 30]. More specifically, we employed the empirically
modified expression in (7) driven by a Poisson Lévy sheet, where 4,000 knots uni-
formly distributed over [0, 60]× [0, 60] including A. We designed three independent
sets of 5,000 uniformly distributed points over A as observation points for each
component of tri-variate data. In the notation in the last section, S1, S2 and S3

were designed to have no intersections. We simulated 100 sets of the tri-variate
data under the setting, where the parameter values for Φ in Table 1 were taken
from the empirical analysis for US precipitation data shown in the next section.

We estimated the CARMA (2,1) parameters Φ in (10) and σ2
2 , σ

2
3 in Σ to minimize

the Whitttle likelihood for the 100 sets of simulated data, where the compact region
D in (6) was designed by {ω ∈ R2, ||ω|| < 2π}. In Table 1, we showed the means
and root mean squared errors evaluated by 100 simulations.

We find from Table 1 that the Whittle estimation works overall for all the pa-
rameters in terms of bias and RMSE. The variance parameters has larger RMSE
than the other parameters. The Whittle likelihood evaluates the likelihood over the
compact region within D, namely it ignores the periodograms on higher frequency
regions than D. The ignorance on higher frequencies leads to poor estimation for
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Figure 1. Weather stations in United States

the variance parameters in Lévy sheets in comparisons with those for the other
parameters in CARMA kernels.

5.3. Real example. This section demonstrates the applications of the tri-variate
CARMA (2,1) random field in (10) to real dataset of US precipitation. Monthly
total precipitation observed at weather stations all over US from 1895 through 1997
are available in the web page of Institute for Mathematics Applied to Geosciences
(IMAG):

http://www.image.ucar.edu/Data/US.monthly.met/USmonthlyMet.shtml.

Around 6,000 weather stations, which are scattered over United Stats, are shown
in Figure 1.

Regarding the monthly precipitation in November, December, 1996 and Janu-
ary, 1997 as tri-variate spatial observations, we fitted the tri-variate CARMA(2,1)
model to them to examine the estimation and kriging performances. Dividing the
whole dataset into the two sets of in-samples and out-of-samples, we estimated the
CARMA parameters to minimize the Whittle likelihood in (6) by the in-samples
and evaluated the mean squared errors of the kriging constructed with the esti-
mated CARMA model by the out-of-samples. More specifically, the numbers of the
data points in Nov., Dec. and Jan. were 6,841, 6,838 and 6,463, respectively and
we divided each of them into randomly chosen 500 out-of-samples and the rest as
in-samples. The in-sample datasets in Nov. and Dec., in Nov. and Jan. and in
Dec. and in Jan. respectively have intersections of 5,772, 5,400 and 5,415 stations,
respectively. For the Whittle estimation, we took A = [0, 50]× [0, 30] to construct
the periodogram and chose D in (6) as the compact region of {ω ∈ R2, ||ω|| < 2π}.
At Step 1 in the Bayesian kriging procedure, we designed as knots the points chosen
randomly from among the 6,838 stations in Dec. with M following the Poisson dis-
tribution with mean 6,000. To avoid the difficulty of huge matrix inversion in Step
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λ1 λ2 ϕ11 ϕ22 ϕ33 ϕ21 ψ21 ϕ31 ψ31 ϕ32 ψ32 log σ2
2 log σ2

3
est. −3.951 −0.619 0.822 0.864 0.825 1.595 0.160 1.017 0.032 0.608 0.079 0.879 −0.903
s.e. 0.318 0.068 0.023 0.020 0.029 0.083 0.044 0.067 0.032 0.027 0.016 0.088 0.114

Table 2. The Whittle estimation with the standard error for the
tri-variate CARMA (2,1) random field in (10) fitted to US precip-
itation data in Nov., Dec., 1996 and Jan., 1997.

kernel uni-variate tri-variate
MSE smoother CARMA(2,1) CARMA(2,1)

Nov. 4.79 6.36 4.32
in-sample Dec. 15.84 17.67 10.05

Jan. 7.41 9.22 5.37
Nov. 8.83 7.94 4.88

out-of-sample Dec. 26.43 27.94 13.84
Jan. 18.42 15.82 10.12

Table 3. Kriging MSE by the estimated tri-variate CARMA(2,1)
random field in comparisons with those of the benchmarks of kernel
smoother and univariate CARMA(2,1) random field.

2, we employed the sub-chain of 2-a, b and c with randomly chosen 50 sub-regions
in the whole US continent and iterated Step 2-c four times. We iterated 200 times
Steps 1-3 in the kriging procedure and constructed krigigged values by the averages
of the last 100 posterior samples.

The Whittle estimators for the CARMA(2,1) parameters are in Table 2 and the
identified autocorrelation matrix by the formula in Theorem 1 is in Figure 2, while
the mean squared errors of the tri-variate CARMA kriging are shown in Table 3
with those of the Gaussian kernel smoother and univariate CARMA (2,1) model
as benchmarks, where the bandwidth for the kernel smoothing was optimized to
give the best kriging performances. The standard errors in Table 2 were evaluated
by 2bgH

−1/|A|, where H is the Hessian matrix of the Whittle likelihood in (6)
and bg was evaluated by the kernel density estimation, 4π2 × 3.09. Notice that it
ignored the asymptotic variance terms of Ω2 and Π in Theorem 3, which would
cause negatively biased approximation.

We summarize the results in the three points. First, the comparison between
Tables 1 and 2 demonstrates the negatively biased standard errors in Table 2.
Namely, the standard errors obtained via the inverse Hessian are smaller than the
ones via the simulations, following the expectation from the asymptotic variance
matrix in Theorem 3. Second, the univariate CARMAmodels and kernel smoothing
provide the close kriging MSEs. This is because kriging by uni-variate CARMA
models is regarded as a kind of smoothing with the kernel and bandwidth specified
by CARMA kernels. Finally, it is found from Figure 2 that correlation of Dec. and
Jan. is more durable than those of the other two especially in short lag distances,
which accounts for the significantly better performances of the tri-variate CARMA
kriging over the univariate benchmarks. A local shock at a point that the univariate
benchmarks cannot account can be caught by the tri-variate CARMA models via
the correlations between Dec. and Jan. or Dec. and Nov., which resulted in the
significant kriging improvements.
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Figure 2. Autocorrelations as a function of lag distance identified
by the tri-variate CARMA(2,1) random field for US precipitation
in Nov., Dec., 1996 and Jan., 1997.

6. Conclusion

This paper conducts a multivariate extension of univariate CARMA random
fields proposed by Brockwell and Matsuda [7], which is obtained as a continuous
analogue of discrete time moving average models. The features of the extension
are summarized in the following points. First, the extension is simply designed to
provide with explicit parametric expressions of multivariate CARMA kernel ma-
trix and as a result with the spectral density matrix. Second, we propose the
Whittle likelihood to estimate the CARMA parameters efficiently. Unlike usual
normal likelihood in spatial domains that requires huge dimensional matrix inver-
sion of covariances, the Whittle likelihood is efficiently evaluated by the matrix
inversion of spectral density matrices. Third, we successfully derived the asymp-
totic normality of the Whittle estimation without imposing Gaussian assumption
but with the existence of all finite order moments. The asymptotic variance ma-
trix is similar but different from the one in traditional discrete time series analysis.
The difference comes from the feature of continuous random fields on which the
celebrated Kolmogorov formula does not hold any more. Fourth, we propose a
Bayesian way of kriging by multivariate CARMA random fields under Gaussian
conditions. Although it requires huge matrix inversion, we give a way to avoid
the difficulty to provide kriging efficiently. Finally, our proposed methodology of
multivariate CARMA random fields works well in practice. Multivariate CARMA
model captures well durable spatial correlations among components of multivariate
observations to provide better kriging than those by univariate modeling.

The summarized features are all related with second order properties of CARMA
random fields, which are resulted from the assumption that driving Lévy sheet has
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finite variance matrix. Our future study is to examine CARMA models driven by
infinite variance Lévy sheets, which would open fruitful applications in theories and
practices for random fields.

7. Proofs

Proof of Theorem 2. Let θ1 ∈ Θ be a parameter that is not equal to θ0. By Lemmas
1 and 2,

lw(θ1) → log

[
1

m|D|

∫
D

tr
{
f−1(θ1;ω)f(θ0, ω)

}
dω

]
+

1

m|D|

∫
D

log ∥f(θ1;ω)∥ dω + log τ0,

:= l∞(θ1),

say, in probability as k tends to be infinity, where τ0 is defined in Lemma 2. Hence,
by Jensen’s inequality,

l∞(θ1)− l∞(θ0) =

log

[
1

m|D|

∫
D

tr
{
f−1(θ1;ω)f(θ0, ω)

}
dω

]
− 1

m|D|

∫
D

log
wwf−1(θ1;ω)f(θ0;ω)

ww dω

> 0.

It follows that, for any positive constant L(θ0, θ1) that is smaller than l∞(θ1)−
l∞(θ0),

lim
k→∞

P (lw(θ0)− lw(θ1) < −L(θ0, θ1)) = 1.

For any δ > 0, there exists an Hk,δ of the form,

δ

 C1

|JD|
∑
j∈JD

tr (I(ωj))


−1  C2

|JD|
∑
j∈JD

tr (I(ωj)) + C3


such that, for any θ1 and θ2 that satisfy |θ2 − θ1| < δ,

|lw(θ2)− lw(θ1)| < Hk,δ,

because of the non-negative definiteness of K̂ and of the mean value theorem. It is
seen from the form of Hk,δ that there exists a δ > 0 such that

lim
k→∞

P (Hk,δ < K(θ0, θ1)) = 1.

Applying Lemma 2 of Walker [23], we have the consistency. □

Proof of Theorem 3. By Taylor series expansion,

0 =
∂lw(θ̂)

∂θ
=
∂lw(θ0)

∂θ
+
∂2lw(θ

∗)

∂θ∂θ′
(θ̂ − θ0),

where θ∗ is the mean value between θ0 and θ̂. Hence√
|A|

(
θ̂ − θ0

)
=

{
m|D|∂

2lw(θ
∗)

∂θ∂θ′

}−1 √
|A|

{
−m|D|∂lw(θ0)

∂θ

}
.
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The (p, q)th element of the first factor, which is the Hessian matrix, is evaluated
as, for p, q = 1, . . . , pdim,

− |D|
|JD|

∑
j∈JD

tr

[
∂f−1(θ∗;ωj)

∂θp

∂f(θ∗;ωj)

∂θq

]

− 1

m|D|
|D|
|JD|

∑
j∈JD

tr

[
∂f−1(θ∗;ωj)

∂θp

I(ωj)

τ̂(θ∗)

]
× |D|

|JD|
∑
j∈JD

tr

[
∂f−1(θ∗;ωj)

∂θq

I(ωj)

τ̂(θ∗)

]
+ op(1),

where

τ̂(θ) =
1

m|JD|
∑
j∈JD

tr
[
f−1(θ;ωj)I(ωj)

]
.

Noting that θ∗ converges to θ0, we find that the Hessian converges in probability
to Ω1 − Ω2 by Lemmas 1 and 2.

The pth element of the second factor, which is the score vector, is evaluated as,
for p = 1, . . . , pdim,√

|A||D|
|JD|

∑
j∈JD

tr

[{
I(ωj)

τ̂(θ0)
− f(θ0;ωj)

}
∂f−1(θ0;ωj)

∂θp

]
+ op(1),

which is, by Lemma 1, equal to√
|A||D|
|JD|

∑
j∈JD

tr

[{
I(ωj)

τ0
− EI(ωj)

τ0

}
∂f−1(θ0;ωj)

∂θp

]
+ op(1).(11)

By applying Lemma 3 to the first term, it is equivalent to show the asymptotic
distribution of

Jp =
√
|A|

∫
D

tr

[{
I(ω)

τ0
− EI(ω)

τ0

}
∂f−1(θ0;ω)

∂θp

]
dω, p = 1, . . . , pdim.

For simplicity, we define

ϕp(ω) =
∂f−1(θ0;ω)

∂θp
,

ϕ̃p(s) =

∫
D

ϕp(ω)e
−iω′sdω,

and re-express the random term for Jp as

Tp =
m∑

a=1

m∑
b=1

|A|3/2

nanb

na∑
c=1

nb∑
d=1

τ−1
0 Xa(sac)Xb(sbd)ϕ̃ba,p(sac − sbd).(12)

We shall show in Lemmas 4 and 5 that

Cov (Tp, Tq) → bg(2Ω1,pq +Πpq), p, q = 1, . . . , pdim,

cum (Tp1 , . . . , Tpr ) → 0, p1, . . . , pr = 1, . . . , pdim, for r ≥ 3,

as k tends to ∞, which proves the asymptotic normality in Theorem 3. □
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8. Lemmas

Lemma 1.

EIab(ω) = τ0fab(ω) +O

(
nab|A|
nanb

+A−2
1 +A−2

2

)
, a, b = 1, . . . ,m,

where na, nb and nab are the number of elements in Sa, Sb and Sa∩Sb, respectively,
and

τ0 = (2π)2
∫
[0,1]2

|g(x)|2dx.

Proof. We find from Lemma 3 in Matsuda and Yajima [18] that the expectation is
evaluated as

τ0fab(ω) +
|A|
nanb

∑
sj∈Sa∩Sb

EXa(sj)Xb(sj) +O
(
A−2

1 +A−2
2

)
,

which completes the proof. □

Lemma 2. For a square integrable function ψ(ω), ω ∈ R2,

var

√
|A| |D|

|JD|
∑
j∈JD

Iab(ωj)ψ(ωj)

 = O (1) , a, b = 1, . . . ,m.

Proof. Let

ψ̂(s) =
|D|
|JD|

∑
j∈JD

ψ(ωj)e
−iω′

js, s ∈ A = [0, A1]× [0, A2],

which is extended periodically to [−A1, A1] × [−A2, A2]. Then the object for the
variance is evaluated as

|A|3/2

nanb

na∑
c=1

nb∑
d=1

Xa(sac)Xb(sbd)ψ̂(sac − sbd).

The variance is given by

E
|A|3

n2an
2
b

∑
c1

∑
d1

∑
c2

∑
d2

(
cum (Xa(sac1), Xb(sbd1), Xa(sac2), Xb(sbd2))

+ γaa(sac1 − sac2)γbb(sbd1 − sbd2) + γab(sac1 − sbd2)γba(sbd1 − sac2)

)
× ψ̂(sac1 − sbd1)ψ̂(sac2 − sbd2)

=

∫
A

∫
A

∫
A

∫
A

(
cum(Xa(u1), Xb(v1), Xa(u2), Xb(v2))

+ γaa(u1 − u2)γbb(v1 − v2) + γab(u1 − v2)γba(v1 − u2)

)
× δ(u1 − v1)δ(u2 − v2)|A|−1g(u1/A)g(v1/A)g(u2/A)g(v2/A)du1dv1du2dv2 + o(1).

The first term is, by expressing the cumulant term with the cumulant spectrum:

fabab(ω1, ω2, ω3) =
m∑

e,f,g,h=1

κefghG̃ae(ω1)G̃bf (ω2)G̃ag(ω3)G̃bh(ω1 + ω2 + ω3),(13)
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given by∫
R2

∫
R2

∫
R2

fabab(ω1, ω2, ω3)e
iω′

1(u1−v2)eiω
′
2(v1−v2)eiω

′
3(u2−v2)dω1dω2dω3

|A|−1

∫
A

∫
A

∫
A

∫
A

δ(u1 − v1)δ(u2 − v2)g(u1/A)g(v1/A)g(u2)/Ag(v2/A)du1dv1du2dv2,

which is, by Schwarz inequality, bounded by

2∏
j=1

√∫
R2

∫
R2

∫
R2

|fabab(ω1, ω2, ω3)|Pjdω1dω2dω3,(14)

for

P1 = |A|−1

∣∣∣∣∫
A

∫
A

ψ̂(u1 − v1)g(u1/A)g(v1/A)e
iω′

1u1eiω
′
2v1du1dv1

∣∣∣∣2 ,
P2 = |A|−1

∣∣∣∣∫
A

∫
A

ψ̂(u2 − v2)g(u2/A)g(v2/A)e
−i(ω1+ω2)

′v2eiω
′
3(u2−v2)du2dv2

∣∣∣∣2 .
By applying Perseval’s equality to both terms, (14) is bounded by

C

∫ A1

−A1

∫ A2

−A2

∣∣∣ψ̂(s)∣∣∣2 ds,(15)

which is evaluated as

4C|A| |D|2

|JD|2
∑
j∈JD

|ψ(ωj)|2 < C ′
∫
D

|ψ(ω)|2dω = O(1).

Also the second and third terms in the variance are bounded by a constant with
the same argument, which completes the proof. □

Lemma 3. For a square integrable function ψ(ω), ω ∈ R2,√
|A||D|
|JD|

∑
j∈JD

Iab(ωj)ψ(ωj)−
√
|A|

∫
D

Iab(ω)ψ(ω)dω = op(1).

Proof. Let

ψ̂(s) =
|D|
|JD|

∑
j∈JD

ψ(ωj)e
−iω′

js, s ∈ A = [0, A1]× [0, A2],

ψ̃(s) =

∫
D

ψ(ω)e−iω′sdω, s ∈ R2,

the first one of which is extended periodically to [−A1, A1]× [−A2, A2]. For δ(s) =

ψ̂(s)− ψ̃(s), the difference is evaluated as

|A|3/2

nanb

na∑
c=1

nb∑
d=1

Xa(sac)Xb(sbd)δ(sac − sbd).

The variance, which is similarly evaluated till (15) in Lemma 2, is bounded by

C

∫ A1

−A1

∫ A2

−A2

|δ(s)|2 ds.(16)
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Notice that ψ̂(s), ψ̃(s) are square integrable, since∫ A1

0

∫ A2

0

|ψ̂(s)|2ds = |A||D|2|JD|−2
∑
j∈JD

|ψ(ωj)|2 < C

∫
D

|ψ(ω)|2dω <∞,∫
R2

|ψ̃(s)|2ds = (2π)2
∫
D

|ψ(ω)|2dω <∞.

It follows that, for any ε > 0, there exists a compact set BM = [−M1,M1] ×
[−M2,M2] ⊂ [−A1, A1]× [−A2, A2] such that∫ A1

−A1

∫ A2

−A2

∣∣∣ψ̂(s)− ψ̂(s)IBM
(s)

∣∣∣2 ds < ε,∫
R2

∣∣∣ψ̃(s)− ψ̃(s)IBM (s)
∣∣∣2 ds < ε.

Then (16) is bounded by

C

{∫ A1

−A1

∫ A2

−A2

∣∣∣ψ̂(s)− ψ̂(s)IBM
(s)

∣∣∣2 ds+ ∫
BM

∣∣∣ψ̂(s)− ψ̃(s)
∣∣∣2 ds+ ∫

R2

∣∣∣ψ̃(s)IBM
(s)− ψ̃(s)

∣∣∣2 ds}
< C ′ε,

which completes the proof. □

Lemma 4.

Cov(Tp, Tq) → bg(2Ω1,pq +Πpq), p, q = 1, . . . , pdim.

Proof. First, ϕ̃p(s) in Tp defined in (12) may be replaced with

ϕ̃Mp (s) = ϕ̃p(s)IBM
(s), p = 1, . . . , pdim,

for a sufficiently large compact set BM = [−M1,M1] × [−M2,M2], since the vari-
ance of the difference between them may be made arbitrary small by following the
argument till (15) in Lemma 2. The covariance for the one replaced with ϕ̃Mp (s) is
evaluated as

m∑
a1,a2=1

m∑
b1,b2=1

|A|−1

∫
A

∫
A

∫
A

∫
A

τ−2
0 {cum(Xa1(u1), Xb1(v1), Xa2(u2), Xb2(v2))

+ γa1a2(u1 − u2)γb1b2(v1 − v2) + γa1b2(u1 − v2)γb1a2(v1 − u2)}

× ϕ̃Mp,b1a1
(u1 − v1)ϕ̃

M
q,b2a2

(u2 − v2)g(u1/A)g(v1/A)g(u2/A)g(v2/A)du1dv1du2dv2

+ o(1).

The first term is, by using the cumulant spectrum defined in (13), evaluated as∑
a1,a2

∑
b1,b2

∫
R2

∫
R2

∫
R2

fa1b1a2b2(ω1, ω2, ω3)|A|−1τ−2
0 P1P2dω1dω2dω3

for

P1 =

∫
A

∫
A

ϕ̃Mp,b1a1
(u1 − v1)e

iω′
1u1eiω

′
2v1g(u1/A)g(v1/A)du1dv1,

P2 =

∫
A

∫
A

ϕ̃Mq,b2a2
(u2 − v2)e

iω′
3u2e−i(ω1+ω2+ω3)

′v2g(u2/A)g(v2/A)du2dv2.
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By change of variables by u1 − v1 = l1, u2 − v2 = l2 and the compactness of the
supports of ϕ̃M , |A|−1P1P2 is evaluated as

ϕMp,b1a1
(ω1)ϕ

M
q,b2a2

(ω3)F (ω1 + ω2) + o(1),

where

F (ω) = |A|−1

∣∣∣∣∫
A

g2(u/A)eiω
′udu

∣∣∣∣2 ,
ϕMp (ω) = (2π)−2

∫
BM

ϕ̃Mp (s)eiω
′sds.

It follows by Lemma 1(c) in Matsuda and Yajima [18] that the first term converges
to

m∑
a1,a2=1

m∑
b1,b2=1

bg

∫
R2

∫
R2

fa1b1a2b2(ω1,−ω1, ω3)ϕ
M
p,b1a1

(ω1)ϕ
M
q,b2a2

(ω3)dω1dω3.

Replacing the cumulant spectrum with (13), we have the result arbitrary close to
bgΠpq by taking BM large. By the same argument, the second and third terms
converge to bgΩ1,pq, which completes the proof. □

Lemma 5. For r ≥ 3,

cum (Tp1 , . . . , Tpr ) = O
(
|A|−r/2+1

)
, p1, . . . , pr = 1, . . . , pdim.

Proof. First, ϕ̃p(s) in Tp defined in (12) may be replaced with

ϕ̃Mp (s) = ϕ̃p(s)IBM
(s), p = 1, . . . , pdim,

for a sufficiently large compact set BM = [−M1,M1] × [−M2,M2], since the vari-
ance of the difference between them may be made arbitrary small by following the
argument till (15) in Lemma 2.

The cumulant for the one replaced with ϕ̃Mp (s) is evaluated as

cum(Tp1 , . . . , Tpr ) =
m∑

a1,b1=1

· · ·
m∑

ar,br=1

|A|−r/2

×
∫
A

· · ·
∫
A

cum(Xa1
(u1)Xb1(v1), . . . , Xar

(ur)Xbr (vr))

×
r∏

j=1

ϕ̃Mpj ,bjaj
(uj − vj)g(uj/A)g(vj/A)dujdvj + o(1).

Let Yi = (Yi1, Yi2) be the two dimensional random vector defined by (Xai(ui), Xbi(vi))
for i = 1, . . . , r. The cumulant term in the equation is expressed by the formula in
Leonov and Shiryaev [17] as ∑

∪q
p=1Dp

q∏
p=1

cum(Y (Dp)),

where the summation is taken over all the indecomposable partition ∪q
p=1Dp of the

two way table of indices:
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(1, 1) (1, 2)
...

...
(r, 1) (r, 2)

.

Let us prove only for cum(Y11, Y12, . . . , Yr1, Yr2), the highest order term, since the
other cases are similarly evaluated. We express the highest cumulant term by the
2rth order cumulant spectrum as

cum(Xa1(u1), Xb1(v1), . . . , Xar (ur), Xbr (vr))

=

∫
R2

· · ·
∫
R2

fa1b1···arbr (ω1, . . . , ω2r−1)

r∏
j=1

eiω
′
j(uj−vr)

r−1∏
j=1

eiω
′
j(vj−vr)dω1 · · · dω2r−1,

where

fa1b1···arbr (ω1, . . . , ω2r−1) =
m∑

e1,...,e2r=1

κe1,...,e2r(17)

× G̃br,e2r (ω1 + . . .+ ω2r−1)

r∏
j=1

G̃aj ,e2j−1(ω2j−1)

r−1∏
j=1

G̃bj ,e2j (ω2j).

By replacing the highest cumulant term with the spectrum expression, the sum-
mand of the corresponding term is given by

|A|−r/2

∫
R2

· · ·
∫
R2

fa1b1···arbr (ω1, . . . , ω2r−1)dω1 · · ·ω2r−1

×
r−1∏
j=1

∫
A

∫
A

ϕ̃Mpj ,bjaj
(uj − vj)e

iω′
2j−1ujeiω

′
2jvjg(uj/A)g(vj/A)dujdvj∫

A

∫
A

ϕ̃Mpr,brar
(ur − vr)e

iω′
2r−1ure−i(ω1+···+ω2r−1)

′vrg(ur/A)g(vr/A)durdvr.

which is, by changes of variables by uj − vj = lj , j = 1, . . . , r and the compactness

of the supports of ϕ̃M , evaluated as

|A|−r/2

∫
R2

· · ·
∫
R2

fa1b1···arbr (ω1, . . . , ω2r−1)dω1 · · ·ω2r−1

× ϕMpr,brar
(ω2r−1)D(−ω1 − · · · − ω2r−2)

r−1∏
j=1

ϕMpj ,bjaj
(ω2j−1)D(ω2j−1 + ω2j) + o(1),

where

D(ω) =

∫
A

g2(u/A)eiω
′udu.



24 YASUMASA MATSUDA AND XIN YUAN

Again by change of variables of ω2j−1+ω2j = λj , j = 1, . . . , r− 1, and by replacing
the spectrum with (17), it is evaluated as

|A|−r/2
m∑

e1,...,e2r=1

κe1,...,e2r

∫
R2

· · ·
∫
R2

G̃br,e2r (λ1 + . . .+ λr−1 + ω2r−1)

×
r∏

j=1

G̃aj ,e2j−1(ω2j−1)
r−1∏
j=1

G̃bj ,e2j (λj − ω2j−1)dω1dλ1 · · · dω2r−3dλr−1dω2r−1

× ϕMpr,brar
(ω2r−1)D(−λ1 − · · · − λr−1)

r−1∏
j=1

ϕMpj ,bjaj
(ω2j−1)D(λj),

whose summand is bounded by

C|A|−r/2+1
r∏

j=1

∫
R2

G̃aj ,e2j−1(ω2j−1)dω2j−1

r−1∏
j=2

∫
R2

G̃bj ,e2j (λj − ω2j−1)D(λj)dλj

× |A|−1

∫
R2

G̃br,e2r (λ1 + . . .+ λr−1 + ω2r−1)G̃b1,e2(λ1 − ω1)D(λ1)D(−λ1 − · · · − λr−1)dλ1,

which we find to be O(|A|−r/2+1) by Lemma 2 in Matsuda and Yajima [18]. □
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