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Abstract

Skepticism toward traditional identifying assumptions based on exclusion restrictions has

led to a surge in the use of structural VAR models in which structural shocks are identified

by restricting the sign of the responses of selected macroeconomic aggregates to these shocks.

Researchers commonly report the vector of pointwise posterior medians of the impulse responses

as a measure of central tendency of the estimated response functions, along with pointwise 68

percent posterior error bands. It can be shown that this approach cannot be used to characterize

the central tendency of the structural impulse response functions. We propose an alternative

method of summarizing the evidence from sign-identified VAR models designed to enhance their

practical usefulness. Our objective is to characterize the most likely admissible model(s) within

the set of structural VAR models that satisfy the sign restrictions. We show how the set of

most likely structural response functions can be computed from the posterior mode of the joint

distribution of admissible models both in the fully identified and in the partially identified case,

and we propose a highest-posterior density credible set that characterizes the joint uncertainty

about this set. Our approach can also be used to resolve the long-standing problem of how

to conduct joint inference on sets of structural impulse response functions in exactly identified

VAR models. We illustrate the differences between our approach and the traditional approach
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for the analysis of the effects of monetary policy shocks and of the effects of oil demand and oil

supply shocks.
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1 Introduction

One of the most widely studied questions in empirical macroeconomics is to what extent an

unanticipated monetary tightening reduces real output. It is widely recognized that answering

this question requires the estimation of structural models in which cause and effect are clearly

differentiated. Much of the literature since the 1980s has relied on structural vector autoregres-

sive models in which exclusion restrictions on the instantaneous feedback from monetary policy

shocks to macroeconomic aggregates ensure the identification of the policy shock. Skepticism

toward these traditional identifying assumptions in recent years has made increasingly popular

an alternative class of structural VAR models in which policy shocks are identified by restricting

the sign of the responses of selected macroeconomic aggregates to policy shocks. For example,

Uhlig (2005) postulated that an unexpected monetary policy contraction is associated with an

increase in the federal funds rate, the absence of price increases and the absence of increases in

nonborrowed reserves for some time following the policy shock. This approach is considerably

more agnostic than traditional identification approaches in some dimensions, while more restric-

tive in others. Uhlig showed that sign-identified models may produce substantially different

results from conventional structural VAR models.

Although the original applications of this approach were to models of monetary policy, sign-

identified VAR models have become increasingly popular in other areas as well and are now part

of the mainstream of empirical macroeconomics. They have been used, for example, to study

fiscal shocks (e.g., Canova and Pappa 2007; Mountford and Uhlig 2009, Pappa 2009; Caldara

2011), technology shocks (e.g., Dedola and Neri 2007; Peersman and Straub 2009), and various

other shocks in open economies (e.g., Canova and De Nicolo 2002; Scholl and Uhlig 2008),

shocks in oil markets (e.g., Baumeister and Peersman 2012; Kilian and Murphy 2012a,b; Lippi

and Nobili 2012), and shocks in labor markets (e.g., Fujita 2011).

In all these applications, the cost of remaining agnostic about the structural model is that the

data are potentially consistent with a wide range of structural models that are all admissible in

that they satisfy the identifying restrictions. An unresolved question in the literature is how to

represent the results of such agnostic identification procedures when the set of admissible models

includes a range of models with conflicting interpretations. One early approach, exemplified by

Faust (1998), has been to focus on the model that is most favorable to the hypothesis of interest.

This allows us to establish the extent to which this hypothesis could potentially explain the data.

It may also help us to rule out a hypothesized explanation, if none of the admissible models

supports this hypothesis. Such cases are are rare, however. Typically, the set of admissible

structural models includes both models that are supportive with a given hypothesis and models

that are at odds with that hypothesis. In the latter case, Faust’s approach is not informative

about whether any one of the admissible structural models is a more likely explanation of the
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data than some other model.

The standard approach of dealing with this problem has been to report the vector of pointwise

posterior medians of the impulse responses as a measure of the central tendency of the impulse

response functions, along with pointwise 68% posterior error bands. This approach suffers from

two distinct shortcomings. The first shortcoming is that the vector of pointwise posterior median

responses will have no structural economic interpretation unless the pointwise posterior medians

of all impulse response coefficients in the VAR system correspond to the same structural model,

which is highly unlikely a priori (see, e.g., Fry and Pagan 2011). In other words, in practice,

none of the models in the set of admissible structural models constructed by the researcher will

exhibit the impulse response dynamics embodied in the median response function obtained by

connecting the dots between the pointwise posterior medians. The second shortcoming is that

median response functions are not a valid measure of the central tendency of the admissible set of

impulse response functions. It is well known that the median of a vector variable is not the vector

of the medians, rendering the vector of pointwise medians inappropriate as a statistical measure

of the central tendency of the impulse response functions (e.g., Chauduri 1996; Koltchinskii 1997;

Liu, Parelius and Singh 1999). This means that even if there were an admissible structural model

with the same impulse response function as the median response function, there would be no

compelling reason to focus on this model in interpreting the evidence.1

Similar problems arise in the construction of pointwise impulse response error bands in

sign-identified models based on the quantiles of the marginal posterior distributions of the

impulse responses. Moreover, these error bands do not take account of the dependence of

the impulse response estimates across horizons and across response functions and hence may

overstate or understate the true uncertainty about the dynamics of the system. The latter

problem is well known, but there are no alternative methods in the literature that address these

limitations, leaving researchers with little choice, but to rely on potentially misleading measures

of uncertainty.

In this paper, we propose a new method of summarizing the evidence from sign-identified

VAR models that addresses these shortcomings and is designed to enhance the practical useful-

ness of sign-identified models. Our objective is to identify the most likely admissible model(s)

within the set of structural VAR models that satisfy the sign restrictions. A structural VAR

model is defined by the set of structural impulse responses associated with a given set of reduced-

form VAR parameters and a given structural impact multiplier matrix. There is a one-to-one

1This second point is also relevant for a recent proposal by Fry and Pagan (2011) designed to overcome the lack of

structural interpretation of median response functions. Their idea is to search for the admissible structural model with

impulse response functions closest to the median response functions. This proposal deals with the first shortcoming

highlighted above, but not with the second. Because the median vector is not a well defined statistical measure of

central tendency, there is no compelling reason to focus on a structural model with response functions close to the

vector of medians.

2



mapping from the joint posterior density of these model parameters to the joint posterior density

of the corresponding set of structural impulse responses (up to a horizon that depends on the

autoregressive lag order), allowing us to derive the latter density analytically by the change-of-

variable method. This enables us to assign a posterior density value to each structural model.

The most likely or modal model by construction is the admissible model that maximizes the

joint posterior density of the admissible structural VAR models. A 100(1− )% highest poste-

rior density credible set of admissible models may be formed by ranking the admissible models

based on the value of this joint density.

In practice, we proceed in two steps. Under the conventional assumption of a diffuse

Gaussian-inverse Wishart prior, we begin by generating repeated draws from the joint pos-

terior distribution of the reduced-form VAR parameters and of the rotation matrices used in

constructing the structural impact multiplier matrix. For each candidate structural VAR model,

we first compute the posterior density value associated with that model; we then evaluate the

set of implied structural impulse response functions. We discard the structural models that are

inadmissible in that their responses do not satisfy the identifying sign restrictions. We then

rank the remaining structural models by the value of their posterior density, making it straight-

forward to determine the most likely admissible model and to characterize its impulse response

dynamics. The set of structural impulse response functions associated with the modal admis-

sible model by construction will be economically interpretable and statistically well defined,

addressing the two main critiques of traditional median response functions.

This baseline procedure is designed for fully identified structural VAR models. Many struc-

tural VAR models, however, are only partially identified in that only a subset of the structural

shocks are identified. Such models are sometimes also referred to as semi-structural VAR mod-

els. For example, in the model of Uhlig (2005) only the responses to monetary policy shocks

are identified. In this case, responses to unidentified shocks become irrelevant in constructing

the modal model. Instead the mode and credible set must be based on the marginal posterior

density of the subset of impulse response functions of interest. We propose a modification of

our baseline procedure that accomplishes this task. Marginalizing the joint density requires

Monte Carlo integration, which renders this procedure computationally more challenging than

the baseline procedure for fully identified models.

Although our approach was designed to aid in the interpretation of impulse response dy-

namics in sign-identified models, essentially the same approach can also be used to resolve the

long-standing problem of how to conduct joint inference on sets of structural impulse response

functions in exactly identified models. It is well known that the pointwise error bands commonly

attached to the structural impulse response functions in exactly identified VAR models fail to

convey the true uncertainty surrounding these impulse response functions. This problem has
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been long recognized, but few practical alternatives have been proposed in the literature and

none of these alternative methods are applicable to sign-identified models.2 Our final contribu-

tion is to show how a simplified version of our proposed procedure may be used to construct

credible sets for the structural impulse response functions for exactly identified structural VAR

models, providing a convenient alternative to traditional pointwise error bands that is easy to

implement. As in the earlier analysis, our approach can accommodate both fully identified and

partially identified models.

Table 1 summarizes the four distinct types of structural VAR models considered in this

paper. The remainder of the paper is organized as follows. In section 2, we describe the

proposed procedure and its implementation in more detail. Although Uhlig’s model focuses on

identifying only the monetary policy shock, many related studies have used sign restrictions

to identify simultaneously a variety of macroeconomic shocks (e.g., Canova and Paustian 2011;

Gambetti, Pappa and Canova 2008). Our analysis allows for that situation. Our analysis also

allows for refinements of the sign restriction approach in the form of additional bounds on

elasticities, for example, or of bounds on cross-correlations (e.g., Canova and De Nicolo 2002;

Kilian and Murphy 2012a). These modifications do not affect the substance of our method and

can be easily incorporated.

In section 3, we illustrate the limitations of traditional median response functions. The

feasibility and usefulness of our alternative approach is demonstrated in section 4. In section 4.1,

we consider fully identified structural VAR models subject to sign restrictions on the impulse

responses. We focus on the example of a model of the global market for crude oil in the

tradition of Baumeister and Peersman (2012) and Kilian and Murphy (2012a). We show that

the modal model generates economically plausible responses. The 68 percent joint credible sets

tend to be wider than conventional 68 percent pointwise impulse response error bands, but

many responses are fairly precisely estimated nevertheless with credible sets that exclude the

zero line at some or all horizons. We demonstrate that the responses in the modal model can

be substantially different from conventional median response functions. The bias in the median

response functions can be upward or downward. In many cases, the responses of the modal

model are outside of the conventional 68 percent pointwise posterior error bands.

In section 4.2, we consider a partially identified structural VAR model subject to sign restric-

tions, building on the analysis of U.S. monetary policy in Uhlig (2005). We explore in particular

the question of what the effect is of an unanticipated monetary policy tightening on real U.S.

output. We show that the method of summarizing the evidence matters. For example, Uhlig

reported a peak median output response of 0.15 for this model. For the same data, we obtain a

2Sims and Zha (1999), for example, caution against connecting the dots representing pointwise error bands and

discuss possible alternative strategies for exactly identified models. Related work based on joint asymptotic approx-

imations for exactly identified models includes Lütkepohl (1990) and Jorda (2009).
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peak response of almost 0.5 based on the modal model. Moreover, that modal model estimate

is near the upper end of the credible set and outside the conventional pointwise posterior error

band.

Both the median estimate and the response estimate based on the modal model are counter-

intuitive in that a monetary tightening would be expected to cause a decline in real output over

time rather than an increase. This outcome reflects the fact that the identifying assumptions

are not overly informative. Even in Uhlig’s original analysis, there was substantial pointwise

probability mass on both negative and positive responses of real output. Our 68 percent credible

set further widens the set of probable responses. The explicit reason that Uhlig (2005) did not

impose further restrictions is that he wished to be as agnostic as possible about the response

of real output. This approach is valid only to the extent that we view models in which real

output increases in response to a monetary tightening as economically plausible a priori (see

Kilian and Murphy 2012a). Many economists would disagree with this view at least for inter-

mediate horizons. Hence, we also considered an alternative model that imposes an additional

sign restriction on the response of real GDP after 6 months (and only at that horizon). This

identifying assumption leaves the short-run as well as the longer-run response of real output

unrestricted, preserving the spirit of Uhlig’s original exercise.

The resulting modal model produces substantially different and more economically plausi-

ble results, including a cumulative drop in real GDP of -0.3 percentage points in the second

quarter. The response estimate for the modal model is at the lower end of the credible set and

again outside the conventional pointwise posterior error band. It also is substantially different

from the response estimate obtained from the traditional Cholesky decomposition. Even in

this alternative model, however, the 68 percent credible set includes many positive real output

responses, suggesting that the data are not very informative about the response of real output.

We conclude that there remains substantial uncertainty about the effects of monetary policy

shocks on real output, whereas there is strong evidence of the effects of oil demand shocks on

the real price of oil in the earlier example.

In section 5, we show that our approach of constructing joint credible sets for the structural

impulse response functions can also be adapted to exactly identified structural VAR models,

providing a convenient alternative to traditional pointwise error bands that is easy to implement.

For standard semi-structural monetary policy VAR models of the type considered by Uhlig

(2005) as a benchmark, we show that properly accounting for the joint uncertainty about all

impulse responses renders the impulse response estimates less informative than conventional

pointwise error bands suggest. For example, evidence of the price puzzle vanishes. On the other

hand, several of the response functions including that of real GDP remain precisely enough

estimated for the VAR model to be economically informative. In addition, we illustrate that,
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for the reasons already discussed, commonly used posterior median response functions may differ

from the response functions in the modal posterior model. The concluding remarks are in section

6. Some technical details of the proposed procedure can be found in the technical appendix.

2 Evaluating the Posterior of Sign-Identified VARModels

2.1 Preliminaries

Consider the -variate reduced-form VAR(p) model:

 = +1−1 +2−2 + · · ·+− +  (1)

for  = 1   where 
∼ (0×1Σ) and Σ is positive definite. Write (1) as

 =  +  (2)

where  = [1 2 · · ·  ]0,  = [1 2 · · ·  ]
0,  = [1 

0
−1 · · · 0−]0,  = [ 1 · · · ]

0,

and  = [1 2 · · ·  ]0.
Throughout this paper, we follow the conventional approach of specifying a normal-inverse

Wishart prior distribution for the reduced-form VAR parameters:

vec()|Σ ∼ (vec(̄0)Σ⊗−10 )

Σ ∼ (00 0)

where 0 is an ×  positive definite matrix, 0 is an ×  covariance matrix, and 0  0.

Then the posterior is given by

vec()|Σ ∼ (vec(̄ )Σ⊗−1 ) (3)

Σ ∼ (   ) (4)

where  =  + ,  = 0 + 0, ̄ = −1 (0̄0 + 0̂),

 =
0


0 +




Σ̂+

1


(̂ − ̄0)

00
−1
  0(̂ − ̄0)

̂ = ( 0)−1 0 and Σ̂ = ( −̂)0( −̂) .

Define  =  where  is the lower triangular Cholesky decomposition of Σ, such that

0 = Σ and  is an orthonormal matrix.  is a potential solution for the unknown structural
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impact multiplier matrix. Note that 
0
=  00 = 0 = Σ.  is obtained by drawing

from a prior distribution that is independent of the distribution of the reduced-form parameters.

Following Uhlig (2005), the prior distribution for  is a uniform distribution defined on the space

of orthonormal matrices  . Consider a set of ×  matrices consisting of orthonormal column

vectors:

U =
©
 = [1 2 · · · ]0 :  ∈ <×1     = 1( = ) ∀   = 1 2  ª 

where  · ·  denotes the inner product and 1(·) is the indicator function. Let  denote a draw
from the uniform distribution over U . By construction,  0 = .

When all structural shocks in the model are identified, we say that the model is fully identi-

fied; when only a subset of the structural shocks is identified, we say that the model is partially

identified. For further discussion see, e.g., Rubio-Ramirez, Waggoner and Zha (2010) and Fry

and Pagan (2011). The discussion in section 2.2 focuses on sign-identified models in which all

structural shocks are jointly identified (corresponding to case 1 in Table 1). Partially identi-

fied structural VAR models based on sign restrictions (corresponding to case 2 in Table 1) are

discussed in section 2.3.

2.2 Fully Identified Models

2.2.1 The Posterior Mode of Sign-Identified Structural Impulse Responses

Let () denote the ( + 1)2 × 1 vector that consists of the on-diagonal elements and
the below-diagonal elements of  and let () denote the ( − 1)2 × 1 vector that con-
sists of above-diagonal elements of  . Ignoring the intercept for notational convenience, let

 = [1 · · · ]
0. As shown in the appendix, because there is a one-to-one mapping between

 and the reduced-form vector moving average coefficient matrices Φ,  = 1 2   (see equa-

tion 10.1.19 of Hamilton, 1994, p. 260, for example) and because Σ is nonsingular and  is

orthonormal, there is a one-to-one mapping between the first +1 structural impulse responses

Θ̃ = [ Φ1 Φ2 · · ·  Φ]0 on the one hand and the tuple formed by the reduced-form VAR
parameters and the rotation matrix, ( vech() veck()), on the other. The nonlinear func-

tion eΘ = ( vech() veck()) is known. Using the change-of-variables method, the posterior
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density of eΘ can be written as
(Θ̃) =

¯̄̄̄
[vec()0 vech()0 veck()0]

vec(Θ̃)

¯̄̄̄
( vech() veck())

=

Ã¯̄̄̄
¯ vec(Θ̃)

[vec()0 vech()0 veck()0]

¯̄̄̄
¯
!−1 ¯̄̄̄

Σ



¯̄̄̄
(Σ veck())

∝
Ã¯̄̄̄
¯ vec(Θ̃)

[vec()0 vech()0 veck()0]

¯̄̄̄
¯
!−1 ¯̄̄̄

Σ



¯̄̄̄
(|Σ)(Σ) (5)

where , Σ = 0 and  are the unique values that satisfy the nonlinear function eΘ =

( vech() veck()). Here  ’s denote posterior densities whose conditioning on the data is

omitted for notational simplicity. Because  is uniformly distributed on U the following result
holds:

Proposition 1. The posterior density of Θ̃ is

(Θ̃) ∝
Ã¯̄̄̄
¯ vec(Θ̃)

[vec()0 vech()0 veck()0]

¯̄̄̄
¯
!−1 ¯̄̄̄

Σ



¯̄̄̄
(|Σ)(Σ) (6)

The Jacobian matrix and its construction are discussed in the technical appendix.

Let Θ denote the set of structural impulse responses Θ̃ that satisfy the sign restrictions.

The modal model by construction is the admissible model that maximizes the posterior density

of the sign-identified structural impulse responses. Because the impulse responses that do not

satisfy the sign restrictions are discarded, the posterior density of the sign-identified impulse

responses can be written as

(Θ̃) =

⎧⎨⎩
(Θ̃)

 (Θ̃∈Θ) if Θ̃ ∈ Θ
0 if Θ̃ ∈ Θ

(7)

where  (Θ̃ ∈ Θ) is the posterior probability that Θ̃ ∈Θ. Because  (Θ̃ ∈ Θ) does not depend on
Θ, finding the mode of the posterior of the sign-identified structural impulse responses reduces to

finding the maximum of the right hand side of (6) subject to the sign restrictions. In particular,

it is not necessary to reweight  (Θ̃ ∈ Θ) to account for draws from the posterior that have

been rejected.

It may seem surprising that one can use information about the reduced-form parameters to

aid in the identification of the most likely model, defined in the space of admissible structural

models. The key point is that we are interested in determining the most likely structural

model, not the most likely value of  . It is useful, for expository purposes to simplify matters

by focusing on the (unrealistic) limiting case of a maximum horizon of zero, in which case
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eΘ = (vech() veck()). The impact responses can be written as a linear combination of

vech() and veck(). Even if the distribution of veck() is uniform, this linear combination

will not be uniformly distributed by construction. Hence, the mode of the distribution of eΘ will
be unique, even when the mode over the marginal posterior of  is not. The same point holds

more generally for ( vech() veck()).

In practice we proceed as follows:

Step 1. Take a random draw, (Σ), from the posterior of the reduced-form VAR parameters.

Step 2. For each (Σ), consider  random draws of the rotation  , and for each combination

(Σ ) compute the set of implied structural impulse responses Θ̃.

Step 3. If Θ̃ satisfies the sign restrictions, store the value of Θ̃ and the value of (Θ̃). Otherwise

discard Θ̃.

Step 4. Repeat steps 2 and 3  times and find the element of Θ that maximizes (6).

2.2.2 Credible Sets for Structural Impulse Response Functions

Define the 100(1− )% highest posterior density (HPD) credible set by

 = {Θ̃ ∈ Θ : (Θ̃) ≥ } (8)

where (Θ̃) is the posterior density of Θ̃ and  is the largest constant such that

 () ≥ 1− 

(see Definition 5 of Berger, 1985, p. 140).

In practice, we compute the 100(1− )% HPD credible set as follows:

Step 1. Take a random draw, (Σ), from the posterior distribution of the reduced-form VAR

parameters.

Step 2. For each (Σ), consider  random draws of the rotation  , and for each combination

(Σ ) compute the set of implied structural impulse responses Θ̃.

Step 3. If Θ̃ satisfies the sign restrictions, store the value of Θ̃ and the value of (Θ̃). Otherwise

discard Θ̃.

Step 4. Repeat Steps 2 and 3  times and sort the pairs {(Θ̃ (Θ̃))} in descending order by the
value of (Θ̃). The 100(1 − )% HPD credible set consists of the set of Θ̃’s contained in

the first (1− ) sorted pairs, where  refers to the number of models among the  ·
draws that satisfy the sign restrictions.
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Credible sets differ from conventional error bands for impulse responses in that the elements

of the credible set are vectors representing the impulse response functions up to some prespecified

horizon. There is no reason for credible sets to be dense necessarily. Rather a plot of the credible

set will typically exhibit a shot-gun pattern.

2.3 Partially Identified Models

A common situation in VAR models of monetary policy is that the structural model is only

partially identified in that we are concerned with identifying the policy shock, but no other

structural shocks. If we are concerned with a subset of impulse response functions only, what

matters for constructing the posterior mode is not the joint impulse response distribution, but

the marginalized distribution obtained by integrating out responses to shocks that are not

identified. To simplify the exposition we will focus on the case in which only impulse responses

to one structural shock are identified. The method proposed below can be modified to allow for

impulse responses to more than one shocks.

The sign-identified structural impulse responses, 1 = Φ1, ...,  = Φ, where  = , do

not single out a unique value of Φ1 Φ. That is because any Φ that satisfies

Φ =   = 1   (9)

is consistent with  and there are infinitely many of such Φ. Given  restrictions of the form

(9), one therefore needs to integrate out the joint posterior distribution of  with respect to

(− 1) of the parameters in . Our approach exploits the following proposition.

Proposition 2:

(0 1  ) ∝
Z

(0 1  |̃Φ(2) Σ̃)(Φ(2) Σ̃)(̃Φ(2) Σ̃)

=

Z
|1||̃| (Φ(1)|(2) eΣ)((2) Σ̃)(̃ (2) Σ̃)

=

Z
|1||̃| ((1)|(2) Σ̃)((2)|Σ̃)(eΣ)(̃ (2) Σ̃) (10)

A heuristic proof of Proposition 2 may be constructed as follows. Consider a random draw of Σ̃

from the posterior distribution of Σ and condition on its Cholesky decomposition, say ̃. Given

̃, the sign-identified impulse responses in the impact period, 0, uniquely pin down the value

of ̃.3 Conditional on Σ̃, we draw the second through last columns of ,  = 1  , from the

3Because ̃ is nonsingular, ̃ = ̃−10 is uniquely defined and satisfies ̃0̃ = 00̃−10̃−1 = 00−1 =
0 = 1 where  is the original Cholesky decomposition of Σ from which  is obtained.
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unconstrained posterior distribution. Postmultiplying

Φ1 = 1 (11)

by  yields

1 = 1 (12)

Because  has a continuous distribution under our assumptions, 1 6= 0 with probability one.

Thus it follows from (12) that the first column of 1 is obtained from

11 =
1 −

P
=2 1

1
for  = 1   (13)

with probability one, where  and  denote the ( )th element of  and the th element

of , respectively. We now have a value of 1 that is consistent with (9).

Next, we postmultiply

Φ2 = 1Φ1 +2 (14)

by  to obtain

2 = 11 +2 (15)

from which we obtain

21 =
2 −

P
=2 2

1
for  = 1   (16)

where

2 = 2 −11

This provides a value of the first column of 2 that is consistent with (9). This process may be

repeated recursively until we reach . In the last step, we postmultiply

Φ = 1Φ−1 +2Φ−2 + · · ·+ (17)

by  to obtain

 = 1−1 +2−2 + · · ·+ (18)

from which we obtain the first column of  as:

1 =
 −

P
=2 

1
for  = 1   (19)

where

 =  −1−1 − · · ·−−11

11



Therefore, given Σ̃ and the second through last columns of  for  = 1 2  , the value of

1,...,  implies a unique value of ̃ and of the first columns of each  (and vice versa).

Let (1) denote the ( − 1) column vector obtained by stacking the first columns of the
’s,  = 1   and let 

(2) denote the corresponding second through last columns. Then the

marginal posterior density of the subset of structural impulse responses of interest is

(0 1  ) ∝
Z

(0 1  |Φ(2) Σ̃)(Φ(2) Σ̃)(Φ(2) Σ̃)

=

Z
|1||̃| (Φ(1)|(2) Σ̃)((2) Σ̃)((2) Σ̃)

=

Z
|1||̃| ((1)|(2) Σ̃)((2)|Σ̃)(Σ̃)((2) Σ̃) (20)

where the first equality follows because the distribution of  is uniform, the second equality

follows from applying the change-of-variables method to (13), (16),...,(19), |̃| follows from
0 = ̃̃, (16),...,(19), and the last equality follows from using the block diagonality of the

Jacobian matrix and applying the change-of-variables method to (11), (14),...,(17).4Q.E.D.

Proposition 2 allows us to estimate the posterior density of 0 1   (up to scale) by Monte

Carlo integration (see, e.g., Robert and Casella 2004). To summarize:

Step 1. Generate  draws of (Σ), from the posterior distribution of the reduced-form VAR

parameters with  independent draws each of the rotations  .

Step 2. For each of the · draws compute the set of sign-identified structural impulse responses

of interest, 0 1  

Step 2a For each of these sets of structural impulse response functions use (13),(16),...,(19) to

construct  draws of (2) and Σ, from which  draws of (1) are constructed. Evaluate

the value of

|1||̃| ((1)|(2) Σ̃) (21)

Step 2b Compute the average of (21) across the  draws considered in step 2a. This Monte Carlo

integration yields (up to scale) an estimate of the density (0 1  ).

Given the marginal posterior density of the structural response functions of interest, we may

then compute the mode and credible sets as outlined earlier.

4 In the fully identified case, the interpretation of the density (Θ0 Θ) as a posterior density is immediate

given that there is a one-to-one mapping from (()0 ()0 ()0) to (Θ0 Θ). In the partially identified

case, the argument that (0 1  ) is a posterior density is more involved. Note that marginalizing the joint

posterior of the reduced-form parameters with respect to (2) and the Σ that satisfies the identifying restrictions

yields the marginal posterior of (1) conditional on the identifying restrictions being satisfied. Because the mapping

between this (1) and the impulse responses characterized in equation (20) is one-to-one conditional on (2) and Σ,
it follows that equation (20) is the posterior distribution of 0 1  .
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2.4 Implementation

In practice, we specify a zero mean diffuse Gaussian prior for the VAR slope parameters such that

the posterior mean of the slope parameters equals the least-squares estimator (see Lütkepohl

2005). For expository purposes, we follow the literature in setting  = 032. The mode and the

credible set, of course, may be computed from the same loop. The procedures were implemented

in MATLAB or FORTRAN, depending on the computational requirements.

3 Posterior Modes versus Posterior Medians

Before discussing the extent to which median response functions differ from response functions

of the modal model in practice, it is useful to develop some intuition about the limitations of

median response functions. Let Θ denote the response of variable  to structural shock  at

horizon . One situation in which the vector of pointwise posterior medians is misleading as

a measure of the central tendency of a structural impulse response function is when posterior

draws of Θ   = 1  for given  and  cross one another. This situation is illustrated in

Figure 1. The figure focuses on the response of real GDP to an unanticipated monetary policy

shock for a horizon of up to 36 months. This example was constructed by plotting a randomly

chosen subset of nine admissible response functions for the Uhlig (2005) model discussed in

section 4.2. It is evident that, for different horizons, the pointwise posterior median responses

coincide with responses of different admissible models. Specifically, the median response function

coincides with the response function of model 1 at horizons 4, 12-13, and 17-25; with the response

function of model 2 at horizon 9 and 15-16; with that of model 3 at horizon 16; with that of

model 5 at horizons 5-8, 10 and 27; with that of model 6 at horizons 0-3, 11 and 15, and with

that of model 9 at horizons 28-36. There is, in fact, no structural model in the admissible set

that could replicate the response pattern implied by the posterior median response function,

rendering this statistic economically meaningless. Note that it is not sufficient to show that

there are no cross-overs between impulse response functions. Similar problems may arise even

in the absence of cross-overs when the order of the models differs for two response functions

at some horizon . Verifying the absence of these problems is not practically feasible, given

the thousands of admissible models implied by typical sign-identified VAR models. A key

advantage of the approach discussed in section 2 is that it avoids both of these problems by

construction. Moreover, as discussed in the introduction, median response functions are not

appropriate measures of the central tendency of the vector of impulse responses, making them

difficult to intepret not only from an economic, but even from a purely statistical point of view.

Focusing instead on the impulse response functions of the most likely structural model therefore
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seems natural in our context.5

4 Sign-Identified Models

4.1 Fully Identified Case: Oil Demand and Supply Shocks

There is a growing literature of models of the global market for crude oil based on fully identified

structural VAR models. Here we follow Kilian and Murphy (2012a) in specifying a monthly

VAR(24) model with intercept for 1973.2-2008.9. The set of variables consists of monthly data

for the percent change in global oil production, a business cycle index of global real activity, and

the real price of crude oil. The variables are defined and discussed in detail in Kilian (2009).

We combine some of the key identifying assumptions from the existing literature. We first

impose sign restrictions on the impact responses of each variable to each structural shock. An

unanticipated oil supply disruption causes oil production to fall, the real price of oil to increase,

and global real activity to fall on impact. An unanticipated increase in the flow demand for oil

associated with the global business cycle causes global oil production, global real activity and

the real price of oil to increase on impact. Other positive demand shocks (such as shocks to oil

inventory demand driven by forward looking behavior) cause oil production and the real price

of oil to increase on impact and global real activity to fall. Second, we bound the impact price

elasticity of oil supply by 0.025, as suggested by Kilian and Murphy (2012a). This elasticity can

be expressed as the ratio of two impact responses. This identifying restriction is consistent with

widely held views among oil economists that the short-run price elasticity of oil supply is close

to zero. Very similar results would be obtained if we doubled that bound. Finally, we follow

Baumeister and Peersman (2012) in restricting the real price of oil to be positive for the first

year in response to unanticipated oil supply disruptions and in response to positive oil demand

shocks. We construct the posterior distribution of the impulse responses estimates based on

 = 5000 draws from the reduced-form posterior distribution with  = 20 000 rotations each.

Figure 2 displays the responses of each variable to each shock in the modal model along

with the corresponding 68% credible sets. The responses have been normalized such that each

structural shock implies an increase in the real price of oil. All structural response function

estimates are consistent with standard economic intuition. For example, a negative flow supply

shock is associated with a persistent decline in oil production, a modest increase in the real price

5Our emphasis on the mode of the joint distribution of models is not without precedence. The same approach

is used in classical maximum likelihood estimation, for example. Likewise, there is precedence for focusing on the

peak of the posterior in Bayesian analysis (see, e.g., Rubio-Ramirez, Waggoner and Zha 2009). There clearly are

situations in which the use of the mode may be problematic (such as for bimodal distributions with equally high

peaks in both tails and little probability mass in the center), but in that case the median or the mean would not be

adequate summary statistics either. In any case, our empirical analysis below suggests that such extreme examples

are not practically relevant.
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of oil, and a gradual modest decline in global real economic activity. A positive flow demand

shock is associated with a persistent and hump-shaped response in both global real activity and

the real price of oil and with little response in global crude oil production. Other demand shocks

(such as shocks to oil inventory demand) cause a temporary increase in the real price of oil, a

temporary decline in global real activity for about 20 months and little response in global crude

oil production. The corresponding credible sets indicate considerable uncertainty about the price

responses and to a lesser extent for the responses in real activity, whereas the credible sets for

oil production responses are quite narrow. Nevertheless, several response functions are precisely

enough estimated to conclude that the response differs from zero. Figure 2 also illustrates that

the responses of the most likely model need not be near the center of the credible set.

There also are important differences between the most likely estimates provided by the modal

model and the conventional median response functions. Median response function may be closer

to zero or further away from zero than the responses of the modal model. For example, median

response functions can be shown to overestimate the magnitude of the price response to other

demand shocks, as shown in the left panel of Figure 3, but at the same time underestimate

the response of global real activity to the same shock (not shown). Moreover, pointwise 68%

posterior error bands provide little protection against mis-characterizing the impulse response

dynamics, as shown in the right panel of Figure 3. At many horizons, the response functions

of the modal model are outside the pointwise error bands. The right panel of Figure 3 also

illustrates that pointwise intervals tend to understate the estimation uncertainty compared with

the credible set shown in Figure 2 that captures the joint uncertainty over all impulse responses.

This example illustrates that the way estimates of sign-identified VAR models are represented

matters for the interpretation of the data.

4.2 Partially Identified Case: Monetary Policy Shocks

Whereas the preceding example dealt with a fully identified model, this section considers an

example of a partially identified model. We focus on the model of U.S. monetary policy proposed

by Uhlig (2005). Our focus in this section is not so much on whether this specific model is an

appropriate model of U.S. monetary policy, but whether the method of statistical evaluation

makes a difference for the economic interpretation of the results. The central question in Uhlig

(2005) is what the effects of an unanticipated monetary contraction are on real output. We

follow Uhlig in constructing a VAR(12) model without intercept. The set of variables consists of

monthly U.S. data for the log of interpolated real GDP of the US, the log of the interpolated GDP

deflator, the log of a commodity price index, total reserves, non-borrowed reserves and the federal

funds rate. The sample period is 1965.1-2003.12 to ensure compatibility with Uhlig’s original
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analysis.6 The numerical stability of the results requires a fairly large number of draws, especially

for  and . We construct the posterior distribution of the impulse responses estimates based

on = 5 000 draws from the reduced-form posterior distribution with  = 500 rotations each.

We set  = 20 000.

Figure 4 demonstrates that there are important differences between the median estimates

of the response of real output and the response in the modal model. Whereas Uhlig reported

a peak median output response of 0.15 percentage points, for the same data, we obtain a peak

response of almost 0.5 percentage points based on the modal model. Moreover, that peak value

is near the upper end of the credible set and outside the conventional pointwise posterior error

band. It should be noted that both the median estimate and the response estimate based on the

modal model are counterintuitive in that a monetary tightening would be expected to cause a

decline in real output over time rather than an increase. This outcome reflects the fact that the

identifying assumptions are not overly informative. Even in Uhlig’s original analysis, there was

substantial pointwise probability mass on both negative and positive responses of real output.

Our 68% credible set further widens the set of probable response functions.

The explicit reason why Uhlig (2005) did not impose further restrictions is that he wished

to be as agnostic as possible about the response of real output. This approach is appropriate

only to the extent that we view models in which real output increases in response to a monetary

tightening as economically plausible a priori (see Kilian and Murphy 2012a). Many economists

would disagree with this view at least for intermediate horizons. Hence, in Figure 5 we consider

an alternative set of results for a model that imposes an additional sign restriction on the

response of real GDP after 6 months (and only at that horizon). This identifying assumption

leaves the short-run as well as the longer-run response of real output unrestricted, preserving the

spirit of Uhlig’s original exercise. The resulting modal model produces substantially different and

more economically plausible results, including a cumulative drop in real GDP of -0.3 percentage

points in the second quarter. The response estimate for the modal model is at the lower end

of the credible set and again outside the conventional pointwise posterior error band. It also

is substantially different from the response estimate obtained from the traditional Cholesky

decomposition. One difference is that the reduction in real GDP in Figure 5 is temporary,

whereas traditional Cholesky models imply a much more persistent decline in real GDP. Even

in this alternative model, however, the 68% credible set includes many positive real output

responses, suggesting that the data are not informative about the response of real output.

Likewise the other response functions are estimated only very imprecisely. We conclude that

there remains substantial uncertainty about the effects of monetary policy shocks on real output,

whereas there is strong evidence of the effects of oil demand shocks on the real price of oil in

6For a more detailed description of the data the reader is referred to Uhlig (2005). The data set was provided by

Harald Uhlig.
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the earlier example.

Figure 6 elaborate further on the results in Figure 5. The left panel illustrates that there

can be substantial differences between the median response function estimates and the response

function estimates based on the modal model. For example, the decline in real GDP caused

by an unanticipated monetary contraction is much larger in the modal model, at least in the

short run. In some cases, the median and the modal response of real GDP differs not only in

magnitude, but in sign. The right panel demonstrates that the modal model responses may be

outside the conventional pointwise 68% error bands. This is true in particular for the response

of real GDP and to a lesser extent for the response of commodity prices and the own-response

of the federal funds rate.

5 Exactly Identified Models

Our approach is not limited to sign-identified models. It can also be applied to exactly identified

models. A case in point is a recursively identified model, in which the policy reaction function is

ordered last in the system of equations. This type of model is commonly used in the monetary

policy literature and indeed is the point of departure for the analysis in Uhlig (2005). The only

difference to the earlier model is that the order of the variables matters. We follow Uhlig in

ordering the variables of the VAR(12) model as real GDP, GDP deflator, commodity prices,

federal funds rate, nonborrowed reserves and total reserves. The model in question is only

partially identified. The object of interest are the responses to an orthogonalized federal funds

rate shock.

Uhlig (2005) reports the posterior median impulse response functions. As in the sign-

identified model, this measure of the central tendency of the structural impulse responses is

valid only pointwise and need not correspond to the impulse response functions implied by the

most likely structural model. Uhlig also reports pointwise 68% posterior error bands for this

model. It is well known that these pointwise error bands fail to convey the true uncertainty

surrounding these impulse response functions. This problem has been long recognized, but few

practical alternatives have been proposed in the literature, which explains why these methods

have remained the standard in the structural VAR literature (see, e.g., Lütkepohl 1990, Sims

and Zha 1999, Jorda 2009).

A solution to this problem is provided by a simplified version of our baseline procedure for

sign-identified models. In the fully identified case, corresponding to case 3 in Table 1, it suffices

to replace the rotation matrices in the procedure outlined in section 2.2 by the identity matrix

and to modify the Jacobian of the transformation accordingly. We obtain
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(Θ̃) ∝
⎛⎝¯̄̄̄¯̄[vech(Θ̃0)0 vec(

h
Θ̃1 Θ̃2  Θ̃

i
)0]

[vec()0 vech()0]

¯̄̄̄
¯̄
⎞⎠−1 ¯̄̄̄Σ



¯̄̄̄
(|Σ)(Σ)

where Θ̃0 is the impulse response matrix in the impact period and Θ̃1, Θ̃2,...,Θ̃ are the impulse

response matrices at higher horizons. It follows from Θ̃ = Θ for  = 1   and equation (29)

in the appendix that the determinant of the Jacobian reduces to || |0[(⊗ ) + ( ⊗)2 ]|,
where  is defined in the appendix. On the basis of this result, we can evaluate the posterior as

discussed earlier. This simplified procedure could be applied, for example, to the fully structural

oil market VAR model in Kilian (2009).

The partially point-identified case considered by Uhlig (2005) corresponding to case 4 in

Table 1 is more involved. Suppose that only impulse responses to the th shock are considered

(e.g., monetary policy shocks). Because the impulse responses in the impact period correspond

to the th column of the Cholesky decomposition, we need to draw Σ conditional on the th

column of its Cholesky decomposition when marginalizing the joint posterior density. We write

the Cholesky decomposition as

 =

⎡⎢⎢⎢⎣
11 0 0

21 22 0

31 32 33

⎤⎥⎥⎥⎦ 

where 11, 21, 22, 31, 32 and 33 are 1×1, 1× 1, 2×1, 2× 1 and 2×2 matrices,

1 + 1 + 2 = , and [0 022 032]
0 corresponds to the th column of . Then

Σ =

⎡⎢⎢⎢⎣
11

0
11 11

0
21 11

0
31

21
0
11 21

0
21 +22

0
22 21

0
31 +22

0
32

31
0
11 31

0
21 +32

0
22 3131 +32

0
32 +33

0
33

⎤⎥⎥⎥⎦ 

Because⎡⎣ 21
0
21 +22

0
22 21

0
31 +22

0
32

31
0
21 +32

0
22 3131 +32

0
32 +33

0
33

⎤⎦−
⎡⎣ 22

0
22 22

0
32

32
0
22 32

0
32 +33

0
33

⎤⎦
=

⎡⎣ 21
0
21 21

0
31

31
0
21 3131 +33

0
33

⎤⎦ (22)

is positive definite and 21, 31 and 33 are unconstrained, one can draw eΣ from the posterior

distribution of eΣ conditional on the th Cholesky decomposition by drawing eΣ from the uncon-

ditional posterior distribution of Σ and retaining the draws in which (22) is positive definite.

We draw ’s that are consistent with the impulse responses 1 2   in the same way as
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in Proposition 2 except that we condition on the th columns of  rather than the first column

of . This is because the first element of 0 is zero (unless the first shock is considered).

Let (1) denote the last columns of ’s and let 
(2) denote their first through second-to-last

columns. Then we can summarize our approach in the following proposition:

Proposition 3:

(0 1  ) ∝
Z

(0 1  |̃Φ(2) Σ̃)(Φ(2) Σ̃)(Φ(2) Σ̃)

=

Z
|| (Φ(1)|(2) eΣ)((2) Σ̃)((2) Σ̃)

=

Z
|| ((1)|(2) Σ̃)((2)|Σ̃)(eΣ)((2) Σ̃) (23)

where the integration is taken over (2) and the eΣ whose (2+1)×(2+1) lower-right submatrix
satisfies the restriction (22).

The resulting procedure allows the user to construct credible sets for the structural impulse

response functions for exactly identified structural VAR models that account for the joint uncer-

tainty in the set of structural impulse response functions. It provides a convenient alternative

to traditional pointwise error bands that is easy to implement. We illustrate this point for the

responses to an unanticipated monetary tightening in the (partially) recursively identified VAR

model used as a benchmark in Uhlig (2005). Uhlig’s Figure 4 reported the pointwise median

response functions and pointwise 68% posterior error bands for this model. We instead report

the response functions of the modal model and the corresponding 68% joint credible set. All

results are based on  = 5 000 and  = 20 000. Figure 7 shows that, even after accounting

for the full uncertainty about the impulse response dynamics, the response functions of real

GDP, of the federal funds rate and of nonborrowed reserves are precisely enough estimated to

be economically informative at least at some horizons. The price puzzle and the puzzling initial

increase in real GDP in response to an unanticipated monetary tightening, in contrast, can

be attributed to estimation uncertainty. This result highlights the importance of simultaneous

inference for all structural impulse responses. A user of pointwise 68% posterior error bands

would have concluded that these puzzles cannot be explained merely by estimation uncertainty.

Figure 7 also illustrates that the median response functions may differ substantially from the

response functions of the modal model. For example, the response of total reserves in the modal

model differs not only in magnitude, but also in sign. The negative response of commodity

prices doubles in magnitude compared with the results in Uhlig (2005) and the response of the

GDP deflator turns negative after only 24 months rather than 48 months. These differences

highlight that accounting for the dependence across impulse response estimates is important

even in point-identified models.
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6 Concluding Remarks

Conventional approaches to summarizing the evidence from sign-identified impulse response

functions based on quantiles of the pointwise posterior distribution of impulse responses lack a

clear economic interpretation and fail to convey the uncertainty about the structural responses

functions. We proposed an alternative approach based on a characterization of the most likely

models in the set of admissible structural models. This approach has the advantage of allowing

for a unified treatment of estimation and inference in both the exactly identified and the sign-

identified VAR model. Our approach in this paper is explicitly Bayesian in nature. The use of

Bayesian methods facilitates the interpretation of sign-identified VAR models and is standard

in this literature. In fact, it is not clear how to extend our approach to evaluating sign-identified

VAR models to frequentist settings.7

For exactly identified VAR models, in contrast, one could construct joint asymptotic nor-

mal approximations of the distribution of the impulse responses (see, e.g., Lütkepohl 1990,

Mittnik and Zadrozny 1993), facilitating joint inference based on the Bonferroni principle, al-

though that method is impractical given its low power (see Lütkepohl 1990). As an alternative,

Jorda (2009) recently proposed the construction of classical joint confidence intervals based on

Scheffé’s method. Unlike the methods discussed in our paper, which account for uncertainty

in all structural impulse responses jointly, the work of Jorda (2009) and related classical ap-

proaches focus on joint inference about the subset of responses contained in a given impulse

response function only. If traditional pointwise inference for impulse responses is analogous to

doing a sequence of -tests for the parameters of a given equation, then these joint confidence sets

are analogous to conducting an  -test for all parameters of a given equation. In short, existing

classical approaches ignore the dependence of  -tests across the equations of the underlying sys-

tem of equations and do not address the problem of joint inference about all impulse responses

in structural VAR models. An obvious extension of our approach in this paper would involve

constructing joint confidence sets for all structural impulse responses based on the conventional

asymptotic normal approximation for the model parameters in exactly identified models. This

approach would be analogous to conducting a  test for all parameters in all equations at

the same time.

The work most closely related to ours is Sims and Zha’s (1999) proposal for an approximate

method for joint inference on impulse responses. Their method is designed for case 3 in Table

1, but not for cases 1, 2 and 4. Sims and Zha’s baseline method is based on draws from

the first and second moment of the (unspecified) joint distribution of the posterior impulse

7Moon, Schorfheide, Granziera, and Lee (2011) recently proposed pointwise frequentist confidence intervals for

impulse response estimates obtained from sign-identified VAR models. They showed that Bayesian and classical

inference do not coincide even asymptotically in sign-identified VAR models. Moon et al. do not address the question

of how to construct joint confidence regions or the question of which response estimates are most likely.
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responses, which will be a good approximation if and only if the joint distribution is Gaussian.

One obvious concern with this method is that it is well known that the finite-sample joint

posterior distribution of impulse responses is far from Gaussian.8 Whereas the joint impulse

response distribution is at least aymptotically Gaussian in the case of exactly identified models,

in the sign-identified model asymptotic normality breaks down, as shown by Moon, Schorfheide,

Granziera, and Lee (2011), making the Sims-Zha approach unsuitable for cases 1 and 2 in

Table 1. Moreover, Sims and Zha’s approximate method makes no allowance for the need to

marginalize the joint distribution in the economically relevant dimension. This marginalization

can be safely ignored if the joint distribution of the impulse responses is indeed Gaussian, because

in that case any partition of the joint normal distribution will be normal as well. In practice,

however, the joint distribution is far from Gaussian and one has to deal with the marginalization

of the joint distribution, unless the VAR model is fully identified making the marginalization

unnecessary. This prohibits application of Sims and Zha’s method in case 4. In contrast, our

method of inference is based on analytic solutions for the joint posterior distribution of the

impulse responses for all four cases and does not involve any approximations.

The point of our paper was to describe conditions under which one can interpret the set

of admissible models in a way that is useful for applied researchers. Two empirical examples

illustrated that the way information from structural VAR model estimates is represented mat-

ters. Responses based on the modal model and the associated credible sets can generate very

different assessments of the evidence than traditional methods. The use of the mode has been

explicitly recommended by leading practitioners in the recent structural VAR literature (see

Rubio-Ramirez, Waggoner and Zha 2010, p. 684), making it a natural starting point. By

focusing on the mode we effectively adopt a particular loss function. Given the absence of a

decision-theoretic framework for selecting a loss function in standard macroeconomic applica-

tions of structural VAR models, there is no alternative to choosing a loss function by convention.

Why then choose this particular loss function? At first sight, it may seem that there should

be sensible alternatives to the use of the posterior mode in characterizing the structural impulse

responses. For example, under a quadratic loss function one would have focused on the posterior

mean. The posterior mean is statistically well-defined in the vector case and does not suffer

from the second shortcoming discussed in the introduction. Given a finite set of admissible

posterior draws, the posterior mean in general will not correspond to any one structural model

8 In recognition of this problem Sims and Zha suggest an alternative method designed to account for asymmetry

in the marginal distribution of the impulse responses. This method is based on quantiles of the marginal distribution

constructed from the same draws used for the baseline method. This proposal indeed accounts for asymmetry in the

approximate marginal distribution, but it does not address concerns regarding the non-Gaussianity of the underlying

joint distribution. Moreover, the reliance on vectors of pointwise quantiles for characterizing the impulse response

functions under this alternative proposal is problematic. This problem is analogous to the problems with vectors of

medians and vectors of other quantiles discussed in our paper. Thus, it is not clear to us how this proposal resolves

the problem of a lack of normality in the joint distribution.
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in the set of admissible models, however, making it vulnerable to the first shortcoming. One

way of addressing this concern would be to search for the admissible structural model that

produces impulse responses closest to those of the posterior mean response functions, building

on an similar idea in Fry and Pagan (2011).9 We do not pursue this idea because one important

disadvantage of the posterior mean approach compared with focusing on the most likely or modal

model is that there is no natural way of constructing joint credible sets in the sign-identified

model. While our analysis provides the tools for evaluating other loss functions, for now there

does not appear to be an obvious alternative to the use of the mode in evaluating the set of

admissible models.

9Fry and Pagan (2011) suggested to minimize the distance to the median response function. That idea is not

advisable because the posterior median response function is not a well defined statistical object, as discussed earlier,

but the same idea could be applied without problems to the posterior mean response function.
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Technical Appendix

Proof of the result that the mapping between the first  + 1 structural impulse responses Θ̃ =

[̄Φ1̄ · · · Φ̄]0 and [ vech() veck()] is one-to-one: Because there is a one-to-one map-
ping between and the reduced-form vector moving average coefficient matrices Φ,  = 1 2  

(see equation 10.1.19 of Hamilton, 1994, p.260, for example), establishing this result comes down

to showing that the mapping between ̄ and the pair vech() and veck() is one-to-one. We

prove this result in two steps. Recall that - because the orthonormality restriction  0 = 

imposes ( + 1)2 restrictions on the  ×  matrix  - one can recover all elements of 

from its upper diagonal elements, (). First, suppose that ̄1 6= ̄2 but 1 = 2. Then

̄̄
0
 = 

0


0
 = 

0
 regardless of the value of  because 

0
 =  for  = 1 2. Be-

cause 1 = 2 this implies ̄1̄
0
1 = ̄2̄

0
2 which contradicts the assumption that ̄1 6= ̄2.

Hence, ̄1 6= ̄2 implies vech()1 6= vech()2. Second, suppose that [1 1] 6= [2 2] but

̄1 = ̄2. Because 1
0
1 = ̄1̄1 = ̄2̄

0
2 = 2

0
2 and the Cholesky decomposition is uniquely

determined for positive definite matrix Σ, it has to be the case that 1 = 2 and 1 6= 2.

Because  is nonsingular for  = 1 2, however, 1 = −11 ̄1 = −12 ̄2 = 2, which is a

contradiction. Hence, [1 1] 6= [2 2] implies ̄1 6= ̄2.

Derivation of the Jacobian matrix in Proposition 1: Let denote the 
2×(+1)2 duplication

matrix of zeros and ones such that vec() = vech() for  ×  symmetric matrix  (see

Magnus and Neudecker, 1999, pp.49). +
 denotes the Moore-Penrose inverse of  so that

we can write vech() = +
 vec().  denotes the 

2 × 2 communication matrix such that

vec( 0) = vec() for ×  matrix  (see Magnus and Neudecker, 1999, pp.46—47).

Let Φ = [Φ01 Φ
0
2 · · · Φ0]0 and 1 = [

0
Φ01 

0
Φ02 · · · 

0
Φ0]

0 where Φ is the th

reduced-form vector moving average coefficient matrix. Because 1 = Φ ,



⎡⎣ vec()

vec(1)

⎤⎦
[vec()0 vec()0 vec(Φ)0]

=

⎡⎣  0 ⊗   ⊗ 2×2

 0 ⊗Φ  ⊗Φ ⊗ 

⎤⎦  (24)

We need to replace the partial derivatives with respect to vec() and vec() in (24) with

those with respect to vech() and veck(). It follows from  0 =  that

[( ⊗ ) + ( ⊗ )]() = 02×1 (25)

from which we obtain

+
 [( ⊗ ) + ( ⊗ )]() = 0(+1)2×1 (26)
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Let  and  denote the (
2 × (+ 1)2) and (2 × (− 1)2) matrices of zeros and ones

such that

() = [ ]

⎡⎣ vech()

veck()

⎤⎦ 
Then (26) can be written as

+
 [( ⊗ )+ (⊗)]vech()++

 [( ⊗ )+ (⊗)]veck() = 0(+1)2×1

(27)

Applying the implicit function theorem to (27), the Jacobian of vec() with respect to veck()

can be written as

 =  −

©
+
 [( ⊗ ) + ( ⊗ )]

ª−1
+
 [( ⊗ ) + ( ⊗ )] (28)

Thus, it follows from (24) and (28) that

1 ≡


⎡⎣ vec()

vec(̃)

⎤⎦
[vech0 veck()0 vec(Φ)0]

=

⎡⎣ ( 0 ⊗ ) ( ⊗) 2×2

( 0 ⊗Φ) ( ⊗Φ) 0 ⊗ 

⎤⎦  (29)

Because (29) is block-diagonal, its determinant is given by the product of determinants:

|1| = |( 0 ⊗ ) ( ⊗) | |0 ⊗ |
= |( 0 ⊗ ) ( ⊗) | ||  (30)

Because of the recursive relationships (11), (14),...,(17) between  and Φ, the Jacobian matrix

of  with respect to  is block-diagonal and each diagonal block has unit determinant. Thus

|2| ≡
¯̄̄̄
vec(Φ)

vec()

¯̄̄̄
= 1 (31)

Since the Jacobian of vec(Σ) with respect to vec() is

[(⊗ ) + ( ⊗)] (32)

the determinant of the Jacobian of vech(Σ) with respect to vech() is given by

|3| ≡ |0
[(⊗ ) + ( ⊗)]| (33)

Therefore it follows from (30), (31) and (33) that the determinant of the Jacobian in (6) is given

by the product of 1|1| and |3|.
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Table 1: Four Types of Structural VAR Models 
 

 Fully Identified Partially Identified 
Sign-Identified Case 1 Case 2 
Exactly Identified  Case 3 Case 4 
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Figure 1: Randomly Selected Response Functions from a Sign-Identified VAR Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
NOTES: Based on nine randomly selected responses from the posterior of the model used as an empirical 
example in section 4.2. The median response function is constructed from the pointwise posterior medians. 
It coincides with responses from six different admissible structural models depending on the horizon.
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Figure 2: Structural Responses in the Sign-Identified Oil Market Model 
Response Functions in the Modal Model and 68% Joint Regions of High Posterior Density 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTES: The data and model are described in the text. All shocks have been normalized to imply an increase in the real price of oil.
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Figure 3: Structural Responses in the Sign-Identified Oil Market Model 
 

 
 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTES: See Figure 2.



0 12 24 36
-1

-0.5

0

0.5

1
Real GDP

0 12 24 36
-1.5

-1

-0.5

0

0.5
GDP Deflator

0 12 24 36
-10

-5

0

Months

Commodity Price Index

0 12 24 36
-1

-0.5

0

0.5

1

Months

Federal Funds Rate

0 12 24 36
-4

-2

0

2

4
Nonborrowed Reserves

0 12 24 36
-4

-2

0

2

4
Total Reserves

Figure 4: Responses to a Monetary Policy Tightening in the Uhlig (2005) Sign-Identified Model 
Response Functions in the Modal Model and 68% Joint Regions of High Posterior Density 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTES: The model specification and sign restrictions are the same as in Figure 6 of Uhlig (2005).
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Figure 5: Responses to a Monetary Policy Tightening in the Modified Sign-Identified Model 
Response Functions in the Modal Model and 68% Joint Regions of High Posterior Density 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTES: Relative to the model in Figure 5, an additional scalar restriction has been imposed that real GDP must have declined  
    6 months after the monetary policy tightening. 



0 12 24 36
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Months

R
ea

l G
D

P

 

 

Pointwise Median
Modal Model

0 12 24 36
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Months

R
ea

l G
D

P

 

 

Modal Model
68% Pointwise Quantiles

Figure 6: Responses to a Monetary Policy Tightening in the Modified Sign-Identified Model 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTES: See Figure 7. 
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Figure 7: Responses to a Monetary Policy Tightening in the Partially Identified Cholesky Model 
Response Functions in the Modal Model and 68% Joint Regions of High Posterior Density 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTES: The model specification and identifying restrictions are the same as in Figure 5 of Uhlig (2005). 


