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A Multi-generation Product Diffusion Model with Social Media Effects 
-Accerelating Effect of Social Media on Leapfrogs and Switches  

by the iPhone 6 Battery Problem 2016–2017 - 

 
 
 

Abstract 
This paper proposes a multi-generational model that captures the direct and indirect ef-
fects of social media on product diffusion. Direct effects appear in the adoption rate 
function as covariates, and indirect effects are imbedded in hierarchical models connect-
ing diffusion parameters to successive generations. Unlike previous multi-generational 
diffusion models, ours forecasts sales of new-generation products before launch using 
social media as the leading indicator and a hierarchical model connecting successive 
diffusion parameters. Empirical results show our model forecasts more precisely and re-
veals how social media influenced sales of smartphones, particularly leapfrogging and 
switching to other generations and competing products, as Apple contended with defec-
tive batteries in the iPhone 6 during 2016–2017. 
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1. Introduction 

Frameworks of diffusion studies generally follow the Bass (1969) model that assumes a 

social network is homogeneous and fully connected and that new adopters enter the mar-

ket influenced by innovators and producers' marketing communications. Studies tradi-

tionally attribute the internal effect to the influence of word of mouth. 

Peres et al. (2010) trace how diffusion studies since 1990 have transitioned from inter-

personal communication (Mahajan, Muller, and Bass, 1990; Mahajan and Wind, 2000) to 

more general interactions, including social interdependence (Goldberg and Lilien, 2010; 

Van den Burte and Lilien, 2001). 

Diffusion of multi-generational products also has been investigated using the Bass 

model by connecting single-generation models sequentially. Since Norton and Bass 

(1987) proposed a diffusion model applicable to successive generations, many studies, 

including Mahajan and Muller (1996) and Jiang and Jain (2012), have extended it to 

multi-generational diffusions using sales and marketing mix data during the initial pe-

riod after launch. 

Alongside such data, this study incorporates data from consumers communicating 

over social media and proposes a multi-generational diffusion model that detects the ef-

fects of social media before and after a product launches. It advances the literature in 

several respects. First, our model uses data other than post-launch sales to track diffu-

sion of new products. In addition to price and competitors featured in the extended Bass 

models in Von Bertalanffy (1957), Mahajan and Muller (1981), Eastingwood et al. 

(1983) and Bewley and Fiebig (1988), we construct covariates by extracting text fea-

tures from social media and incorporating them as social media effects into the adoption 
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rate function of a multi-generational diffusion model, implying the direct effect of social 

media. 

Second, earlier diffusion models assume that key parameters of market potential and 

imitation rates are independent among generations when the innovator parameter is given. 

Our model structures generation-specific parameters hierarchically to depict the mecha-

nism underlying parameter shifts between generations. Our structural model of parameter 

shift across generations facilitates forecasting sales of new-generation products before 

launch. The term of social media effect is incorporated in the hierarchical models and it 

affects indirectly to sales. 

Third, our model measures the effects of social media on sales, particularly leapfrogs 

and switches, by the defective battery problem that plagued the iPhone 6 since early No-

vember of 2016 and it became a hot topic in social media until the late of 2017. This 

“Battery Problem” is explained in detail in section 5. To measure this effect, we propose 

a labeled dynamic topic model as a hybrid of the labeled topic model (Daniel et al., 2009) 

and the dynamic topic model (Blei and Lafferty, 2006). Our model employs “battery” a 

priori as the specific dynamic topic that captures the shift in distribution of topics over 

time. We show empirically that social media reactions to iPhone's battery problem accel-

erated switching and leapfrogging to later-generation iPhones and competing products. 

Section 2 discusses the effects of social media on multi-generational diffusion. Section 

3 explains our model. Section 4 reveals empirical results for sales of successive genera-

tions of iPhones and shows our model predicts sales of products pre-launch by recogniz-

ing social media effects. Section 5 shows the accelerating effects of the iPhone 6 battery 

problem on leapfrogging and switching to later-generation iPhones and competing 

phones. Section 6 concludes. 
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2. Social Media Effects and Diffusion 

2.1 Multi-generational Diffusion Model 

Research into the diffusion of product generations adopts the framework of multi-gener-

ational diffusion models. The main differences among earlier models are their assump-

tions about key parameters and their use of marketing mix variables. Among studies dis-

tinguished by their key parameters, Norton and Bass (1987) assume that market potential 

m for a generation of product depends on innovation and imitation parameters p and q are 

constant across generations. Mahajan and Muller (1996), Jun and Park (1999), Kim et al. 

(2000), Danaher et al. (2001), and Jiang and Jain (2012) assume the constancy of p across 

generations, generation-specific market potential, and imitation parameters. Jiang (2010) 

and Guo and Chen (2018) assume that all parameters vary across generations. 

Among diffusion studies distinguished by marketing mix variables, Robinson and 

Lakhani (1975) insert a price effect term into the adoption rate function, and Bass (1980) 

introduces price effects. These studies show that incorporating price information im-

proves model performance. Horsky and Simon (1983) incorporate an advertising variable 

directly into sales, not into adoption rate function, and Horsky (1990) incorporates jointly 

advertising and price information. 

The adoption rate function in Bass et. al (1994) includes two marketing mix variables: 

rates of change in prices and advertising expenditures relative to expenditures at product 

launch. Doing so permits comparing the effects of marketing variables. Jiang and Jain 

(2012) extend this model to a multi-generational diffusion model. 
 

2.2 Labeled Dynamic Topics on Social Media 

 Marketing studies consider the effects of social media by extracting latent topics and 

their features from large-volume documents and modeling them as covariates. Natural 
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language processing is noteworthy in this regard, as indicated by the Latent Dirichlet Al-

location (LDA) model of Blei et al. (2003). 

Recent research uses topic models to analyze text data for marketing applications. The 

LDA model of Tirunillai and Tellis (2014) incorporates consumer reviews into five sets 

of marketing data to extract dimensions (topics) from UGC (User Generated Content) for 

comparison among markets. They find that some topics resonate across multiple markets 

and others only in certain markets. Through sentimental analysis they tag topics for better 

interpretation and show that multidimensional scaling via LDA captures the dynamics of 

brand positioning. Netzer et al. (2012) exploit the co-occurrence of words and semantic 

network analysis to derive market structure from online consumer forums. Their study 

highlights use of text mining to indicate marketing effectiveness and how marketers can 

affect brand position. 

Li and Terui (2018) incorporate social media effects into a diffusion model to discuss 

how they influence market potential and internal parameters. Analyzing text data of SNS 

on mobile phones, they extract subjective and objective features by naïve Bayes and topic 

analysis respectively, then use them as covariates of time-varying market potential and 

imitation parameters. They show how social media affect single-generation diffusion of 

mobile phones and enhance forecasts. The supervised topic model of Ansari et al. (2018) 

identifies topics hidden in product reviews that reveal consumer preferences. Their sto-

chastic variational Bayesian approach yields fast and scalable inferences from big data. 

The dynamic topic model (DTM) is a generative model that reveals the evolution of 

topics hidden in collections of documents. Blei and Lafferty (2006) extend the LDA 

model to a dynamic model for handling sequential documents. They describe the dynam-

ics of hyper parameters ,t khθ and ,t khψ  respectively for topic distribution with parameters 
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{ }, , 1,..., 1t k k Kθ = −  and vocabulary distribution with parameters { }, , 1,..., 1t k t Kψ = −  in 

a state space model so that they have a shift in the mean of Gaussian distribution when 

the previous state is given. That is, they assume that parameters shift as follows: 

( )
( )

1 1

1 1

2
, , ,

2

| , ,

| , .
t t t

t t t

k k kh h N h

h h N h

θ θ θ θ

ψ ψ ψ ψ

σ

σ
− −

− −





                                   (3.1) 

Corresponding to latent topics in the DTM, our study identifies topics on social media 

and enters them into our multi-generational diffusion model to uncover changes in con-

sumer’s interests. 

Next, focusing on the social media coverage following iPhone's battery problem, we 

extend the DTM by labeling one topic “battery.” Daniel et al. (2009) extend the LDA 

model by labeling topics to be estimated in advance. We extend their labeled topic model 

to a labeled dynamic topic model (LDTM), which is characterized as a hybrid of the la-

beled topic and DTMs. Its graphical representation appears in the Appendix. 

We denote 𝜂𝜂 as the hyper parameter for the prior probability that some specific words 

include “battery” among three topics. Then we define 𝜂𝜂”𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏” = (1, 0, 0) to indicate all 

instances of “battery” are bound to the first topic when assigned in the MCMC procedure. 

Other words are allocated as per DTM. 

3. Models 

3.1 Direct Effects of Social Media on Multi-generational Diffusion 

We employ the sales function in Srinivasan and Mason (1986) to define our multi-gener-

ational diffusion model. Norton and Bass (1987) proposed a successive-generations 

model by assuming constant 𝑝𝑝 and 𝑞𝑞, but we employ the diffusion model generalized by 
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Jiang and Jain (2012) that assumes p is constant across generations but q as well as market 

potential m are generation-specific. 

First, we denote ( )Gy t  as the G-th generation adoptions at time t with launch time 𝜏𝜏𝐺𝐺 >

0,  and then following Jiang and Jain (2012), we define our model with additive noise for 

adoption of each generation as follows: Starting with the first generation launched at time 

0, we have 

 

( )( )
1 1 1 1 2

1 1 1 2 2 1 2

1

( ) ( ) ( ), ,                      
( ) ( ) 1 ( ), ,                      

( ) ( ) ( ) ( ) ( ), ,  1 ,G G G G G G G

y t m f t u t t
y t m f t F t u t t

y t I t L t S t u t t G N

τ
τ τ

τ τ +

= + <
 = − − + ≥

= + + + ≤ < < ≤

　　                       

　　           

　　        

( ) ( )

( ) ( )( )
( )( )

1 1

1 1

1 1

1 1

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ), ,  1 ,

( ) ( ) ( ) ( )

            1 ( ),   

G G G G G G G G G G G G

G G G G G G G

G G G G G G G G G G G

G G G

m f t F t y t F t Y t f t u t
y t I t L t S t L t u t t G N

m f t F t y t F t Y t f t

F t u t

τ τ τ τ
τ

τ τ τ τ

τ

− −

+ +

− −

+ +

≡ − − + − + − +

= + + − + ≥ < ≤

≡ − − + − + −

× − − +

　　　

　　     

　　　

　                                                      (3.1)











   

where ( )GI t  is the independent adoption of the G-th generation, ( )GY t  denotes cumula-

tive adoptions (sales) of the G-th generation at time t, ( ) ( )1G G Gf F t F t= − − , and ( )GL t  

and ( )GS t are adoptions from leapfrogging and switching, respectively. 

In Eq.(3.1), the error term ( )Gu t  is assumed to follow normal distribution 

( )2( ) 0,Gu t N σ  independently across generations and time. We assume constant vari-

ance across generations because our data do not identify sales by generation. The adoption 

rate function ( )GF t  for the G-th generation product accommodates not only marketing 

mix according to Jiang and Jain (2012) but also social media effects : 

 ( ) ( )( )
( ) ( )( )
1 exp ( )

1+ exp ( )
= G G

G G G
G

p q X t
q / p p q X t

F t
− − +

− +
,   (3.2) 

where the covariate ( )GX t  is formulated by the hierarchical model as follows: 
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 ( )( ) log ( ) (0) ' ( 1) ( ).G G G G G G xX t t V t V t e tβ= + + − +α LTopic   (3.3) 

In the above, ( )GV t  is the price of the G-th generation product in period t and Gβ  is the 

coefficient of the price effect. ( 1)G t −LTopic  is a K dimensional vector with the element 

of ( )log ( 1) (0)Gi GiTopic t Topic− , where ( 1)GiTopic t −  denotes the frequency of words 

in the i-th  topic at 1t − , and Gα  is the corresponding coefficient vector. We assume that 

error term ( )xe t  follows . 

We use 𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇𝐺𝐺𝐺𝐺(𝑡𝑡 − 1) rather than 𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇𝐺𝐺𝐺𝐺(𝑡𝑡) to acknowledge the leading property 

of the social media effect, i.e., people chat before they act. Social media variables usually 

are leading indicators of sales in related research (Li and Terui, 2018), and we show it is 

empirically confirmed for our data in section 4. 
 

3.2 Indirect Effects of Social Media via Generation-Specific Parameters 

We assume that diffusion in each generation persists from the previous generation. Spe-

cifically, generation-specific parameters are determined by those of previous generations, 

and topics 𝑻𝑻𝑮𝑮 are defined as the vector of number of words allocated to each topic after 

the G-th generation launch for 𝑡𝑡 <  𝜏𝜏𝐺𝐺 . If we denote ( )G t =Topic

( )1( ),..., ( ) 'G GKTopic t Topic t , then GT  is represented by ( )
G

Gt tτ<∑ Topic . 

Then we define the structural equations for 𝑚𝑚𝐺𝐺 and 𝑞𝑞𝐺𝐺 as 

 

0 1 1

0 1 1

0 1 1

0 1 1

'
'

' '
' ,

G m m G mT G m

G q q G qT G q

G G T G

G G G

m m
q q

α α α α

β β β β

δ δ ε
δ δ ε

δ ε
β δ δ β ε

−

−

−

−

= + + +
 = + + +
 = + + +
 = + + +

δ T
δ T

α δ T
δ T

δ α
  (3.4) 

( )2( ) 0,x xe t N σ
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where we assume ( )20,i iNε σ  for the i-th equation and independence across equations. 

These models define prior distributions for the parameter and we constitute the posterior 

distributions when combined with the likelihood function derived by Eqs. (3.1)–(3.3). 

Jiang and Jain (2012) use the data of number of units and the aggregate adoption sales 

with marketing variables. However, their empirical performance is undemonstrated be-

cause their marketing mix data are unavailable. We also find that estimated parameters 

of multi-generations are unstable when the number of generations increased. Further-

more, models by Jiang and Jain (2012) and Norton and Bass (1987) structurally do not 

allow forecasting next-generation sales before launch because they lack structure to con-

nect generations for parameters. Our hierarchical model in Eq.(3.4) accommodates pa-

rameter shifts from previous generations and social media effects on parameters. 
 

3.3 Posterior Density for Model Parameters 

The joint posterior density of our model parameters is represented by 

{ } { } { } { } { } { }( )
{ } { } { } { } { }( ) { } { }( )

{ }( )
{ }( ) { }

G

G

G G

, , , , , , , , , , , , , , | , , , ,

     = , , , | , , , , , , | , , , , ,

     | , , , , ,

     | , , , , , | , , , ,

G G G x m q G G G G

G G G G G G G G G

G G G G x

G G G x x G G G

p m q p t

p m q p X t p m q p t X

p X t

p X t p X t

βσ β σ σ σ σ

β σ σ

σ

β σ σ β

×

×

m q α β α

m q

α

β

Δ Δ Δ Δ σ

Δ Δ α

α Δ

Δ α

α y LTopic T V

y y

LTopic V

LTopic V LTopic{ }( )
{ } { }( ) { } { }( )
{ } { }( ) { } { }( )
{ } { }( ) { } { }( )
{ } { }( ) { } { }( )

1 1

1 1

1 1

1 1

,

| , , , | , , ,

| , , , | , , ,

| , , , | , , ,

| , , , | , , , (3.5)

G

G G G m m G G G

G G G q q G G G

G G G G G G

G G G G G G

p m m p m m

p q q p q q

p p

p pβ β

σ σ

σ σ

α α α α

β β σ σ β β

− −

− −

− −

− −

×

×

×

×

m m

q q

α α α α

β β

Δ Δ

Δ Δ

Δ σ σ Δ

Δ Δ

　　

　　 　

　　

　　 　　　　　　　　　  

　

V

T T

T T

T T

T T

 

where iΔ  is the coefficient of the vector of each equation in Eq. (3.4). 
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The second line of (3.5) captures the product of conditional posterior density for pa-

rameters in the diffusion model in Eqs. (3.1) and (3.2). The third and fourth lines are joint 

posterior density of parameters in the marketing mix in Eq. (3.3). The fifth to eighth lines 

define joint posterior density for parameters in the hierarchical structure connecting the 

(G-1) generation to the G generation in Eq.(3.4). 

We employ MCMC to estimate parameters because the procedure for hierarchical 

models is well-established and some of necessary conditional posterior densities are 

available in closed form. The sampling scheme of MCMC for estimating the model is a 

hybrid of Metropolis-Hastings and Gibbs sampling for other parameters in hierarchical 

models. The algorithm appears in the Appendix. 
 

3.4 Predictive Density 

According to Eqs. (3.1) and (3.2), if we simulate sales for the second-generation product, 

we need at least one data point of that generation to estimate 𝑚𝑚2 and 𝑞𝑞2 even when 𝑝𝑝 is 

assumed constant across generations. 𝜶𝜶𝟐𝟐 and 𝛽𝛽2 also must be estimated using data for the 

second generation. The feature of their models hampers forecasting new generations with-

out numerical data for this generation. 

 

Fig. 3.1 Role of Social Media Pre- and Post-Launch 

 

We note that the topic’s total frequency vector (𝑻𝑻𝑮𝑮) in Eq. (3.4) differs from vector 

𝑳𝑳𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝐺𝐺(𝑡𝑡 − 1) in Eq. (3.3), as Fig 3.1 exemplifies. Before G-th generation launches, 

only social media provide information about a new generation of G-th product. Then, in 

terms of hierarchical models in Eq. (3.4) implying prior information, we forecast adoption 

of new generations when parameters are given. After G-th generation product launches, 
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the marketing mix (Eq. (3.3)) enters the adoption rate function to generate the forecast. 

Two structures using social media make it possible to use text data fully and to compare 

social media effects before and after new generations launch. Forecasting is constituted 

formally by the predictive density. 

 

( )
( ) ( )
( ) ( )

( )
( )

1 1

1 1

1 1

( ) | , , , ( ), , ( 1), ( )

( ) | , , , , , | , ,  

( ) | , , , ( ) , , | , ,

( ) | , , , ( 1), ( )

, | , ( )

G G G G G G G

G G G G G G G G G G G

G G G G G G G G G

G G G G G

G G G G G G

p y t m q p X t t V t

p y t m q p t p m q p m q dm dq dp if t

p y t m q p X t p m q p m q

p X t t t V t

p dX t

τ

β

β β

− −

− −

− −

−

= ≤

=

× −

×

∫
∫

　

T LTopic

T

T

LTopic

,T

α

α α  G G G G Gdm dq d d dp if tβ τ>　       α

(3.6) 

 

These integrations are numerically evaluated in the MCMC iterations as were applied 

to time series forecasting by Terui et al. (2010) and Terui and Ban (2014). The algorithm 

for Eq.(3.6) appears in the Appendix. 

4. Empirical Results 

4.1 Data 

We use five generations of iPhone products with the same launching times between 

iPhones 5 through 7 as training data, .i.e., G1(iPhone 5), G2(iPhone 5s, 5c), G3(iPhone 

6, 6 Plus), G4(IPhone 6s, 6s Plus), G5(iPhone 7, 7 Plus).  The last generation G6(iPhone 

8, 8 Plus, X) is reserved for test data. All data were obtained from Statista 

(www.statista.com). 

 

Fig. 4.1 iPhone Sales 

 

http://www.statista.com/
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Sales data are total iPhone sales shown in Fig.4.1. There are no unit sales for each 

generation, making it hard to optimize all parameters for each generation only by total 

sales. 

Text data were acquired from gsmarena (http://www.gsmarena.com/). This is a well-

known BBS where users worldwide comment upon mobile phones. Through conven-

tional preprocessing procedure taken in natural language processing, punctuations, stop 

words and low frequency words less than ten times were removed.  Then we use remained 

124,263 comments in total for all generations. 
 

4.2 Dynamic Topics 

The number of topics needs to be fixed to construct covariate of features in social media 

and we use the criterion of root mean squared error (RMSE) of forecasts for test data to 

choose the number of topics. This measure is shown in Fig 4.2 when the number of topics 

changes from one to five. T suggests three topics for our social media. 

 

Fig. 4.2 Evaluating Number of Topics 

 

LDTM lets us detect changes in each topic, implying potential changes in customer 

interest. The top words among topics appear in Table 4.1. We interpret the topics as fol-

lows. 

1. Topic 1 (Property-battery): because the frequent words are “nfc” (iPhone5), “apps,” 

“battery” (all), “face recognition,” and “fingerprint” (iPhone X). 

2. Topic 2 (Comparison): because competitors and their product names appear contin-

ually (s3, Samsung, Android) with the word “better.” 

3. Topic 3 (Discussion): because of top words “don’t,” “u” (you), “buy,” and “im” (I 

http://www.gsmarena.com/
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am). 
 

4.3 Leading Property of Topics to Sales 

Fig. 4.3 plots time series for sales and frequency (number of words) under three topics 

from 2012: Q4 to 2017: Q4. It shows that the frequency of each topic leads sales by one 

period. 

Fig. 4.3 Time Series Plot of Sales and Topics 

 

Table 4.2 shows cross-correlation of time lags of one and two periods with sales and 

frequency of three topics. They show all topics lead sales by one period with similar mag-

nitudes of effect. There is no delayed relation after one period for Topics 1 and 2, although 

two lags could exist for Topic 3. 

 

Table 4.1 Top Words within Each Topic 

Table 4.2 Cross-correlation between Topics and Sales 

Table 4.3 Comparative Models 

 

4.4 Model Comparison 

We now compare 10 models by covariate, treatment of generation-specific heterogeneity 

of parameters, and hierarchical structure of parameters connecting current and previous 

generations (Table 4.3).  

Models 1–4. 

Model 1 observes the formula in Norton-Bass (1987). Model 2 mirrors Jiang and 

Jain (2012). Models 3 and 4 include topic variables. All models lack the structure to 
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connect generations except as an innovator parameter (i.e., no trans-generational 

memory). Thus we call them 0th-order models. 

Model 5 ~ Model 8. 

Models 5–8 are structured for parameter shifts to the next generation as hierarchical 

models. Models 5 and 7 use only parameters of previous generations. Models 6 and 8 

include additional variables for topics in their hierarchical models. These models can pre-

dict one step ahead for a new product even before launch. These are first-order models. 

Model 9 ~ Model 10. 

Models 9 and 10 also are first-order models. The difference from Models 5–8 is the 

homogeneous coefficients of marketing mix variables between generations. To improve 

model performance, all previous studies including marketing mix assume that it is heter-

ogeneous. We assume marketing variables are homogeneous for all generations to 

achieve parsimony. 

We compare the 10 models in three measures: log of marginal likelihood (LMD), de-

viance information criteria (DIC), and RMSEs of forecasts for training data (G1–G5) and 

test data (G6). We confirmed convergence for all models via Geweke’s test (Geweke, 

1992) at 95% significance in Table 4.4. 

 

Table 4.4 Model Evaluations 

 

0th-order models (Models 1–4) cannot forecast sales of G6  as test data because they 

lack structure to accommodate the shift of ( ),G Gm q . Then we evaluate all first-order 

models by RMSE(Train), log of marginal likelihood and DIC, and RMSE (Test). 
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Model 3 exhibits the best in-sample performance indicated by RMSE and log of mar-

ginal likelihood. Accompanying the marketing mix with social media information sharp-

ens forecasting precision. RMSE of the holdout sample and DIC suggest Model 10 has 

the best performance. This finding shows the effectiveness of topic models. Also, our 

assumption of a homogeneous marketing mix yields better fit to the holdout sample, in-

dicating heterogeneity may lead models to over-fit training data. 

Comparing models among the first-order group shows that those with topic variables 

(Models 6, 8, and 10) out-perform those without topics (Models 5, 7, and 9). In general, 

model fit erodes for models with more restrictions, but even in the training data RMSE 

and LMD of first-order models approach those of Model 3 (best among the zero-order 

group). First-order Models 6 and 10 exhibit larger LMD and smaller DIC than Model 3. 

This finding implies hierarchical models enhance model fit. 

After examining RMSE of test data and DIC criteria, we chose Model 10 and examine 

the results of estimation and forecasting. Model 10 features no price effect. That is con-

sistent with iPhones having higher prices across generations than competing mobile 

phones and with adopters of iPhones showing themselves insensitive to price. 
 

4.5 Parameter Estimates 

Parameter estimates of Model 10 are in Table 4.5, where number indicates posterior 

means and the posterior standard deviation is in parentheses. 

 

Table 4.5 Parameter Estimates 
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Columns 𝑚𝑚 and show that estimates of 𝑚𝑚𝐺𝐺, 𝑞𝑞𝐺𝐺, and p are constant across generations. 

Coefficients , 1, 2,3i iα = , are homogeneous among generations in response to covariates 

for Model 10. 

Values of 𝑚𝑚𝐺𝐺, p, and 𝑞𝑞𝐺𝐺 define the curve for the G-th generation’s diffusion, and it is 

influenced by the topic feature of ( )log ( 1) (0)Gi GiTopic t Topic− . 

Estimates of 𝑚𝑚𝐺𝐺 imply that the market for G1 is potentially double that of other gener-

ations. The first generation faces its original potential market. After the G2 launches, the 

market divides into an original and an influenced segment. As a result, its market is 

smaller than for the market for G1. 

Estimates for imitation parameter 𝑞𝑞𝐺𝐺 increase slowly across all generations except G2. 

This finding suggests that consumers become imitators rather than innovators as genera-

tions proceed and await reviews before buying new-generation products. 

Quasi-t values (posterior mean divided by standard deviation) are large for 

, 1, 2,3i iα = , implying that all three topics are significant in this model. Topic 1(Property-

battery) has expected negative correlations with sales. Topics 2(Competitor) and 3 (Dis-

cussion) have significant positive correlations with sales. 

Table 4.6 examines the hierarchical model’s estimates in Eq. (4.5). 

 

Table 4.6 Estimates of Hierarchical Structure 

 

We summarize results from Table 4.6 as follows. 

(1) Estimated coefficients of 𝑚𝑚𝐺𝐺−1 and 𝑞𝑞𝐺𝐺−1 are nearly 1, indicating parameters for mar-

ket size and imitation rate shift smoothly from previous generations. Estimates of 𝑚𝑚𝐺𝐺 

decline gradually and estimates for 𝑞𝑞𝐺𝐺  increase across generations, expecting that  
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 𝑚𝑚𝐺𝐺 declines because fewer new customers remain as the market matured and sales 

were more influenced by previous generations and their marketing. After several gen-

erations, 𝑞𝑞𝐺𝐺 trends upward with the popularity of products. 

(2) We interpret the indirect topic effect from the estimated hierarchical structure as fol-

lows. Topic 1(Property-battery) has significant positive correlations with 𝑚𝑚𝐺𝐺 and 𝑞𝑞𝐺𝐺. 

This finding implies that market size and imitation rate swell as consumers talked 

more about the property(battery) before launch. Topic 2 (Competitor) has a negative 

correlation with  𝑚𝑚𝐺𝐺 and a positive correlation on 𝑞𝑞𝐺𝐺. These findings mean that more 

communication on competitors attract imitators, but the risk to declining market size 

remains. Topic 3 (Discussion) has the effect opposite that of Topic 2. 

(3) Indirect effects of topics in hierarchical models differ from direct effects in the adop-

tion rate function as marketing mix variables. This finding implies different roles for 

social media pre- and post-launch. For instance, Topic 1(Property-battery) has a pos-

itive indirect effect on parameter changes in the hierarchical structure and a negative 

direct effect on adoption rate function. These findings show that customers who were 

interested in properties of new generations before launch may be disappointed with 

them post-launch. 

4.6 Forecasting Sales of Unlaunched New Generation 

Using the estimated hierarchical structure and diffusion model parameter estimates, we 

can forecast sales of new generations before launch. Fig 4.4 shows forecast (solid line) of 

new-generation G6 and its actual sales (dashed line) during 2017Q4 to 2018Q3. Forecasts 

are accurate even if products were launched without using social media and prior structure 

on the parameter shifts inferred from hierarchical model. 
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Fig. 4.4 Forecasting Sales of Unlaunched New-Generation Products 

 

5. Influence of Social Media on the Battery Problem 

5.1 What is the battery problem? 

Since early November of 2016, increasing numbers of iPhone 6 owners worldwide have 

complained their phones shut down unexpectedly even when adequately charged. Apple 

admitted that some phones needed their batteries replaced and offered to replace them 

gratis. In late 2016, Apple noted that some phones shut down "under normal conditions 

in order for the iPhone to protect its electronics." Although Apple tried to solve the battery 

problem by updating the iPhone OS, consumers complained on social media that their 

devices slowed after updating the OS. This problem caused by the battery appeared prom-

inently on social media until late 2017. We focus on how social media discussion of the 

battery problem affected sales, leapfrogging, and switching of iPhones to subsequent gen-

erations and competing products. 
 

5.2 Acceleration Effect of Social Media on Leapfrogging to Competitor 

Multi-generational diffusion models demonstrate the leapfrog effect, but discussions of it 

differ in the literature. Without mentioning leapfrog or switch effects explicitly, Norton 

and Bass (1987) distinguish independent from influenced markets. The former is the orig-

inal or incremental market for current-generation products. The latter implies sales effects 

from previous generations. 

Mahajan and Muller (1996) extend the Norton and Bass (1987) model to incorporate 

leapfrog and switch parameters into multi-generational diffusion of durable technological 

innovations. Jiang and Jain (2012) enlarge the model to consider how marketing mix 
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shapes diffusion of each generation where leapfrog and switch effects are incorporated as 

in the Norton-Bass model. 

The blue line in the left panel of Fig 5.1 shows iPhone sales. It is hard from this figure 

to identify the influence of social media on the battery problem. Thus, we collect data for 

sales and market share of competing Android smartphones. Sales of Androids and total 

units, (iPhone plus Android) appear on the left and market shares on the right in Fig 5.1. 

 

Fig. 5.1 Smartphone Unit Shares and Marketing Share 

 

We seek to detect leapfrogging to a later iPhone generation and switching to Android 

smartphones induced by social media. Following Jiang and Jain (2012), we calculate them 

as 

2 1 1 2 2( ) ( ) ( )L t m f t F t τ= −                                                (5.1) 

2 1 1 2 2( ) ( ) ( )S t m F t f t τ= − .                                               (5.2) 

𝐿𝐿2(𝑡𝑡) and 𝑆𝑆2(𝑡𝑡) are leapfroggers and switchers, respectively, from the first to the second 

generation. 2 ( )L t  is affected by the remaining fraction of first generation, and 2 ( )S t  is 

affected by the installed fraction of first generation. The model detects switching from a 

previous to a later generation and leapfrogging after generations but not leapfrogging 

from iPhones to Androids. We then discuss how social media affect leapfrogging to a 

competitor using additional Android sales data. 

Denote ( )qMS t  as the market share of iPhones and ( )TS t  as total unit sales of iPhones 

and Androids at time t. Then we define 

 [ ]( ) ( ) ( ) ( 1)          2,G GD t TS t MS t MS t t= × − − ≥，   (5.3) 
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where ( )D t  indicates the change in unit sales of iPhones corresponding to the total 

smartphone market. If we define ( )SL t  as total leapfrogging from one iPhone to its later 

generation in period t, we derive the leapfrog effect from competitor ( )CL t  by 

 ( ) ( ) ( )CL t D t SL t= − .   (5.4) 

We compare two kinds of leapfrogging from iPhones and Androids via the ratio  

 ( )( )
( )

SL trate t
CL t

= .    (5.5) 

From 2016:Q4 through 2017:Q4, the period of the battery problem, iPhone unit sales 

did not decrease significantly (left of Fig. 5.1), but the market share of iPhones declined 

during the two preceding years. To detect how social media coverage of the battery prob-

lem affected sales, we compare two models—one including topics extracted from social 

media and one that ignores them. Fig. 5.2 shows a numerical example of the social media 

effect when one topic is included in the model. 

 

Fig. 5.2 Social Media Effect 

 

The left panel of Fig. 5.2 shows topic frequency. It implies the influence on sales by 

comparing the model that estimated 𝛼𝛼𝐺𝐺  and that which estimated 𝛼𝛼𝐺𝐺 = 0. The “alpha” in 

the right panel of Fig. 5.2 depicts sales corresponding to three kinds of value, (𝛼𝛼𝐺𝐺=0, 0.5, 

1) when we fix the parameters as (m=10, p=0.1, q=0.5). 𝛼𝛼𝐺𝐺  = 0 indicates the model with-

out social media effects. Social media become more influential as 𝛼𝛼𝐺𝐺  increases. 

Fig. 5.3 reveals leapfrogging ( ( )SL t ) among iPhone generations with and without the 

social media effect. Social media exert greater influence for later generations, implying 

that consumers were more influenced as generations proceeded. 
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Fig 5.4 plots 𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟(𝑡𝑡) from Eq. (5.5). A negative value means more customers leap-

frogged to iPhones than to Androids. A positive value means more leapfrogged to An-

droids. To evaluate ( )SL t  in the model lacking social media effects, we enforced 0 as the 

value of 𝜶𝜶𝑮𝑮. Then we measured the effect of social media by the difference between these 

two leapfrogs estimates (Fig. 5.5). 

 

Fig. 5.3 Leapfrog Effect of iPhone 

 

Fig. 5.4 Comparison of Leapfrogging between iPhone and Android 

 

Fig. 5.5 Difference in Leapfrogging 

 

In Fig 5.5, over periods with positive unit sales, which implies social media were sig-

nificant with respect to the battery problem, unit sales of iPhones decline gradually. Peri-

ods with negative sales mean social media had a negative effect on iPhones. Starting with 

iPhone 5, the social media effect slowly erodes unit sales of iPhones. When the battery 

problem was exposed in 2016:Q4, the social media effect was distinguished by leapfrog-

ging to Android. Social media had a significant influence on product diffusion. 

6. Conclusion 

This study proposed a multi-generational diffusion model with social media effects that 

included a hierarchical structure connecting diffusion parameters of successive genera-

tions. Results show the effects of social media using a dynamic labeled topic model di-

rectly on the adoption rate function as effective marketing mix as well as indirectly on 
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the parameter change described by hierarchical model on the shift of diffusion parameters 

to next generation. 

Unlike previous multi-generational diffusion models, ours forecasts sales of new-gen-

eration products before launch using social media as the leading indicator and the hierar-

chical model. 

Finally, our model featuring social media effects improves the precision of forecasting 

and shows how social media affected sales of smartphones via leapfrogging and switching 

to next-generation and competing products. We examined how iPhone’s battery problem 

affected sales, leapfrogging, and switching to later-generation iPhones and competing 

Androids. 

Further issues remain. We proposed the LDTM to extract dynamic features hidden in 

social media and confirmed that “people chat before they act.” However, results of the 

model depend on prior LDTM settings. Determining the full robustness of dynamic text 

analysis awaits future studies. 
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Appendix. 

A. Labeled Dynamic Topic model 

The DTM is base model for LDTM as detailed in Blei and Lafferty (2006). Based on 

DTM, we assume the word “battery” belongs to Topic 1 in this study. The algorithm of 

LDTM can be written as 

For t = 1,2, …, T 

1. Draw Topics 

        𝛽𝛽𝑏𝑏,𝑘𝑘�𝛽𝛽𝑏𝑏−1,𝑘𝑘 ~ 𝛮𝛮�𝛽𝛽𝑏𝑏−1,𝑘𝑘,𝜎𝜎2𝐼𝐼� 

 2.  Draw at 

       𝛼𝛼𝑏𝑏|𝛼𝛼𝑏𝑏−1 ~ 𝛮𝛮(𝛼𝛼𝑏𝑏−1, 𝛿𝛿2𝐼𝐼) 

 For each document: 

  3. Topic proportion 

  𝜂𝜂𝐺𝐺,𝑑𝑑|𝛼𝛼𝑏𝑏 ~ 𝑁𝑁(𝛼𝛼, 𝑟𝑟2𝐈𝐈) 

  𝜃𝜃𝐺𝐺,𝑑𝑑|𝜂𝜂𝐺𝐺,𝑑𝑑~ 𝜋𝜋�𝜂𝜂𝐺𝐺,𝑑𝑑� 

  For each word: 

       if word == ‘battery’: 

    𝑧𝑧𝑏𝑏,𝑑𝑑,𝑛𝑛 = 1 

   else: 

    4. Topic-word assignment 

    𝑧𝑧𝑏𝑏,𝑑𝑑,𝑛𝑛|𝜃𝜃𝑏𝑏,𝑑𝑑  ~ 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑇𝑇𝑀𝑀𝑇𝑇𝑚𝑚𝑇𝑇𝑟𝑟𝑀𝑀�𝜃𝜃𝑏𝑏,𝑑𝑑� 

    𝑤𝑤𝑑𝑑,𝑛𝑛|𝑧𝑧𝑑𝑑,𝑛𝑛�𝛽𝛽𝑏𝑏,𝑘𝑘� ~ 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑇𝑇𝑀𝑀𝑇𝑇𝑚𝑚𝑇𝑇𝑟𝑟𝑀𝑀 �𝜋𝜋�𝛽𝛽𝑏𝑏,𝑧𝑧𝑑𝑑,𝑧𝑧�� 

Here 𝜋𝜋(∙) is a softmax function that can fix the sum of 𝛽𝛽𝑏𝑏,𝑧𝑧𝑑𝑑,𝑧𝑧 to 1. 
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B. MCMC method for the Bass model 

B.1 Prior Settings for the Bass model 
Parameter Setting 

𝑚𝑚𝐺𝐺 ~ 𝑁𝑁(𝜇𝜇𝑚𝑚0, 𝜏𝜏𝑚𝑚0−1) 𝜇𝜇𝑚𝑚0 = 0, 𝜏𝜏𝑚𝑚0 = 0.1 

𝑞𝑞𝐺𝐺  ~ 𝑁𝑁�𝜇𝜇𝑞𝑞0, 𝜏𝜏𝑞𝑞0−1� 𝜇𝜇𝑞𝑞0 = 0, 𝜏𝜏𝑞𝑞0 = 0.1 

𝑝𝑝 ~ 𝑁𝑁�𝜇𝜇𝑝𝑝0, 𝜏𝜏𝑝𝑝0−1� 𝜇𝜇𝑝𝑝0 = 0, 𝜏𝜏𝑝𝑝0 = 0.1 

𝑋𝑋𝐺𝐺 ~ 𝑁𝑁(𝜇𝜇𝑋𝑋 , 𝜏𝜏𝑋𝑋−1) 𝜇𝜇𝑋𝑋0 = 0, 𝜏𝜏𝑋𝑋0 = 0.1 

σ~ 𝐼𝐼𝐼𝐼(𝑟𝑟, 𝑏𝑏) a = 3, b = 10 

𝛼𝛼𝐺𝐺 ~ 𝑁𝑁(𝜇𝜇α0, 𝜏𝜏α0−1) 𝜇𝜇𝛼𝛼0 = 0, 𝜏𝜏α0 = 0.1 

𝜷𝜷𝑮𝑮 ~ 𝑁𝑁�𝜇𝜇β0, 𝜏𝜏β0−1� 𝜇𝜇𝛽𝛽0 = 0, 𝜏𝜏β0 = 0.1 

σ𝑥𝑥~ 𝐼𝐼𝐼𝐼(𝑟𝑟, 𝑏𝑏) a= 3, b = 10 

Θ~ 𝑁𝑁(𝜇𝜇Θ0, 𝜏𝜏Θ0−1) 𝜇𝜇Θ0 = 0, 𝜏𝜏Θ0 = 0.1 

𝚵𝚵~ 𝐼𝐼𝐼𝐼(𝑟𝑟, 𝑏𝑏) a = 3, b = 10 

* 𝛅𝛅 is the vector of �Δ𝑚𝑚,Δ𝑞𝑞 ,𝜎𝜎𝛼𝛼,𝜎𝜎𝛽𝛽�, 𝚵𝚵 is the vector of �𝜎𝜎𝑚𝑚,𝜎𝜎𝑞𝑞 ,𝜎𝜎𝛼𝛼,𝜎𝜎𝛽𝛽�. 

B.2 Conditional Posterior Distributions 

(1)  

For iter (=1, …, R) of MCMC iterations, we use Metropolis-Hastings with a random 

walk algorithm for each generation G, 

𝑚𝑚𝐺𝐺
(𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏) =  𝑚𝑚𝐺𝐺

(𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏−1) +  𝜆𝜆𝑚𝑚;  𝜆𝜆𝑚𝑚 ~ 𝑁𝑁(0,0.05), (B. 1) 

where the acceptance probability is  

α = min�1,
𝑝𝑝�𝑚𝑚𝐺𝐺

(𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏) | {𝑦𝑦𝐺𝐺 , 𝑡𝑡,𝑋𝑋𝐺𝐺}, {𝑝𝑝, 𝑞𝑞𝐺𝐺},𝜎𝜎�

𝑝𝑝�𝑚𝑚𝐺𝐺
(𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏−1) | {𝑦𝑦𝐺𝐺 , 𝑡𝑡,𝑋𝑋𝐺𝐺}, {𝑝𝑝, 𝑞𝑞𝐺𝐺},𝜎𝜎�

� , (B. 2) 

where t = 1, …, N and G = 1, 2, …, 5. 

|{ , , }{ , },G G G Gm y t X p q σ
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(2)  

For p and 𝑞𝑞𝐺𝐺, we also use Metropolis-Hastings sampling, which is the same as 𝑚𝑚𝐺𝐺 

above. 

.                            (B.3) 

The probability of acceptance is  

min�1,
𝑝𝑝�𝑝𝑝(𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏) | {𝑦𝑦𝐺𝐺 , 𝑡𝑡,𝑋𝑋𝐺𝐺}, {𝑚𝑚𝐺𝐺 , 𝑞𝑞𝐺𝐺},𝜎𝜎�

𝑝𝑝�𝑝𝑝(𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏−1) | {𝑦𝑦𝐺𝐺 , 𝑡𝑡,𝑋𝑋𝐺𝐺}, {𝑚𝑚𝐺𝐺 , 𝑞𝑞𝐺𝐺},𝜎𝜎�
� . (B. 4) 

 (3)  

𝑞𝑞𝐺𝐺
(𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏) =  𝑞𝑞𝐺𝐺

(𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏−1) + 𝜆𝜆𝑞𝑞;  𝜆𝜆𝑞𝑞 ~ 𝑁𝑁(0,0.05).            (B.5) 

The acceptation probability is  

min�1,
𝑝𝑝�𝑞𝑞𝐺𝐺

(𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏) | {𝑦𝑦𝐺𝐺 , 𝑡𝑡,𝑋𝑋𝐺𝐺}, {𝑚𝑚𝐺𝐺 ,𝑝𝑝},𝜎𝜎�

𝑝𝑝�𝑞𝑞𝐺𝐺
(𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏−1) | {𝑦𝑦𝐺𝐺 , 𝑡𝑡,𝑋𝑋𝐺𝐺}, {𝑚𝑚𝐺𝐺 , 𝑝𝑝},𝜎𝜎�

� . (B. 6) 

 (4)  

𝑋𝑋𝐺𝐺
(𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏) = 𝑋𝑋𝐺𝐺

(𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏−1) + 𝜆𝜆𝑋𝑋;  𝜆𝜆𝑋𝑋  ~ 𝑁𝑁(0,0.05). (B. 7) 

The acceptation probability is  

min�1,
𝑝𝑝�𝑋𝑋𝐺𝐺

(𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏) | {𝑦𝑦𝐺𝐺 , 𝑡𝑡, }, {𝑚𝑚𝐺𝐺 , 𝑞𝑞𝐺𝐺 ,𝑝𝑝},𝜎𝜎�

𝑝𝑝�𝑋𝑋𝐺𝐺
(𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏−1) | {𝑦𝑦𝐺𝐺 , 𝑡𝑡}, {𝑚𝑚𝐺𝐺 , 𝑞𝑞𝐺𝐺 ,𝑝𝑝},𝜎𝜎�

� . (B. 8) 

 (5) σ | {𝑦𝑦𝐺𝐺 , 𝑡𝑡,𝑿𝑿𝑮𝑮}, {𝑚𝑚𝐺𝐺 , 𝑞𝑞𝐺𝐺 ,𝑝𝑝} 

If we define estimated sales in period t for the Gth generation as 

y�𝐺𝐺𝑏𝑏 = 𝑓𝑓({𝑦𝑦𝐺𝐺 , 𝑡𝑡,𝑋𝑋𝐺𝐺}, {𝑚𝑚𝐺𝐺 , 𝑞𝑞𝐺𝐺}), (B. 9) 

we can update σ by 

𝐼𝐼𝐼𝐼 �a +
n
2

, b +
∑ (y𝑏𝑏 − ∑ y�𝐺𝐺𝑏𝑏𝑀𝑀

𝐺𝐺=1 )2𝑛𝑛
𝑏𝑏=1

2
� , (B. 10) 

M stands for number of generations in this equation. 

|{ , , }{ , },G G G Gp y t X m q σ

( ) ( ) ( )1 ; 0,0.05iter iter
p pp p Nλ λ−= + 

|{ , , }{ , },G G G Gq y t X m p σ

|{ , }{ , , },G G G GX y t m q p σ
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Marketing Mix. 

(6)  

For each topic j the posterior of coefficient 𝛼𝛼𝐺𝐺𝐺𝐺 can be derived from a normal regression 

equation from 

𝑁𝑁�(𝑀𝑀σ𝛼𝛼 +  σ𝛼𝛼0)−1 �σ𝛼𝛼��𝑋𝑋𝐼𝐼𝑇𝑇  − 𝑽𝑽𝑮𝑮𝐺𝐺 ∙ 𝛽𝛽𝐺𝐺 −  �𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇𝐺𝐺𝑘𝑘𝐺𝐺 ∙ 𝛼𝛼𝐺𝐺𝑘𝑘

𝑇𝑇≠𝐺𝐺

𝑘𝑘=1

�𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇𝐺𝐺𝐺𝐺−1
𝑛𝑛

𝐺𝐺=1

+ 𝜇𝜇𝛼𝛼0σ𝛼𝛼0� , (𝑀𝑀σ𝛼𝛼 + σ𝛼𝛼0)−1� 

( ) ( )1 1( ) ( ) ( ) ( )  G G G G G G G G G G Gm f t F t y t F t Y t f tτ τ τ τ− −≡ − − + − + −　　

 (𝐵𝐵. 11) 

(7)  

𝑁𝑁��𝑀𝑀σ𝛽𝛽 +  σ𝛽𝛽0�
−1 �σ𝛼𝛼�(𝑋𝑋𝐼𝐼𝑇𝑇  − 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑮𝑮𝑻𝑻 ∙ 𝜶𝜶𝑮𝑮 )𝑉𝑉𝐺𝐺−1

𝑛𝑛

𝐺𝐺=1

+ 𝜇𝜇𝛽𝛽0σ𝛽𝛽0� , �𝑀𝑀σ𝛽𝛽 + σ𝛽𝛽0�
−1� (𝐵𝐵. 12) 

(8)  

𝐼𝐼𝐼𝐼 �α +
n
2

,β +
∑ (X𝐺𝐺𝐺𝐺 − 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑮𝑮𝑻𝑻 ∙ 𝜶𝜶𝑮𝑮 − 𝑽𝑽𝑮𝑮𝐺𝐺 ∙ 𝛽𝛽𝐺𝐺)2𝑛𝑛
𝐺𝐺=1

2 � . (B. 13) 

 

Hierarchical Structure. 

 (9)  

Assuming D as data matrix for hierarchical structure, we can derive the posterior of co-

efficient 𝛿𝛿𝑚𝑚𝐺𝐺 by 

𝑁𝑁�(𝑀𝑀σ𝑚𝑚 +  σ𝑚𝑚0)−1 �σ𝑚𝑚 ��𝑚𝑚𝐼𝐼  −�(𝐷𝐷𝐺𝐺𝑧𝑧 ∙ 𝛿𝛿𝑚𝑚𝑧𝑧)
𝐾𝐾≠𝐺𝐺

𝑧𝑧=1

 �𝐷𝐷𝐺𝐺𝐺𝐺−1
𝑀𝑀

𝐺𝐺=1

+ 𝜇𝜇𝑚𝑚0σ𝑚𝑚0� , (𝑀𝑀σ𝑚𝑚 + σ𝑚𝑚0)−1�. 

(B. 14) 

(10)  

{ }| , , , , ,G G G G xX t σαα ΔLTopic V

{ }G | , , , , ,G G G xX tβ σβΔLTopic V

{ } { }G| , , , , ,x G G G GX tσ βα LTopic V

{ } { }1| , , ,G G G mm m σ−mΔ T

{ } { }1| , , ,m G G Gm mσ − mΔT
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𝐼𝐼𝐼𝐼 �α +
n
2

,β +
∑ �m𝐺𝐺 − ∑ (𝐷𝐷𝐺𝐺𝑧𝑧 ∙ 𝛿𝛿𝑚𝑚𝑧𝑧)𝑧𝑧=1 �

2𝑀𝑀
𝐺𝐺=1

2
� . (B. 15) 

As the sampling methods are the same among all the hierarchical structures, we can 

sample for other parameters (𝚫𝚫𝒒𝒒,𝚫𝚫𝜶𝜶 𝑟𝑟𝑀𝑀𝑎𝑎 𝚫𝚫𝜷𝜷) as well. 

 

Forecasting 

(10)  

      For 𝑇𝑇𝑡𝑡𝑟𝑟𝑟𝑟 = 1, … , ITER, after sampling all the parameters using MCMC, the forecast-

ing unit sales for the G-th generation 𝑦𝑦𝐺𝐺(𝑡𝑡) can be written as 

 

(B.16) 
where  

( ) ( )( )
( ) ( )( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 exp ( )( ) ( )
1+ exp ( )

| , =
iter iter iter

G G

iter iter iter iter iter
G G G

GG
p q X titer iter

q / p p q X t
F t p q

− − +

− +
.   (B.17) 

Note that  

      

(B.18) 

then total sales  can be calculated by 

 ( )( )( ) ( ) iteriter
G

G
y t y t=∑  .  (B.19) 

  

( ) | , , , ( ), , ( 1), ( )G G G G G Gy t m q p X t t V t−T LTopic

( )( )
( ) ( )

1 1 1 2
( ) ( )

1 1 1 2 2 2

( ) ( )

( ) ( ) , ,                      
( ) ( ) 1 , ,                      

( ) ( )

iter iter

iter iter

iter iter
G G G G G

y t m f t t
y t m f t F t t

y t m f t F t

τ
τ τ

τ

 = <
 = − − ≥

= −

　                               
　                   

( )
( )

( )
( )

1

( ) ( )
1 1

( ) ( )
1

( ) ( )
1 1

,  1 ,

( ) ( ) ( ),  

( ) ( ( ) ,  1 ,

               ( ) ( ) (

G G G

iter iter
G G G G G G

iter iter
G G G G G G G

iter iter
G G G G G

t G N

y t F t Y t f t

y t m f t F t t G N

y t F t Y t f

τ τ τ

τ τ

τ τ τ

τ

+

− −

+

− −

− ≤ < < ≤

+ − + −

= − − ≥ < ≤

+ − +

              

　　   　

 　　            

( )( )1 1)) 1 ,G G Gt F tτ τ+ +






 − × − −

( )

( )

( ) ( ) ( )

( ) ,                                                                                           

( ) log ( ) (0) ' ( 1),     

iter
G G

iter iter iter
G G G G G G G

X t t t

X t t V t V t t

τ

β τ

 = <


= + + − ≥ α LTopic

( )( ) itery t
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Table 4.1 Cross-correlation between Topics and Sales 

 

 

Table 4.2 Top Words of Each Topic  

 

Topic 1 Topic 2 Topic 3
t -0.193 -0.271 -0.051

t-1 0.575 0.575 0.688
t-2 0.097 0.020 0.286

Topic 1 iPhone 5 iPhone 5s iPhone 6 iPhone 6s iPhone 7 iPhone X/8
1 apple apple phone apple apple apple
2 time battery apple battery ios face
3 new ios android ios phone phone
4 iphone use ios phone android id
5 market apps use time charging charging
6 device problem time back back recognition
7 innovation phone apps charging battery fingerprint
8 nfc update problem new fast like
9 apples app device apps time screen

10 like like new jack wireless innovation

Topic 2 iPhone 5 iPhone 5s iPhone 6 iPhone 6s iPhone 7 iPhone X/8
1 iphone iphone iphone iphone iphone iphone
2 5 5s 6s 7 8 s8
3 samsung android 6 plus plus samsung
4 better better better better 7 x
5 galaxy samsung samsung ram x 8
6 4s s4 camera camera better display
7 s3 phone android samsung 5 screen
8 ios 5 ram screen s8 better
9 screen camera plus 6s screen android

10 lumia good s6 s7 display ram

Topic 3 iPhone 5 iPhone 5s iPhone 6 iPhone 6s iPhone 7 iPhone X/8
1 iPhone 5 iphone iphone iphone iphone iphone
2 apple phone phone phone phone phone
3 phone buy apple buy apple apple
4 iphone u dont apple dont x
5 dont dont buy dont buy dont
6 u 5s like like like buy
7 buy apple people u people like
8 like one best phones one want
9 people im one android im better

10 im want u want samsung one

Property

Comparison

Discussion

𝜑2,𝑣 
𝑏𝑏

𝜑1,𝑣 
𝑏𝑏

𝜑3,𝑣 
𝑏𝑏
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Table 4.4 Model Evaluations 

 
 

Table 4.5 Parameter Estimates 

 

 

Table 4.6 Estimates of Hierarchical Structure 

 
 

  

Model 1 2 3 4 5 6 7 8 9 10
RMSE(Train) 3.251 3.215 2.883 3.059 4.217 3.766 3.649 3.038 3.587 2.897
RMSE(Test) - - - - 9.097 5.091 8.881 4.987 3.552 3.495

log(ml) -95.07 -90.57 -75.6 -75.9 -85.56 -74.48 -84.473 -75.993 -85.92 -75.911
DIC 258.4 250.5 207.18 208.88 269.52 211.57 271.43 205.55 241.58 196.1

Zeroth-Order                          First-Order

m p q
18.391 0.900
(1.035) (0.186)
9.916 0.285
(0.739) (0.112)
10.182 1.002
(0.746) (0.103)
10.839 1.061
(0.473) (0.137)
10.106 1.108
(1.275) (0.204)

G1

G2

G3

G4

G5

0.098
(0.012)

-0.018
(0.001)

0.011
(0.001)

0.047
(0.000)

𝛼𝛼1 𝛼𝛼2 𝛼𝛼3

intercept
0.037 0.031 -0.025 0.022 0.976
(0.002) (0.002) (0.001) (0.001) (0.001)
-0.014 0.036 0.011 -0.049 1.010
(0.000) (0.001) (0.002) (0.001) (0.001)

𝛿𝛿𝑚𝑚

𝛿𝛿𝑞𝑞

𝑇𝑇1 𝑇𝑇2 𝑇𝑇3 𝑚𝑚(𝑞𝑞)𝐺𝐺−1
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Fig. 3.1 Role of Social Media before and after Launch 

 

 

 
Fig. 4.1 Sales of iPhone 
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Fig. 4.2 Evaluating Number of Topics 

 

 

Fig. 4.3 Time Series Plot of Sales and Topics 
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Fig. 4.4 Forecasting Sales of Unlaunched New Generation 

 

 

Fig. 5.1 Smartphone Unit Shares and Marketing Share 
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Fig. 5.2 Social Media Effect 

 

 

Fig. 5.3 Leapfrog Effect of iPhone 
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Fig. 5.4 Leapfrog Effect Comparison between iPhone and Android 

 
 
 

 

Fig. 5.5 Difference of Leapfrogging 
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