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Abstract 

 

This study proposes a method to evaluate the construct validity for a nonlinear 

measurement model. Construct validation is required when applying measurement 

and structural equation models to measurement data from consumer and related 

social science research. However, previous studies have not sufficiently discussed 

the nonlinear measurement model and its construct validation. This study focuses 

on convergent and discriminant validation as important processes to check whether 

estimated latent variables represent defined constructs. To assess the convergent and 

discriminant validity in the nonlinear measurement model, previous methods are 

extended and new indexes are investigated by simulation studies. Empirical analysis 

is also provided, which shows that a nonlinear measurement model is better than 

linear model in both fitting and validity. Moreover, a new concept of construct 

validation is discussed for future research: it considers the interpretability of 

machine learning (such as neural networks) because construct validation plays an 

important role in interpreting latent variables. 

 

Keywords: Construct validation, Nonlinear measurement model, Reliability 

coefficient, Convergent validity, Discriminant validity 
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1. Introduction 

The psychological scale, known as the “marketing scale” in marketing and consumer behavior 

research, is an instrument used to measure latent psychological constructs by applying factor 

analysis as measurement model. Assuming some constructs for consumer psychologies and 

behaviors, structural equation modeling (SEM) is often used with these constructs specified by 

the measurement model. Before estimating by SEM, we usually evaluate reliability and validity 

to check the accuracy of the estimated constructs. Hence, construct validity is an important topic 

to estimate the causal relationship among constructs in consumer research.  

Construct validity has been discussed by a number of researchers (e.g., Cronbach & Meehl 

1955; Campbell & Fiske 1959; Bagozzi et al. 1991; Anderson & Gerbing 1992; Messick 1995; 

Edwards 2001; 2003; Hughes 2018), and the modern concepts have been established by Messick 

(1995). Because we deal with uncertain and unobserved variables, researches are concerned 

about reliability and validity of latent variables; from not only a theoretical but also an empirical 

perspective. Therefore, some statistical methods of construct validation have been discussed and 

developed uniquely in the marketing area (Hair et al. 2009; Bagozzi & Yi 1988; Fornel & Lacker 

1981).  

The measurement model and validation for the constructs have a strong relationship with 

classical test theory (CTT). Although most researchers have not mentioned this relationship in 

practical research, CTT is a very important subject in psychometrics. In addition, the relationship 

between CTT and item response theory (IRT) is given Turker (1946) and Lord and Novick 

(1968); thus, IRT model is recognized as one kind of nonlinear CTT model in psychometrics 

(Lewis 2006). 

In consumer research, however, CTT is always assumed implicitly when using the 

measurement model with questionnaires. Besides, methods related to measuring constructs have 

been extended with a linear CTT assumption; that is, observed scores are linearly rerated to true 

scores. Although this assumption makes it easier to measure true scores and to estimate 

reliability, it is necessary to consider the possibility of measuring error problem caused by 

choosing an inappropriate functional relationship between the observed and true scores.  

The purpose of this study is to discuss a nonlinear measurement model and its construct 

validation in consumer research. First, we review the linear measurement model and the 

construct validation. Second, we discuss effective construct validation methods for a nonlinear 

measurement model. Third, the results of several simulation studies and empirical analysis using 

SEVQLAL (PZB 1985; 1988) are provided. Finally, we discuss the importance of construct 

validation and its extension to interpretable machine learning. 

 

 

 

2. Linear Measurement Model and Construct Validation 

2.1. Linear Factor Analysis Model and CTT 

CTT is a traditional psychological measurement theory based on the concept of a “true score” 

in psychometrics (e.g., Novick 1966; Traub 1997; Jones & Thissen 2006; Lewis 2006). In the 

most basic approach to the measurement model of CTT, the observed score Z is considered to 

be the sum of a true score T and a random error E: 

 

 ETZ  . (1) 

 

The standard deviation of the errors E indicates a statement of the (rack of) precision, or standard 

error, of the observed score. We want to measure the true score T, but we can only obtain the 

observed score containing the measurement error. Because the true score can be regarded as a 

latent variable, factor analysis is a standard method used to estimate the true score T, called the 

“construct” or “latent trait.” 

There are mostly three kinds of definitions for the measurement model, depending on 

different parameter assumptions (Jöreskog 1971; Novick & Lewis 1967; Rajaratnam et al. 
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1965); see Figure 1. To explain the difference among the three measurement models with factor 

analysis, we define a general equation form for independent individual 𝑖 (𝑖 = 1, ⋯ , 𝑛) and for 

item 𝑗 (𝑗 = 1, ⋯ , 𝑝):  

 

 jiijji tz   , (2) 

 

where 𝑧𝑗𝑖 is a observed or standardized observed variable, 𝜆𝑗 is a factor loading called the 

“discrimination parameter” (or “regression coefficient”) for item 𝑗, 𝑡𝑖  is a common factor or a 

latent variable corresponding to the construct as a true score, and 𝜀𝑗𝑖 is the measurement error 

assumed to be distributed as a normal distribution. The assumptions of CTT are represented by 

(2) with the following equations: 

 

   0itE  for all 𝑖, (3) 

   1itVar  for all 𝑖, (4) 

   0jiE   for any 𝑗 and all 𝑖, (5) 

  ji jVar    for any 𝑗 and all 𝑖, (6) 

   0, sijiCov   for any 𝑗 ≠ 𝑠 and all 𝑖, (7) 

   0, jiitCov   for any 𝑗 and all 𝑖. (8) 

 

The first, parallel measurement model is that the construct has the same degree of discrimination 

for each item and that the precision for each item is common. Hence, the following restrictions 

are additionally assumed: 

 

 p  21 , (9) 

 p  21 . (10) 

 

The second, tau-equivalent measurement model, assumes that the construct has the same 

discrimination for each item, but that all the items have a different precision. Hence, we 

additionally assume restriction (9) and that 𝜓𝑗 for any 𝑗 is a parameter. The third, congeneric 

measurement model assumes that the construct has a different discrimination for each item and 

that each item has a different precision. Hence, 𝜆𝑗 and 𝜓𝑗 for any 𝑗 are treated as parameters. 

Therefore, each model can be estimated by factor analysis model with setting above 

restrictions. In marketing and most the other social science areas, congeneric measurement 

model is a standard method to estimate constructs. 

 

Figure 1: Three different measurement equations 

 

 

2.2. Misspecification between Reflective and Formative Models 

Another kind of measurement model, the formative model, represents a principal component 

analysis (PCA) model specification. Although this model can be regarded as one kind of the 

factor analysis model specification from the view of probabilistic principal component analysis 

(PPCA), the refractive and formative Model are treated as different specifications (see Figure 2) 

in consumer behavior research. Jarvis et al. (2003) discussed the misspecification between 

refractive and formative models in consumer behavior research. They investigated the top 

journals related to Marketing (Journal of Marketing Research, Journal of Marketing, Journal of 

Consumer Research, Marketing Science,) and found some studies in even those top journals 

contain the misspecification. Because this misspecification provides a different estimate for the 
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parameters in the structure model, it is important to clarify the assumptions between observable 

and latent variables when applying the measurement model. 

 

Figure 2: Reflective and formative models 

 

 

2.3. Linear Factor Analysis Model and Construct Validation 

This section introduces different kinds of reliability coefficients and a method to evaluate the 

convergent and discriminant validity for construct validation. 

 

2.3.1. Measurement Model and Reliability Coefficient 

Reliability in CTT is defined as the proportion of observed score variance due to variance among 

individual true scores (Novic 1966; Lewis 2006; Webb et al. 2006). Coefficient alpha or 

Cronbach’s alpha (Cronbach 1951) is most frequently used in the present methods (MacKenzie 

et al. 2011). From the composite measurement (Novic & Lewis 1967) aspect, we can obtain 

another expression of Cronbach’s alpha in Eq. (11) and appendix A.1, and it is helpful to 

understand the relationship between the measurement model and the reliability coefficient. 

Equation (3) indicates that Cronbach’s alpha represents a reliability coefficient when assuming 

the tau-equivalent test. In other words, this reliability estimates a coefficient to evaluating a 

measurement model with the condition that the factor ladings are equal for all observed variables. 

Therefore, when standard factor analysis is assumed, Cronbach’s alpha is not suitable to evaluate 

the reliability for the measurements: 

 

 
 

 

2 2
1

2 2

1

1
1




 





 
   
  
 





p

jij

t p

jj

Var zp p

p Var Z p
. (11) 

 

Another well-known estimator for reliability is coefficient omega (McDonald 1978). As in 

the case of coefficient alpha (see Appendix A.2), coefficient omega can be expressed as Eq.  

(12). This is a reasonable estimator for the reliability of a congeneric test, which is a standard 

assumption of factor analysis. Moreover, the third entity in (12) was proposed for construct 

reliability (CR) by Fornell & Larcker (1981) in the marketing area (see also Hair et al. 2009; 

MacKenzie et al. 2011). This estimator is also valid for the parallel and tau-equivalent tests so 

that coefficient omega (or CR) is a generalization of the reliability estimator among the three 

basic test models: 
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
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2.3.2.  Convergent and Discriminant Validity 

Convergent validity is a confirmation that measures for the same construct have adequate 

relationships with each other, and the measures should be distinguished from that for other 

constructs. This is called “discriminant validity.” Both validations are required for justification 

of a novel trait measure, validation of test interpretation and establishing construct validity 

(Campbell and Fiske 1959). Campbell and Fiske (1959) proposed multi trait method matrix 

(MTMM) to evaluate convergent and discriminant validity jointly. However, it is inconvenient 

for secondary users to prepare additional different measurement methods. Moreover, Bagozzi et 

al. (1991) showed that MTMM is not effective in several situations because of the limited 

assumptions. 
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Confirmatory factor analysis (CFA) also provides a method for convergent and discriminant 

validation (Anderson & Gerbing 1988; Bagozzi & Yi 1988 Bagozzi & Phillips 1982). In most 

situations, applying CFA results is useful to check construct validity. However, comparison 

between the fixed correlation (equal to 1) and the unfixed CFA models for discriminant validity 

is not effective because high correlation (equal to 0.9) can still produce significant differences 

in fit between the two models (Hair et al. 2009). 

For effective judgment, average variance extracted (AVE), which was also produced by 

Fornell & Larcker (1981), can be applied to evaluate both convergent and discriminant validity 

(Fornell & Larcker 1981; Hair et al. 2009; MacKenzie et al. 2011). AVE is defined as Eq. (13) 

and is required to be > 0.5 for convergent validity. AVE can be regarded as an average of factor 

loadings (Hair et al. 2009) because the sum of standardized commonality and uniqueness is 

equal to 1. Compared with CR, AVE does not contain the cross terms of each factor loading 

because the square is inside the summation such that AVE indicates the average of the 

independent degree of the relationship between observed variables and a construct: 

 

 

2 2

1 1

2

1 1

or

p p

j jj j

t p p

j jj j

AVE
p

 

 

 

 




 

 
. (13) 

 

The criterion of discriminant validity is required so that each AVE is larger than the squared 

correlation among constructs. 

In practice, we usually estimate the true score variance; thus, CR and AVE in these formulas 

are calculated by standardized factor loadings and uniqueness with converting 𝑉𝑎𝑟(𝑡𝑖) = 1. 

Otherwise, we use the following equations directly by replacing 𝑉𝑎𝑟(𝑡𝑖)  with an estimated 

value. 

 

 
   

   

2
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2

1 1



 


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
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p
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. (14) 
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2
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
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p
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. (15) 

 

2.3.3. Example for Problems of Invalidity 

Here, we consider the insufficient convergent and discriminant validities (see Figure. 3). The 

first problem is unexpected small factor loading, hence, a small AVE. The equation of the 

relationship between 𝑡1 and 𝑧1 in Figure 3 can be expressed as follows: 

 

  1, 1, 1, 1,0.05 ,   0,0.9975i i i iz t N   . (16) 

 

Because the measurement model represents a regression of observed variables on latent 

variables, this model cannot discriminate the answer in 𝑧1 . For example, we assume 𝑡1 

indicates “satisfaction.” If 𝑡1,𝑖   takes 5  as strongly satisfied, then this model predicts 𝑧̂1,𝑖 =
0.25. If 𝑡1,𝑖  takes −5 as strongly dissatisfied, then this model predicts 𝑧̂1,𝑖 = −0.25. Hence, 

this model expresses that both satisfied and dissatisfied consumers will answer very close score 

in 𝑧1 even if they have different degrees of potential satisfaction. In addition, owing to the large 

measurement error, this model indicates that the scores in 𝑧1 will be observed randomly rather 

than depending on the satisfaction. 
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The second problem is unexpected large correlation among constructs. In the model from 

Figure 3, AVE2̂ ≅ 0.7  is larger than 𝑟̂1,2
2 = 0.64  but AVE1̂ ≅ 0.26  is not. This example 

indicates that 𝑡1 has a stronger relationship with 𝑡2 than 𝑧1, 𝑧2, and 𝑧3 even if one assumed 

the exact relationship between the observed variables and the construct. Therefore, this model 

cannot distinguish the difference between 𝑡1 and 𝑡2; hence, these constructs can be regarded 

as almost the same construct. 

 

Figure 3: The problem of a small factor lading and a large correlation 

 

For instance, a price indicates the price exactly; however, the items of measurement are 

defined by the researcher with some assumptions and theories. Hence, evaluating convergent 

and discriminant validity is important for the interpretation and explanation of each construct, 

especially in consumer research when treating very similar constructs. 

 

 

 

3. Nonlinear Measurement Model and Its Construct Validation 

This section discusses a nonlinear measurement model and its construct validation considering 

a nonlinear process in consumers’ evaluation and decision making. In Section 2, we discussed 

that the measurement model represents a generating process of observed scores so that the true 

score assumed to appear linearly by adding random errors. Several researches establish a model 

while assuming the respondents consistently understand the questions, and are able and willing 

to answer them (Fowler & Cannell 1996). However, the answering questions sometimes 

involves complex thinking, and it then causes “Rater Errors” (see Mathis & Jackson 2010, 

pp.347-349). Although one expects the respondent to answer honesty, in most cases the answer 

might depend on individual standards or experiences. Respondents may determine which 

information they ought to provide by relying on relative previously formed attitudes or 

judgements from their memories, or whatever relevant accessible information, when they answer 

the questions (Schwarz 2007).  

 

3.1. Nonlinear Measurement Model 

Focusing on only linearity in the generating process of observable scores may produce improper 

estimates for the true scores. In addition, construct validation may lead to incorrect results 

because the previous method is based on the linear measurement model. Therefore, we consider 

the following nonlinear measurement model and its construct validation: 

 

  ji j i jiz λ f t ε  , (17) 

 

This model uses one kind of nonlinear specification that enables extension to IRT model because 

IRT model regards the observed score as probability and is specified by a logistic function or 

cumulative normal distribution function. In addition, a basic IRT model has an exact relationship 

with linear categorical factor analysis (Lewis 2006). Although above model is extended in line 

with CTT, several kinds of functions can be specified in this model. The estimation of the above 

nonlinear measurement model can be replaced to nonlinear factor analysis (e.g., Zhu & Lee 

1999). 

 

3.2. Construct Validation for the Nonlinear Measurement Model 

In Section 2, we introduced CR for reliability and AVE for convergent and discriminant validity, 

which are important indexes in construct validation. Therefore, we propose CR and AVE for the 

nonlinear measurement model. The reliability coefficient can be regarded as a unit slope for  

the regression of observed scores on true scores (Novic 1966). Hence, we may replace the 

estimation of the reliability coefficient with an estimation of marginal effects of true scores on 
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the observed scores. However, it is required to evaluate the true score variance with a functional 

transformation so that CR and AVE for Eq. (17) are approximated by the following equation 

with Taylor series approach: 

 

    

    
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f E t Var t

 (18) 
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f E t Var t

 (19) 

 

where 𝑓′(𝐸(𝑡𝑖)) =
𝑑𝑓(𝑡𝑖)

𝑑𝑡𝑖
]

𝑡𝑖=𝐸(𝑡𝑖)
 and 𝑓′(𝐸(𝑡𝑖)) ≠ 0. 

 

These estimators produce the same results of original CR and AVE in linear measurement model 

and the detail of these indexes are explained in Appendix B. In practice, Eq. (18) and (19) can 

be used by replacing 𝐸(𝑡𝑖) = 0 and 𝑉𝑎𝑟(𝑡𝑖) = 𝜎𝑡
2, because we usually assume 𝑡𝑖~𝑁(0, 𝜎𝑡

2).  

 

 

 

4. Simulation Study 

To investigate the performance of CR´ and AVE´, we prepared the following common settings 

for simulation studies. The dataset is generated with a sample size of n = 300 from a nonlinear 

measurement model defined as 

 

 
 

 , ,

   

N

z t

0

F 


 (20) 

 

with six observed variables that are related to two basic latent variables (𝒕(1), 𝒕(2)) , and a 

nonlinear function 𝐹(𝒕(1), 𝒕(2)). The factor loadings are given by 

 

 
2,1 3,1

4,2 5,2

0 01 0

0 0 0 1

T
 

 

 
   

 
, (21) 

 

where the 1s and 0s are treated as known fixed parameters, and the 𝜆𝑗,𝑘 are unknown parameters. 

The true population values of the unknown parameters are given by 𝜆𝑗,𝑘 = 1 for all 𝑗 and 𝑘 

as specified in Λ . The variance covariance matrix of latent variables 𝒕  is given by 

(𝜙11, 𝜙12, 𝜙22) = (1, 0.5, 1). The variance of each measurement error is given by 𝜓𝑗𝑗 = 1.5 
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for all 𝑗 = 1, ⋯ ,6. Bayesian estimation is adopted to obtain estimates for the parameters (see 

Appendix D). 

 

4.1. Study 1: Logistic Function 

In the first example, consider a logistic function defined as, 

 

  
 ,

,

1 1

21 exp
k i

k i

f t C
t

  
  

  

, (22) 

 

where 𝐶 = 7 so that (22) takes −3.5 and 3.5 as the minimum and maximum values of the 

curve, respectively, and 𝑓(0) = 0. Hence, CR´ and AVE´ are given by 
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Table 1 shows the result of study 1 and indicates that each HPDI for the bias between the 

parameter and the bias contains 0 so that the estimates by proposed CR´ and AVE´ were close 

to true settings. 

 

Table 1: Results of the logistic function 

 

However, the maximum and minimum values of a curve are unknown in practice; hence, we 

replace function (22) as shown below: 

 

  
 ,

,

1 1
z

21 exp
k i

k i

f t
t


  

  
  

, (25) 

 

where z∗ = 𝑚𝑎𝑥(𝐳∗) − 𝑚𝑖𝑛(𝐳∗) represents a range of standardized dataset 𝐳∗. We used the 

dataset generated from (22) with common settings whereas the model was specified (25) with 

z∗ = 6.018 . To compare the estimates with true parameters, we calculated the standardized 

parameters and estimates shown in Table 2. The results show that CR´ and AVE´ were estimated 

nearly unbiased by proposed method. 

 

Table 2: Results of the logistic function in practice 
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4.2. Study 2: Quadratic Function 

For the second example, consider the following quadratic function: 

 

        2

, , , ,0 0k i k i k i k if t I t I t t    , (26) 

 

where 𝐼  is an indicator function that takes the value 1 if the condition is satisfied and 0 

otherwise. Therefore, the model can also be expressed as 

 

    2 2

, , , , , ,0 0ji j k k i k i j k k i k i jiz I t t I t t       . (27) 

 

In this case, it is not so difficult to derive the variance of 𝑡𝑘,𝑖
2   because of the well-known 

relationship between normal distribution and chi-squared distribution. Because 𝑦𝑖
2~𝜒2(1) with 

𝐸(𝑦𝑖
2) = 1  and 𝑉𝑎𝑟(𝑦𝑖

2) = 2  when 𝑦𝑖~𝑁(0,1)  and √𝜎2𝑦𝑖 = 𝑡𝑖~𝑁(0, 𝜎2) , we obtain 

𝑉𝑎𝑟(𝑡𝑖
2) = 𝑉𝑎𝑟 {(√𝜎2𝑦𝑖)

2
} = 𝜎4𝑉𝑎𝑟(𝑦𝑖

2) = 2𝜎4 . Hence, CR´ and AVE´ are defined as 

follows: 

 

 

  
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 
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 (28) 

 

where 

 

    

     

     

 

2

, , , ,1 1

2 2

, , , ,1 1 1

2 2

, , , ,1 1 1

2

,1

0 0

0 0

0 0

,

n p

j k k i j k k ii j
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p
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 (29) 

 

and 
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 (30) 
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where 

 

    

     

     

2

, , , ,1 1

2 2

, , , ,1 1 1

2 2

, , , ,1 1 1

2

,1

0 0

0 0

0 0

.

n p

j k k i j k k ii j

n p p

j k k i j k k ii j j

n p p

j k k i j k k ii j j

p

j kj

V I t I t

I t I t

I t I t

n

 

 

 



 

  

  



   

     
  

    
  



 

  

  



 (31) 

 

Table 3 shows the results of study 2 and indicates that CR´ and AVE´ were estimated closely to 

true settings by proposed method. 

 

Table 3: Results of the quadratic function 

 

 

4.3. Study 3: Asymmetric Function 

Set the following factor ladings so that the model contains asymmetry. 

 

 

21 31

52 62

13 23 33

54 6444

0 001

10 0 0

0 00

0 0 0

T

 

 

  

 

 
 
  
 
 
 

, (32) 

 

where the 1s and 0s are treated as known fixed parameters, and the 𝜆𝑗,𝑘 are unknown parameters 

given by 𝜆𝑗,𝑘 = 1  for 𝑘 = 1, 2  and by 𝜆𝑗,𝑘 = 1.5  for 𝑘 = 3, 4  as specified in Λ  as true 

population values.  

Consider the following asymmetric linear function and asymmetric logistic function: 

 

       , ,0 0k i i i k if t I t I t t    , (33) 

       
 ,

,

1 1
0 0

21 exp
k i i i

k i

f t I t I t C
t

  
     

  

. (34) 

 

where C = 7. CR´ and AVE´ for each measurement model are given by 
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AVE
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, 
(36) 
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and 

 

 

  
 

 

  
 
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
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 
 

 
  


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k
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Var t W n
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, (37) 

 

 

 
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 
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 
 
 
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 
 

 
  



k i

k

p

k i jj

C
Var t W

AVE
asymmetric C

Var t W n
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, (38) 

 

where 

     
2

, , , 2 ,1 1
0 0

n p

j k k i j k k ii j
W I t I t   

    
   , (39) 

 

and 

     
2

, , , 2 ,1 1
0 0

n p

j k k i j k k ii j
W I t I t   

     . (40) 

 

Table 4 shows the results of the asymmetric linear measurement model. Table 5 shows the 

results of estimates by the asymmetric logistic function defined in (34), and Table 6 shows the 

results by replacing C in function (34) in the same way as in study 1 with z∗ = 5.636. 𝑃(E) in 

the tables indicates the probability of event E; thus the relationship of asymmetry was estimated 

almost certainly. The results indicate that the biases of estimates by proposed method are close 

to 0 in all settings  

 

Table 4: Results of the asymmetric linear function 

Table 5: Results of the asymmetric logistic function 

Table 6: Results of the asymmetric logistic function in practice 

 

 

 

 

5. Empirical Analysis 

We investigate nonlinear SERVQUAL model (PZB 1985; 1988; Figure 4) and its construct 

validation. SERVQUAL is a famous scale used in marketing to measure perceived service 

quality as the difference between consumers’ expectation and actual perception (PZB 1985; 

1988; 1993; 1994a; 1994b). Although a number of researchers conclude that the validity of 

SERVQUAL scale and model is not sufficient (e.g., Babakus & Boller 1992; Brown et al. 1993; 

Carman 1990; Cronin & Taylor 1992; 1994), they have discussed the validity under linear 

assumptions. Because consumers’ perceived service quality follows a value function according 

to prospect theory (Kahneman &Tversky 1979; Sivakumar et al. 2014), it is reasonable to 

assume a nonlinear process in the measurement model for SERVQUAL.  

The dataset (n = 300) was compiled from two companies in three industries through a 

Japanese research company. We estimate a linear measurement model with quadratic (QM), 
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logistic (LGM), and their asymmetric measurement model (ALM, AQM, ALGM) by Bayesian 

estimation. To compare these models, we calculate WAIC (Watanabe 2010a; Watanabe 2010b; 

Gelman 2013) and WBIC (Watanabe 2013) shown in Tables 7 and 8, which represent 

information criteria for model selection in terms of prediction and logarithm of Bayes marginal 

likelihood, respectively. We also produce the logarithm of the Bayes factor (Lee 2007; Song & 

Lee 2012) in Table 9. 

 

Figure 4: SERVQUAL model 

Table 7: WAIC 

Table 8: WBIC 

Table 9: Logarithm of the Bayes factor (double scale) 

 

WAIC and WBIC in Tables 7 and 8 select the same model in each company except Hotel B and 

Retail A. The bold and italic numbers in Table 9 show the acceptable model H1 compared with 

H0 and the best model (see also Lee 2007, p.114), respectively, in each company; thus the 

logarithm of the Bayes factor indicates that the most nonlinear measurement models are 

supported strongly in each company. 

Table 10 and 11 report the estimated CR and AVE in each company. The bold and italic 

numbers show that the estimated CR and AVE are less than the criterion 0.7 for CR and 0.5 for 

AVE. The quadratic model is the best model in most companies; however, some estimated CR 

and AVE do not achieve the criterion. Moreover, the estimated CR and AVE tend to get worse 

compared with the linear model. On the contrary, we find that the logistic and asymmetric 

logistic model improves CR and AVE compared with the other models. 

 

Table 10: CR (reliability coefficient) 

Table 11: AVE (convergent validity) 

 

 Tables 12 to 17 report a judgment of discriminant validity in each company. In each lower 

triangular matrix, diagonal elements show estimated AVEs and nondiagonal elements show 

squared estimated correlations among five factors. The bold and italic numbers indicate that the 

nondiagonal element is lower than the diagonal element so that the squared correlation is lower 

than AVE, meaning insufficient discriminant validity. We find that discriminant validities are 

satisfied in the logistic and asymmetric logistic model, whereas the other model does not achieve 

sufficient validity, in almost all cases. 

 

 

 

6. Concluding Remarks 

In this paper, we discussed a construct validation for a nonlinear measurement model. Two 

indexes, CR´ and AVE´, were developed as an alternative to CR and AVE, which were introduced 

in marketing area by Fornell & Larcker (1981). Simulation studies showed the performance of 

these new indexes and the several illustrations to derivate CR´ and AVE´. 

We also provided a reassessment of the validity of the SERVQUAL model proposed by PZB 

(1985; 1988) to measure perceived service quality in marketing research. Five nonlinear 

SERVQUAL models were investigated in empirical analyses, including the linear model. We 

found that the logistic and asymmetric logistic model are robust among all of the industries in 

terms of construct validity. Our results indicate that observed perceived service quality is 

associated nonlinearly and asymmetrically with latent true perceived service quality following 

the prospect theory (Kahneman &Tversky 1979; Sivakumar et al. 2014). 

In future research, it might be possible to adopt the concept of construct validation to create 

interpretable machine learning with a latent variable such as a neural network model. Because 

the machine learning model, or the algorithm known as “Black Box” (Ribeiro et al. 2016a; 

2016b), in many cases, results in a reasonable interpretation from these methods, it is an 
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important task in the social science area (Park 2012). Construct validation has been discussed to 

provide a certain validity and interpretation of latent variables estimated by factor analysis as a 

measurement model with item scales. We believe that construct validation connects the 

knowledge of establishing a model between social science and machine learning in terms of 

better prediction with reasonable interpretation.  
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Figures and Tables 

 

Figure 1: Three different measurement equations 

 
 

 

Figure 2: Reflective and formative models 
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Figure 3: The problem of a small factor lading and a large correlation 

 
 

 

 

Figure 4: SERVQUAL model 
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Table 1: Results of the logistic function 

 
 

 

Table 2: Results of the logistic function in practice 

 

 

Logistic Setting Bias SE

psi1 1.500 0.025 0.176 [ -0.293 , 0.396 ]

psi2 1.500 -0.183 0.192 [ -0.525 , 0.208 ]

psi3 1.500 0.168 0.211 [ -0.203 , 0.600 ]

psi4 1.500 0.052 0.179 [ -0.289 , 0.404 ]

psi5 1.500 0.075 0.201 [ -0.300 , 0.502 ]

psi6 1.500 -0.052 0.198 [ -0.398 , 0.348 ]

lam2 1.000 0.028 0.082 [ -0.125 , 0.184 ]

lam3 1.000 0.035 0.083 [ -0.107 , 0.211 ]

lam5 1.000 0.096 0.081 [ -0.063 , 0.254 ]

lam6 1.000 0.059 0.087 [ -0.100 , 0.228 ]

Phi11 1.000 -0.076 0.141 [ -0.320 , 0.197 ]

Phi22 1.000 -0.109 0.134 [ -0.354 , 0.145 ]

Phi12 0.500 -0.053 0.074 [ -0.186 , 0.088 ]

CR'1 0.860 -0.007 0.017 [ -0.041 , 0.023 ]

CR'2 0.860 -0.006 0.016 [ -0.035 , 0.029 ]

AVE'1 0.671 -0.011 0.030 [ -0.069 , 0.043 ]

AVE'2 0.671 -0.009 0.029 [ -0.059 , 0.056 ]

95%HPDI

Logistic2 Setting std Bias SE

psi1 1.500 0.329 0.012 0.045 [ -0.066 , 0.105 ]

psi2 1.500 0.329 -0.053 0.048 [ -0.140 , 0.041 ]

psi3 1.500 0.329 0.016 0.052 [ -0.085 , 0.120 ]

psi4 1.500 0.329 0.007 0.054 [ -0.088 , 0.111 ]

psi5 1.500 0.329 -0.030 0.042 [ -0.115 , 0.053 ]

psi6 1.500 0.329 -0.037 0.041 [ -0.116 , 0.042 ]

lam11 1.000 0.819 -0.008 0.028 [ -0.063 , 0.043 ]

lam21 1.000 0.819 0.031 0.028 [ -0.025 , 0.081 ]

lam31 1.000 0.819 -0.011 0.032 [ -0.077 , 0.050 ]

lam42 1.000 0.819 -0.005 0.034 [ -0.071 , 0.052 ]

lam52 1.000 0.819 0.018 0.025 [ -0.033 , 0.067 ]

lam62 1.000 0.819 0.022 0.025 [ -0.026 , 0.068 ]

Phi12 0.500 0.500 0.004 0.056 [ -0.108 , 0.108 ]

CR'1 0.860 0.860 0.004 0.016 [ -0.028 , 0.033 ]

CR'2 0.860 0.860 0.010 0.016 [ -0.019 , 0.042 ]

AVE'1 0.671 0.671 0.008 0.030 [ -0.049 , 0.063 ]

AVE'2 0.671 0.671 0.020 0.030 [ -0.036 , 0.079 ]

95%HPDI
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Table 3: Results of the quadratic function 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quadratic Setting Bias SE

psi1 1.500 -0.160 0.153 [ -0.457 , 0.153 ]

psi2 1.500 -0.038 0.149 [ -0.313 , 0.243 ]

psi3 1.500 0.178 0.182 [ -0.135 , 0.553 ]

psi4 1.500 0.057 0.175 [ -0.300 , 0.387 ]

psi5 1.500 0.070 0.166 [ -0.258 , 0.377 ]

psi6 1.500 -0.031 0.153 [ -0.322 , 0.255 ]

lam12 1.000 -0.094 0.057 [ -0.208 , 0.012 ]

lam13 1.000 -0.017 0.068 [ -0.148 , 0.112 ]

lam25 1.000 0.067 0.067 [ -0.052 , 0.203 ]

lam26 1.000 0.031 0.067 [ -0.107 , 0.151 ]

Phi11 1.000 0.026 0.100 [ -0.183 , 0.195 ]

Phi22 1.000 0.012 0.093 [ -0.165 , 0.197 ]

Phi12 0.500 0.062 0.075 [ -0.078 , 0.209 ]

CR'1 0.800 -0.006 0.031 [ -0.073 , 0.050 ]

CR'2 0.800 0.008 0.029 [ -0.044 , 0.068 ]

AVE'1 0.571 -0.007 0.046 [ -0.110 , 0.074 ]

AVE'2 0.571 0.014 0.045 [ -0.072 , 0.104 ]

95%HPDI
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Table 4: Results of the asymmetric linear function 

 
 

 

 

 

 

 

 

 

 

A-L Setting Bias SE

psi1 1.500 -0.220 0.182 [ -0.548 , 0.169 ]

psi2 1.500 0.222 0.182 [ -0.164 , 0.551 ]

psi3 1.500 0.142 0.188 [ -0.197 , 0.557 ]

psi4 1.500 -0.140 0.169 [ -0.475 , 0.159 ]

psi5 1.500 -0.095 0.197 [ -0.452 , 0.276 ]

psi6 1.500 0.104 0.166 [ -0.200 , 0.439 ]

lam21 1.000 0.153 0.178 [ -0.174 , 0.505 ]

lam31 1.000 0.105 0.182 [ -0.257 , 0.450 ]

lam52 1.000 0.343 0.241 [ -0.055 , 0.834 ]

lam62 1.000 0.042 0.200 [ -0.339 , 0.436 ]

lam13 1.500 0.192 0.237 [ -0.306 , 0.575 ]

lam23 1.500 -0.029 0.233 [ -0.440 , 0.444 ]

lam33 1.500 -0.273 0.213 [ -0.681 , 0.109 ]

lam44 1.500 -0.170 0.235 [ -0.558 , 0.348 ]

lam54 1.500 0.084 0.296 [ -0.428 , 0.648 ]

lam64 1.500 -0.162 0.256 [ -0.642 , 0.318 ]

Phi11 1.000 -0.150 0.211 [ -0.467 , 0.278 ]

Phi22 1.000 -0.164 0.236 [ -0.583 , 0.291 ]

Phi12 0.500 -0.183 0.085 [ -0.341 , -0.020 ]

CR'1 0.766 -0.041 0.028 [ -0.093 , 0.017 ]

CR'2 0.763 -0.035 0.026 [ -0.086 , 0.012 ]

AVE'1 0.521 -0.048 0.035 [ -0.118 , 0.019 ]

AVE'2 0.518 -0.041 0.032 [ -0.098 , 0.024 ]

P ( E )

1.000

0.907

0.719

0.937

0.860

0.913

95%HPDI

E

lam11 < lam13

lam21 < lam23

lam31 < lam33

lam42 < lam44

lam52 < lam54

lam62 < lam64
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Table 5: Results of the asymmetric logistic function 

 
 

 

 

 

 

 

 

 

 

A-LG1 Setting Bias SE

psi1 1.500 -0.045 0.179 [ -0.367 , 0.328 ]

psi2 1.500 -0.095 0.181 [ -0.404 , 0.290 ]

psi3 1.500 0.167 0.189 [ -0.238 , 0.511 ]

psi4 1.500 0.070 0.174 [ -0.243 , 0.435 ]

psi5 1.500 0.097 0.190 [ -0.272 , 0.482 ]

psi6 1.500 -0.095 0.168 [ -0.411 , 0.233 ]

lam21 1.000 0.038 0.100 [ -0.139 , 0.255 ]

lam31 1.000 0.103 0.106 [ -0.089 , 0.312 ]

lam52 1.000 0.052 0.099 [ -0.124 , 0.247 ]

lam62 1.000 0.154 0.099 [ -0.050 , 0.331 ]

lam13 1.500 0.164 0.140 [ -0.093 , 0.443 ]

lam23 1.500 0.086 0.131 [ -0.148 , 0.347 ]

lam33 1.500 0.095 0.139 [ -0.161 , 0.371 ]

lam44 1.500 -0.103 0.123 [ -0.340 , 0.134 ]

lam54 1.500 0.070 0.133 [ -0.174 , 0.341 ]

lam64 1.500 -0.133 0.123 [ -0.367 , 0.103 ]

Phi11 1.000 -0.165 0.147 [ -0.440 , 0.122 ]

Phi22 1.000 -0.005 0.193 [ -0.333 , 0.389 ]

Phi12 0.500 -0.064 0.078 [ -0.204 , 0.101 ]

CR'1 0.907 -0.005 0.012 [ -0.028 , 0.018 ]

CR'2 0.907 -0.004 0.012 [ -0.028 , 0.018 ]

AVE'1 0.764 -0.010 0.025 [ -0.055 , 0.041 ]

AVE'2 0.765 -0.008 0.025 [ -0.057 , 0.041 ]

P ( E )

1.000

1.000

1.000

1.000

1.000

0.966

E

lam11 < lam13

lam21 < lam23

lam31 < lam33

lam42 < lam44

lam52 < lam54

lam62 < lam64

95%HPDI
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Table 6: Results of the asymmetric logistic function in practice 

 
 

 

 

 

 

 

 

 

 

A-LG2 Setting std Bias SE

psi1 1.500 0.131 0.005 0.023 [ -0.042 , 0.047 ]

psi2 1.500 0.131 -0.010 0.021 [ -0.046 , 0.035 ]

psi3 1.500 0.131 0.004 0.023 [ -0.036 , 0.052 ]

psi4 1.500 0.131 0.010 0.023 [ -0.029 , 0.057 ]

psi5 1.500 0.131 -0.020 0.019 [ -0.058 , 0.012 ]

psi6 1.500 0.131 -0.021 0.018 [ -0.053 , 0.013 ]

lam11 1.000 0.517 -0.068 0.029 [ -0.123 , -0.011 ]

lam21 1.000 0.517 -0.004 0.036 [ -0.072 , 0.068 ]

lam31 1.000 0.517 0.015 0.042 [ -0.063 , 0.101 ]

lam42 1.000 0.517 0.011 0.026 [ -0.041 , 0.059 ]

lam52 1.000 0.517 0.010 0.035 [ -0.054 , 0.075 ]

lam62 1.000 0.517 0.096 0.034 [ 0.032 , 0.158 ]

lam13 1.500 0.776 0.037 0.020 [ -0.007 , 0.072 ]

lam23 1.500 0.776 0.008 0.027 [ -0.040 , 0.060 ]

lam33 1.500 0.776 -0.014 0.028 [ -0.065 , 0.044 ]

lam44 1.500 0.776 -0.015 0.022 [ -0.057 , 0.026 ]

lam54 1.500 0.776 0.005 0.024 [ -0.043 , 0.050 ]

lam64 1.500 0.776 -0.060 0.028 [ -0.112 , -0.002 ]

Phi12 0.500 0.500 -0.005 0.055 [ -0.116 , 0.091 ]

CR'1 0.907 0.907 0.003 0.012 [ -0.021 , 0.027 ]

CR'2 0.907 0.907 0.005 0.011 [ -0.018 , 0.026 ]

AVE'1 0.764 0.764 0.007 0.026 [ -0.052 , 0.052 ]

AVE'2 0.765 0.765 0.012 0.024 [ -0.036 , 0.058 ]

P ( E )

1.000

1.000

1.000

1.000

1.000

0.964

lam42 < lam44

lam52 < lam54

lam62 < lam64

95%HPDI

lam11 < lam13

lam21 < lam23

lam31 < lam33

E
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Table 7: WAIC 

 
 

 

Table 8: WBIC 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

WAIC original QM LGM ALM AQM ALGM result

Hotel B 14,000.70 13,864.31 13881.07 14019.27 13949.86 13948.76 QM

Hotel A 13,536.59 13494.81 13,438.16 13,546.74 13,501.80 13,499.15 LGM

Bank B 14,366.11 13,085.80 14,282.70 14,393.41 14,115.11 14,339.73 QM

Bank A 14,607.09 13,510.48 14,561.77 14,687.57 13,718.13 14,657.97 QM

Retail B 14,321.25 11,849.23 14,292.65 14,336.49 14,193.31 14,349.40 QM

Retail A 13,603.49 13,375.52 13,495.42 13,623.07 13,418.68 13,588.92 QM

WBIC original QM LGM ALM AQM ALGM result

Hotel B 6,623.40 6,590.95 6,555.86 6,625.20 6,600.61 6,574.88 LGM

Hotel A 6,410.11 6394.379 6,373.68 6,420.75 6,416.31 6,383.15 LGM

Bank B 6,801.78 6,241.22 6740.022 6,818.56 6,706.92 6,783.17 QM

Bank A 6,928.36 6,442.77 6,877.27 6,903.85 6,511.96 6,875.95 QM

Retail B 6,772.41 5,607.02 6,745.82 6,758.65 6,744.35 6,769.94 QM

Retail A 6,466.98 6,385.94 6,399.78 6,444.04 6,379.74 6,420.63 AQM
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Table 9: Logarithm of the Bayes factor (double scale) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H0

H1

64.90 31.47

135.07 70.17 72.88 41.41

-3.60 -68.51 -138.68 -21.28 -52.75 -94.15

45.58 -19.32 -89.49 49.18 -12.40 -43.87 -85.28 8.88

97.05 32.15 -38.02 100.65 51.47 53.93 22.46 -18.94 75.21 66.33

1,121.11 971.18

123.51 -997.60 102.17 -869.01

-33.58 -1,154.69 -157.08 49.01 -922.17 -53.15

189.71 -931.40 66.21 223.29 832.79 -138.39 730.62 783.77

37.20 -1,083.91 -86.30 70.78 -152.51 104.81 -866.37 2.64 55.79 -727.98

2,330.79 162.06

53.19 -2,277.60 134.39 -27.67

27.53 -2,303.26 -25.67 45.87 -116.20 -88.53

56.13 -2,274.66 2.94 28.61 174.47 12.41 40.08 128.61

4.94 -2,325.85 -48.25 -22.59 -51.19 92.68 -69.38 -41.71 46.82 -81.79

QM

LGM

ALM

AQM

ALGM

Hotel B Hotel A

Bank B Bank A

Retail B Retail A

QM

LGM

ALM

AQM

ALGM

QM

LGM

ALM

AQM

ALGM

Original QM LGM ALM AQM AQMOriginal QM LGM ALM
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Table 10: CR (reliability coefficient) 

 
 

 

 

Table 11: AVE (convergent validity) 

 
 

CR original QM LGM ALM AQM ALGM original QM LGM ALM AQM ALGM

Tangibles 0.732 0.680 0.770 0.752 0.693 0.781 0.739 0.685 0.772 0.745 0.705 0.774

Reliability 0.733 0.646 0.771 0.731 0.650 0.772 0.826 0.768 0.849 0.825 0.772 0.849

Responsiveness 0.793 0.746 0.821 0.798 0.749 0.828 0.857 0.806 0.876 0.850 0.811 0.878

Assurance 0.757 0.684 0.792 0.760 0.684 0.797 0.848 0.799 0.871 0.849 0.805 0.869

Empathy 0.861 0.822 0.874 0.862 0.823 0.879 0.863 0.822 0.883 0.870 0.841 0.886

Tangibles 0.735 0.684 0.763 0.741 0.681 0.769 0.821 0.731 0.842 0.821 0.740 0.845

Reliability 0.695 0.606 0.745 0.699 0.593 0.740 0.774 0.672 0.813 0.773 0.692 0.815

Responsiveness 0.763 0.665 0.803 0.758 0.659 0.792 0.852 0.735 0.881 0.854 0.744 0.883

Assurance 0.709 0.601 0.736 0.704 0.642 0.745 0.802 0.739 0.854 0.828 0.761 0.859

Empathy 0.813 0.723 0.841 0.814 0.727 0.836 0.882 0.780 0.897 0.878 0.798 0.899

Tangibles 0.732 0.638 0.764 0.742 0.689 0.764 0.764 0.683 0.799 0.753 0.694 0.786

Reliability 0.771 0.698 0.797 0.762 0.691 0.789 0.810 0.762 0.836 0.812 0.765 0.837

Responsiveness 0.737 0.674 0.782 0.735 0.667 0.773 0.808 0.742 0.839 0.805 0.740 0.835

Assurance 0.745 0.676 0.783 0.759 0.669 0.788 0.833 0.760 0.858 0.833 0.768 0.861

Empathy 0.802 0.753 0.836 0.817 0.756 0.839 0.858 0.813 0.879 0.865 0.826 0.885

Hotel B Hotel A

Retail A Retail A

Bank A Bank A

AVE original QM LGM ALM AQM ALGM original QM LGM ALM AQM ALGM

Tangibles 0.418 0.368 0.477 0.451 0.368 0.493 0.418 0.357 0.464 0.429 0.380 0.468

Reliability 0.360 0.273 0.409 0.360 0.276 0.413 0.492 0.406 0.534 0.492 0.412 0.536

Responsiveness 0.492 0.428 0.538 0.504 0.436 0.556 0.603 0.514 0.641 0.592 0.522 0.647

Assurance 0.443 0.357 0.499 0.449 0.356 0.504 0.587 0.508 0.636 0.593 0.517 0.634

Empathy 0.558 0.486 0.584 0.560 0.489 0.597 0.563 0.490 0.608 0.582 0.523 0.618

Tangibles 0.415 0.364 0.457 0.432 0.360 0.470 0.536 0.410 0.573 0.538 0.423 0.581

Reliability 0.321 0.250 0.380 0.331 0.232 0.379 0.410 0.297 0.469 0.416 0.321 0.479

Responsiveness 0.453 0.341 0.511 0.449 0.331 0.497 0.592 0.413 0.652 0.597 0.426 0.658

Assurance 0.391 0.310 0.428 0.392 0.326 0.444 0.528 0.454 0.626 0.581 0.481 0.638

Empathy 0.475 0.359 0.525 0.480 0.355 0.520 0.606 0.423 0.642 0.598 0.451 0.647

Tangibles 0.435 0.367 0.484 0.457 0.373 0.486 0.453 0.357 0.501 0.439 0.367 0.484

Reliability 0.405 0.320 0.444 0.400 0.314 0.439 0.464 0.397 0.512 0.473 0.403 0.518

Responsiveness 0.420 0.352 0.480 0.432 0.350 0.482 0.515 0.422 0.568 0.511 0.420 0.565

Assurance 0.428 0.356 0.487 0.454 0.345 0.495 0.558 0.449 0.610 0.562 0.460 0.616

Empathy 0.464 0.401 0.527 0.493 0.395 0.533 0.552 0.471 0.596 0.567 0.491 0.611

Hotel B Hotel A

Retail B Retail A

Bank B Bank A
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Table 12: Discriminant validity in Hotel B 

 
 

Hotel B Tangibles Reliability Responsiveness Assurance Empathy

original

Tangibles 0.418

Reliability 0.244 0.360

Responsiveness 0.323 0.423 0.492

Assurance 0.316 0.380 0.666 0.443

Empathy 0.252 0.250 0.396 0.433 0.558

QM

Tangibles 0.368

Reliability 0.254 0.273

Responsiveness 0.325 0.446 0.428

Assurance 0.319 0.457 0.691 0.357

Empathy 0.260 0.227 0.329 0.418 0.486

LGM

Tangibles 0.477

Reliability 0.161 0.409

Responsiveness 0.232 0.276 0.538

Assurance 0.221 0.244 0.438 0.499

Empathy 0.190 0.173 0.297 0.308 0.584

ALM

Tangibles 0.451

Reliability 0.311 0.360

Responsiveness 0.374 0.442 0.504

Assurance 0.327 0.422 0.687 0.449

Empathy 0.258 0.277 0.394 0.434 0.560

AQM

Tangibles 0.368

Reliability 0.356 0.276

Responsiveness 0.383 0.478 0.436

Assurance 0.322 0.500 0.701 0.356

Empathy 0.257 0.273 0.352 0.435 0.489

ALGM

Tangibles 0.493

Reliability 0.233 0.413

Responsiveness 0.303 0.344 0.556

Assurance 0.256 0.313 0.518 0.504

Empathy 0.205 0.216 0.324 0.339 0.597
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Table 13: Discriminant validity in Hotel A 

 
 

Hotel A Tangibles Reliability Responsiveness Assurance Empathy

original

Tangibles 0.418

Reliability 0.419 0.492

Responsiveness 0.357 0.639 0.603

Assurance 0.354 0.525 0.711 0.587

Empathy 0.267 0.521 0.522 0.513 0.563

QM

Tangibles 0.357

Reliability 0.446 0.406

Responsiveness 0.351 0.624 0.514

Assurance 0.353 0.501 0.715 0.508

Empathy 0.237 0.451 0.439 0.431 0.490

LGM

Tangibles 0.464

Reliability 0.340 0.534

Responsiveness 0.313 0.557 0.641

Assurance 0.296 0.473 0.650 0.636

Empathy 0.235 0.464 0.488 0.481 0.608

ALM

Tangibles 0.429

Reliability 0.456 0.492

Responsiveness 0.375 0.651 0.592

Assurance 0.361 0.534 0.710 0.593

Empathy 0.261 0.542 0.543 0.526 0.582

AQM

Tangibles 0.380

Reliability 0.468 0.412

Responsiveness 0.367 0.615 0.522

Assurance 0.374 0.494 0.712 0.517

Empathy 0.250 0.497 0.500 0.479 0.523

ALGM

Tangibles 0.468

Reliability 0.386 0.536

Responsiveness 0.362 0.593 0.647

Assurance 0.342 0.484 0.655 0.634

Empathy 0.259 0.486 0.507 0.475 0.618
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Table 14: Discriminant validity in Bank B 

 
 

Bank B Tangibles Reliability Responsiveness Assurance Empathy

original

Tangibles 0.415

Reliability 0.264 0.321

Responsiveness 0.077 0.389 0.453

Assurance 0.066 0.371 0.489 0.391

Empathy 0.073 0.258 0.456 0.298 0.475

QM

Tangibles 0.364

Reliability 0.217 0.250

Responsiveness 0.052 0.336 0.341

Assurance 0.017 0.257 0.361 0.310

Empathy 0.080 0.213 0.375 0.167 0.359

LGM

Tangibles 0.457

Reliability 0.193 0.380

Responsiveness 0.061 0.253 0.511

Assurance 0.051 0.242 0.346 0.428

Empathy 0.059 0.183 0.322 0.223 0.525

ALM

Tangibles 0.432

Reliability 0.313 0.331

Responsiveness 0.088 0.393 0.449

Assurance 0.069 0.348 0.505 0.392

Empathy 0.075 0.249 0.466 0.306 0.480

AQM

Tangibles 0.360

Reliability 0.324 0.232

Responsiveness 0.080 0.360 0.331

Assurance 0.071 0.381 0.543 0.326

Empathy 0.080 0.222 0.463 0.327 0.355

ALGM

Tangibles 0.470

Reliability 0.222 0.379

Responsiveness 0.075 0.272 0.497

Assurance 0.056 0.260 0.359 0.444

Empathy 0.063 0.183 0.350 0.239 0.520



27 

Table 15: Discriminant validity in Bank A 

 
 

Bank A Tangibles Reliability Responsiveness Assurance Empathy

original

Tangibles 0.536

Reliability 0.523 0.410

Responsiveness 0.334 0.644 0.592

Assurance 0.333 0.589 0.691 0.528

Empathy 0.238 0.466 0.643 0.551 0.606

QM

Tangibles 0.410

Reliability 0.519 0.297

Responsiveness 0.307 0.525 0.413

Assurance 0.192 0.378 0.417 0.454

Empathy 0.174 0.284 0.485 0.294 0.423

LGM

Tangibles 0.573

Reliability 0.407 0.469

Responsiveness 0.277 0.519 0.652

Assurance 0.283 0.498 0.596 0.626

Empathy 0.209 0.414 0.574 0.514 0.642

ALM

Tangibles 0.538

Reliability 0.519 0.416

Responsiveness 0.356 0.666 0.597

Assurance 0.351 0.600 0.715 0.581

Empathy 0.250 0.478 0.665 0.567 0.598

AQM

Tangibles 0.423

Reliability 0.515 0.321

Responsiveness 0.325 0.519 0.426

Assurance 0.215 0.398 0.424 0.481

Empathy 0.176 0.294 0.510 0.300 0.451

ALGM

Tangibles 0.581

Reliability 0.444 0.479

Responsiveness 0.308 0.555 0.658

Assurance 0.317 0.532 0.638 0.638

Empathy 0.223 0.430 0.604 0.537 0.647
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Table 16: Discriminant validity in Retail B 

 
 

Retail B Tangibles Reliability Responsiveness Assurance Empathy

original

Tangibles 0.435

Reliability 0.111 0.405

Responsiveness 0.126 0.287 0.420

Assurance 0.216 0.157 0.668 0.428

Empathy 0.170 0.145 0.380 0.395 0.464

QM

Tangibles 0.367

Reliability 0.033 0.320

Responsiveness 0.084 0.365 0.352

Assurance 0.105 0.245 0.707 0.356

Empathy 0.143 0.118 0.317 0.376 0.401

LGM

Tangibles 0.484

Reliability 0.095 0.444

Responsiveness 0.102 0.196 0.480

Assurance 0.162 0.120 0.435 0.487

Empathy 0.137 0.117 0.273 0.294 0.527

ALM

Tangibles 0.457

Reliability 0.151 0.400

Responsiveness 0.141 0.273 0.432

Assurance 0.222 0.184 0.731 0.454

Empathy 0.189 0.174 0.402 0.417 0.493

AQM

Tangibles 0.373

Reliability 0.182 0.314

Responsiveness 0.164 0.306 0.350

Assurance 0.209 0.210 0.687 0.345

Empathy 0.235 0.136 0.392 0.415 0.395

ALGM

Tangibles 0.486

Reliability 0.124 0.439

Responsiveness 0.130 0.203 0.482

Assurance 0.186 0.146 0.534 0.495

Empathy 0.161 0.134 0.316 0.324 0.533
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Table 17: Discriminant validity in Retail A 

 

Retail.A Tangibles Reliability Responsiveness Assurance Empathy

original

Tangibles 0.453

Reliability 0.463 0.464

Responsiveness 0.303 0.614 0.515

Assurance 0.318 0.610 0.715 0.558

Empathy 0.149 0.327 0.482 0.570 0.552

QM

Tangibles 0.357

Reliability 0.506 0.397

Responsiveness 0.333 0.634 0.422

Assurance 0.346 0.612 0.697 0.449

Empathy 0.125 0.273 0.408 0.502 0.471

LGM

Tangibles 0.501

Reliability 0.331 0.512

Responsiveness 0.228 0.477 0.568

Assurance 0.235 0.477 0.552 0.610

Empathy 0.117 0.265 0.376 0.440 0.596

ALM

Tangibles 0.439

Reliability 0.466 0.473

Responsiveness 0.315 0.600 0.511

Assurance 0.339 0.598 0.705 0.562

Empathy 0.171 0.349 0.498 0.588 0.567

AQM

Tangibles 0.367

Reliability 0.526 0.403

Responsiveness 0.354 0.620 0.420

Assurance 0.378 0.602 0.691 0.460

Empathy 0.167 0.327 0.462 0.546 0.491

ALGM

Tangibles 0.484

Reliability 0.124 0.518

Responsiveness 0.130 0.203 0.565

Assurance 0.186 0.146 0.534 0.616

Empathy 0.161 0.134 0.316 0.324 0.611
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Appendix 

A. Relationship Between Measurement Model and Reliability Coefficient 

1. Coefficient alpha and tau-equivalent test 

Consider a composite measure for the tau-equivalent measurement model as follows: 
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Coefficient alpha can be expressed as the following equation, assuming the tau-equivalent test: 
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2. Coefficient omega/CR and congeneric test 

Consider a composite measure for the following congeneric measurement model: 
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Coefficient omega can be expressed as the following equation, assuming a congeneric test: 
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B. Proposed Estimators for CR and AVE in the Nonlinear Measurement Model 

Consider a composite measure for the following nonlinear measurement model: 
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In the same way as for (A.5), reliability in the nonlinear measurement model is given by 
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In practice, it is necessary to evaluate the 𝑉𝑎𝑟{𝑓(𝑡𝑖)}  from the estimated variance of 𝑡𝑖 . 

Therefore, adopting a linear Taylor series approximation with 𝐸(𝑡𝑖) as expansion point (see 

Green 2011, Serfling 1980), we obtain 
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Then,  
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where 𝑝( ) is a probability distribution function. Hence, 𝑉𝑎𝑟{𝑓(𝑡𝑖)} can be approximated 

by using the estimated mean and variance of 𝑡𝑖 and by calculating the first derivative of the 

nonlinear function, we obtain the following CR´: 
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For AVE´, assuming 𝜆𝑗𝜆𝑠 = 0 for any 𝑗 ≠ 𝑠 at (B.2) and (B.5), we obtain 
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If the measurement model is the linear model so that 𝑓(𝑡𝑖) = 𝑡𝑖, then 𝐶𝑅𝑡
′ = 𝐶𝑅𝑡 and 𝐴𝑉𝐸𝑡

′ =
𝐴𝑉𝐸𝑡 because 𝑓′(𝑡𝑖) = 1 at any point. 

 

C. Additional Extension of CR and AVE in Heterogeneity 

We also provide the CR and AVE in case for measurement model with heterogeneity (individual 

parameters). Consider a composite measure for all 𝑗 and 𝑖: 
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Hence, the reliability is given by 
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Because 𝜀𝑗𝑖 ⊥ 𝜀𝑗𝑙 for any 𝑖 ≠ 𝑙 and 𝑉𝑎𝑟(𝜀𝑗𝑖) = 𝜓𝑗𝑖 for any 𝑗 and 𝑖,  
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Then, because 𝑡𝑖 ⊥ 𝑡𝑙 for any 𝑖 ≠ 𝑙 and 𝑉𝑎𝑟(𝑡𝑖) = 1 for all 𝑖, 
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Hence, CR for the measurement model with individual parameters is given by 
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For AVE with heterogeneity, because AVE assumes 𝜆𝑗𝑖𝜆𝑠𝑖 = 0  for any 𝑗 ≠ 𝑠  at the second 

equation in (B.5,) we obtain the following: 
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We use these results to derive the CR´ and AVE´ for asymmetric function. If 𝜓𝑗𝑖 = 𝜓𝑗𝑙 = 𝜓𝑗 

and 𝜆𝑗𝑖 = 𝜆𝑗𝑙 = 𝜆𝑗 for any 𝑖 ≠ 𝑙, 
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Hence, 
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and 
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The last equation in C.5´and C.6´ indicate the original CR and AVE so that C.5 and C.6 can be 

widely used in general cases. 
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D. MCMC Algorithm for Nonlinear Measurement Model 

We introduce the MCMC algorithm according to Zhu and Lee (1999). Consider the following 

nonlinear factor analysis model for the 𝑝 × 1 manifest random vector 𝒚𝑇 = (𝑦(1), ⋯ , 𝑦(𝑝)): 
 

   ,F    y   (D.1) 

 

where Λ is a 𝑝 × 𝑟 factor loading matrix, 𝜔 = (𝜔(1), ⋯ , 𝜔(𝑞)) is a random vector of latent 

factors with 𝑞 < 𝑝 , 𝜀  is a random vector of error measurements, and 𝐹(𝜔) =

(𝑓1(𝜔), ⋯ , 𝑓𝑟(𝜔))
𝑇

  with differentiable functions 𝑓1, ⋯ , 𝑓𝑟 , and 𝑞 ≤ 𝑟 . Similar to the usual 

assumptions for factor analysis, it is assumed that 𝜔  is distributed as 𝑁[𝟎, Φ]  and 𝜀  is 

distributed as 𝑁[𝟎, Ψ], where Ψ is a diagonal matrix and 𝜔 and 𝜀 are independent. 

Let 𝐘 = {𝑦𝑖, ⋯ , 𝑦𝑛}  be the observed data matrix corresponding to a random sample 

obtained from a population with model (D.1,): 𝛀 = {𝜔1, ⋯ , 𝜔𝑛} is the matrix of latent factors, 

and 𝐅 = {𝐹(𝜔1), ⋯ , 𝐹(𝜔𝑛)}. We set prior distributions as follows, 
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For posteriors, set 𝑠(= 1, ⋯ , 𝑆) as a number of MCMC iterations and generate 𝜉𝑖|Λ, Ψ, Φ, 𝑦𝑖 

as follows 
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The probability of acceptance is 
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where 𝜎𝜉
2  is a step size parameter that is given such that each acceptance rate becomes 

approximately 0.25. For 𝑗 = 1, ⋯ , 𝑝, 
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The above results are valid for situations where all elements of Λ are free parameters. Here, 

consider that Λ𝑗
𝑇, the 𝑗th row of Λ, contains fixed parameters. Let 𝑐𝑗 be the 1 × 𝑞 row vector 

such that 𝑐𝑗𝑘 = 0 if 𝜆𝑗𝑘 is a fixed parameter and 𝑐𝑗𝑘 = 1 if 𝜆𝑗𝑘 is an unknown parameter for 



35 

𝑗 = 1, ⋯ , 𝑝 and 𝑘 = 1, ⋯ , 𝑞; 𝑟𝑗 = 𝑐𝑗1 + ⋯ + 𝑐𝑗𝑞 be the number of unknown parameter in Λ𝑗
𝑇; 

Λ𝑗
∗𝑇 be a 1 × 𝑟𝑗 row vector that contains the only unknown parameters in Λ𝑗

𝑇; 𝛀𝑗
∗ be an 𝑟𝑗 ×

𝑛  submatrix of 𝛀  such that all the rows corresponding to 𝑐𝑗𝑘 = 0  are deleted; and 𝐘𝑗
∗𝑇 =

(𝑦𝑗,1
∗ , ⋯ , 𝑦𝑗.𝑛

∗ ) with 
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The conditional distributions with 𝚲𝑗, 𝐘𝑗, 𝛀 in part of [𝚲, 𝚿𝜖] must be replaced by 𝚲𝑗
∗, 𝐘𝑗

∗, 

𝛀𝑗
∗. 

For example, consider an asymmetric nonlinear measurement model with two latent factors 

as follows; 
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Hence, for 𝑗 = 1 with 𝑘 = 1 and 𝑗 = 4 with 𝑘 = 2, 
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and for 𝑗 = 2, 3 with 𝑘 = 1 and 𝑗 = 5, 6 with 𝑘 = 2 
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For improper solutions in Λ, it is possible to fix the left side parameters 1s in Λ as follows, 
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or to assume that 𝜆𝑗𝑘 follows positive truncated normal distribution with above restriction. 

We take 1,000 MCMC samples after the algorithm converged in 500 for all simulation 

studies and take 3,000 MCMC samples after the algorithm converged in 2,000 for all models in 

the empirical analysis. 
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